金属晶体空间利用率计算

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.在金刚石晶体中每个碳原子周围紧邻的碳原子有
4 个,C-C-C键角为 109°28′ 2.在金刚石晶体中最小碳环由 6 个碳原子来组成
3.在金刚石晶体中碳原子个数与C-C共价键个数之
比是 1 ︰ 2 4.在金刚石晶胞中占有的碳原子数 8个
5.在金刚石晶体中,每个碳原子最多可形成 12 个六元 环;每个C—C键最多可形成 6 个六元环;每个六元环 实际拥有 1/2 个碳原子,拥有 1 个C—C键.
2 4 r3
3 a3
100%
2 4 r3

3 4
r)3
100%
3
3 100 % 68%
8
3、六方最密堆积
s 2r 3r
s
2r
V球
2
4 3
r 3
s
V晶胞 s 2h 2
2
3r2
3r
2
2
2
h
6பைடு நூலகம் 3
2
6 3
8
r
2r3
空间利用率= V球 100%
V晶胞
2r
2 4 r3
h
2r
3 100% 8 2r3
=74%
4、面心立方最密堆积
4、面心立方最密堆积
a 2 2r
V球
4
4 r3
3
4r
V晶胞 a3 (2 2r)3 16 2r3
a 空间利用率= V球 100%
V晶胞
4 4 r3 3 100% =74%
16 2r3
金刚石晶体结构
正四面体
最小环为六元环
在金刚石晶胞中占有 的碳原子数:
8×1/8+6×1/2+4=8
1、简单立方堆积
立方体的棱长为2r,球的半径为r
过程:
1个晶胞中平均含有1个原子
2r
V球=
4 r
3
空间利用率= V球 V晶胞
3 V晶胞=(2r)3=8r3
4 r3
100%
3 8r 3
100%
=52%
2、体心立方堆积
b2 a2 a2
a
(4r)2 a2 b2 3a2
a 4 r 3
b a
空间利用率=
相关文档
最新文档