深度神经网络及目标检测学习笔记
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深度神经网络及目标检测学习笔记
https://youtu.be/MPU2HistivI
上面是一段实时目标识别的演示,计算机在视频流上标注出物体的类别,包括人、汽车、自行车、狗、背包、领带、椅子等。
今天的计算机视觉技术已经可以在图片、视频中识别出大量类别的物体,甚至可以初步理解图片或者视频中的内容,在这方面,人工智能已经达到了3岁儿童的智力水平。这是一个很了不起的成就,毕竟人工智能用了几十年的时间,就走完了人类几十万年的进化之路,并且还在加速发展。
道路总是曲折的,也是有迹可循的。在尝试了其它方法之后,计算机视觉在仿生学里找到了正确的道路(至少目前看是正确的)。通过研究人类的视觉原理,计算机利用深度神经网络(Deep Neural Network,NN)实现了对图片的识别,包括文字识别、物体分类、图像理解等。在这个过程中,神经元和神经网络模型、大数据技术的发展,以及处理器(尤其是GPU)强大的算力,给人工智能技术的发展提供了很大的支持。
本文是一篇学习笔记,以深度优先的思路,记录了对深度学习(Deep Learning)的简单梳理,主要针对计算机视觉应用领域。
一、神经网络
1.1 神经元和神经网络
神经元是生物学概念,用数学描述就是:对多个输入进行加权求和,并经过激活函数进行非线性输出。
由多个神经元作为输入节点,则构成了简单的单层神经网络(感知器),可以进行线性分类。两层神经网络则可以完成复杂一些的工作,比如解决异或问题,而且具有非常好的非线性分类效果。而多层(两层以上)神经网络,就是所谓的深度神经网络。
神经网络的工作原理就是神经元的计算,一层一层的加权求和、激活,最终输出结果。深度神经网络中的参数太多(可达亿级),必须靠大量数据的训练来设置。训练的过程就好像是刚出生的婴儿,在父母一遍遍的重复中学习“这是苹
果”、“那是汽车”。有人说,人工智能很傻嘛,到现在还不如三岁小孩。其实可以换个角度想:刚出生婴儿就好像是一个裸机,这是经过几十万年的进化才形成的,然后经过几年的学习,就会认识图片和文字了;而深度学习这个“裸机”用了几十年就被设计出来,并且经过几个小时的“学习”,就可以达到这个水平了。
1.2 BP算法
神经网络的训练就是它的参数不断变化收敛的过程。像父母教婴儿识图认字一样,给神经网络看一张图并告诉它这是苹果,它就把所有参数做一些调整,使得它的计算结果比之前更接近“苹果”这个结果。经过上百万张图片的训练,它就可以达到和人差不多的识别能力,可以认出一定种类的物体。这个过程是通过反向传播(Back Propagation,BP)算法来实现的。
建议仔细看一下BP算法的计算原理,以及跟踪一个简单的神经网络来体会训练的过程。
1.3 小结
人工神经网络就是根据人的神经元模型而构建的一个感知算法,利用大量的神经元组合对人的认知行为进行拟合。目前我们仍然无法精确的知道它为什么能工作、如何工作,如同我们仍然无法精确知道人的大脑是如何工作一样。
在摸索过程中,我们好像应该更多地思考人类自己是怎么去“看”的,这会更有助于设计更好的算法。比如本文开头的视频识别算法,它很快,但是不够精确,而有些可以“看清”细节的算法,就会非常慢。就像我们人类自己,走马观花只能看到概貌,驻足观赏才能看清细节。
我们越了解自己,就越能做得更好。
二、卷积神经网络
2.1 简介
卷积神经网络(Convocational Neural Network,CNN)是一个特殊的深层神经网络,目前在计算机视觉领域广泛使用,可以认为它是一个二维向量(图片就是一个二维向量)的感知器。
CNN算法的核心是对图像(二维向量)进行矩阵卷积运算,这就相当于是对图像进行加权求和。为了减小计算量,CNN采用了局部感知和权值共享的方法。局部感知,就是用一个N×N(如N=3)的矩阵(称为卷积核)去滑动扫描图像,进行卷积运算。权值共享,就是扫描图片的滑动矩阵的权值是共享的(相同的)。在实际运算中,这个卷积核相当于一个特征提取的过滤器(filter)。举例来说,假设一个10×10的图像,用一个3×3的卷积核以步长1做一次卷积运算,那么会得到一个8×8的特征图(feature map)。为了使得到的feature map和原图等大小,一般给原图进行扩充为12×12,这样卷积一次以后,得到的仍然是10×10大小的图像。在这个例子中,如果不采用权值共享,则一共需要100个权值参数,权值共享后,只需要3×3=9个权值参数。
在实际中,一个RGB图像是三个通道,而卷积核也可能有多个。这样计算起来会比上面的例子复杂些,但基本原理是一样的。
2.2 CNN计算流程
一个典型的CNN算法的流程大概是这样的:首先是输入,然后是n个卷积和池化的组合,最后全连接层感知分类。
在这个流程里,卷积运算主要是用来提取特征。一个典型的卷积计算如下图所示。
<卷积计算示意图>
图中input是同一个图像的三个通道,周边有填充0;有两个卷积核Filter W0和Filter W1,一个filter滑动到一个位置后计算三个通道的卷积,求和,加bias,得到这个filter在该位置的最终结果;每个filter的输出是各个通道的汇总;输出的个数与filter个数相同。在这里还要加上激活函数,对计算结果进行非线性变换。常用的激活函数有tanh、ReLU、sigmoid等。激活函数的作用好像可以解释为:过滤掉一些可以忽略的不重要因素,以避免其对决策产生过度影响。
池化是为了降维,有最大池化(Max Pooling)和平均池化(Average Pooling)。一个2×2最大池化的示例如下图。
最后是全连接层,它将前面卷积层提取的特征映射到样本标记空间,它输出一个分类的概率,也就是最终的结果。
2.3 典型的CNN模型
LeNet,最早用于数字识别的CNN,用5×5卷积核,2×2最大池化,识别输入为28×28的灰度点阵,网络结构是(CONV—POOL—CONV—POOL—CONV—FC)。
AlexNet,2012 ImageNet比赛第一名,准确度超过第二名10%。网络结构如下图。5个CONV、3个POOL、2个LRN、3个FC,卷积核分别是11×11、5×5、3×3,采用ReLU作为激活函数。