直线电机轨道交通
城市轨道交通直线电机车辆通用技术条件
城市轨道交通直线电机车辆通用技术条件一、引言城市轨道交通直线电机车辆是一种以直线电机为驱动装置的城市轨道交通工具,它具有高效、环保、安全等优点,在城市快速交通领域具有广泛的应用前景。
本文将对城市轨道交通直线电机车辆的通用技术条件进行探讨。
二、车辆性能指标1. 极限速度:城市轨道交通直线电机车辆的极限速度通常应在200km/h以上,以满足城市快速交通的需求。
2. 加速度:车辆的加速度应适中,以保证乘客的舒适性和安全性,一般要求在1.2m/s²左右。
3. 制动距离:车辆的制动距离应尽量短,以确保紧急情况下的安全停车。
制动距离要根据车辆的设计速度和制动系统的性能来确定。
4. 容载量:车辆的容载量应根据城市交通需求来确定,一般要求每节车厢的最大乘客数不少于300人。
5. 过载能力:车辆的过载能力应满足城市交通高峰期的需求,以确保乘客能够正常乘坐。
6. 噪音:车辆的噪音应尽量降低,以减少对沿线居民的影响。
7. 能耗:车辆的能耗应尽量低,以提高运营效率和降低运营成本。
三、车辆控制系统1. 速度控制:车辆的速度控制是实现稳定、安全运行的关键。
采用先进的电子控制技术,通过控制直线电机的电流和电压,实现精确的速度控制。
2. 制动控制:车辆的制动控制应具有快速、稳定的特点。
采用电磁制动器和再生制动技术,能够实现快速停车,并将制动能量回馈给电网。
3. 故障诊断:车辆的故障诊断系统应具备自动检测、自动报警和自动处理的功能,能够及时发现并排除故障,提高车辆的可靠性和安全性。
4. 通信系统:车辆的通信系统应能够实现与控制中心和其他车辆的信息交换,以实现列车间的协调运行和故障处理。
四、车辆设计1. 结构设计:车辆的结构设计应符合轻量化、高强度的原则,以提高运行效率和安全性。
车辆的车身采用铝合金材料制造,具有重量轻、强度高的特点。
2. 空调系统:车辆的空调系统应能够满足车内乘客的舒适需求,采用先进的变频技术,能够根据车内温度和人员数量进行自动调节。
城轨交通的一种新模式_直线电机驱动地铁车辆
!"#$$")
要:文章论述了直线电机驱动方式的原理、 车辆的特点和应用的原则, 为我国城市轨道交通在特定
的线路条件下提供一种新的选择。 关键词:城轨交通; 直线电机; 驱动; 模式 中图分类号: %#&’(); *+&)’(! 文献标识码: , 文章编号: "-.#/""0.( #$$&) $!/$$$!/$!
#)+
低效率、 低功率因数的缺点 地铁车辆上工程应用的直线电机,由于车载定子
与地面转子是处在一个相对直线运动的弹性 ( 轴箱垂 向弹性定位)系统间,不可避免地会造成相互间隙变 化,因此气隙设计得不能太小,否则会导致不安全因 素, 一般定在 %! ’’ 左 右 ( 比德国磁悬浮列车的直线 电机气隙 & ’’ 要高一些) 。再加上直线电机是有端部 的( 旋转电机是闭环) , 因此漏磁场较大, 机电能量转化 率低, 所以直线电机的效率较低, 一般在 ")+.")& 之间,
城建物的密集, 使线路的水平断面曲线变小; ( #) ( 城市人口的增长, 使运行区间变短, 必须依靠 &) 较高运行速度和较大的加 Y 减速度才能增大运能; 环保的要求更高, 要求车辆的振动和噪声的影 ( !) 响更小; ( 为减少运营成本必须降低土建工程的造价, 要 )) 求地铁车辆重量轻、 体积小, 才能使隧道和高架结构简 单经济。 传统技术模式的地铁车辆是依靠轮轨作用来发挥 由于物理黏着的存在限制了其加 Y 减速 牵引 Y 制动力, 度性能和爬坡能力的提高,还存在全天候运行特性较 差, 运行的机械振动和噪声较大, 车辆结构轻量化和小 型化相对困难等缺点, 不能很好地适应新的运行特点。 因此, 长期以来科技界、 工业界一直在追求研发一种新 的技术模式。
试析直线电机轨道交通牵引传动系统研究
试析直线电机轨道交通牵引传动系统研究摘要:近年来,越来越多的人们开始认识到城市轨道交通的重要性,因此我国大力推进城市轨道交通建设,直线电机轨道交通系统在我国得到了长足的发展。
本文主要研究探讨了直线电机轨道交通中的牵引传动系统。
关键词:直线电机;轨道交通;牵引传动系统近几十年来,世界各国都在不断推进城市化建设进程,其中城市轨道交通系统是建设和发展的重点之一,各国的工程师都对城市轨道交通系统进行了系统深入的研究,采用直线电机传动的城市轨道交通系统就是研究内容之一。
直线电机车辆减少了车辆摩擦和振动噪声,解决了维护运行成本,降低工程造价,因此其在城市轨道交通中的应用越来越广泛,研究其牵引传动系统也存在非常重要的现实意义[1]。
一、直线电机轨道交通系统的发展和现状随着城市化进程的加快,城市的交通问题日益成为城市建设发展的重点研究工作,城市化建设的发展和高新现代科技的研究对城市轨道交通的建设提出了更高的要求。
在城市轨道交通系统中,虽然传统的牵引制动模式技术成熟,应用较多,但是它限制了车辆的速度性能,振动噪声较大,不能适应新的运行特点,所以人们开始研究新的技术模式。
直线感应电机运载系统开始进入人们的视线。
直线感应电机运载系统在城市轨道交通中的应用不同于磁悬浮,这种系统仍然使用铁轨作为支撑导向,只是利用直线感应电机进行驱动[2]。
近几十年来在世界得到了良好的发展。
目前在世界上投入商业运营的直线感应电机驱动线路已有10条(如图1所示),直线感应电机运载系统正逐渐成为城市轨道交通的重要模式。
图1 世界投入商业运营的直线感应电机运载系统线路直线感应电机驱动的城市轨道交通车辆具有以下优点:(1)车辆不受轮轨黏着因素的限制,可以获得较强的起动、加速、减速动力性能,在比较恶劣的轨面条件和环境下也能保持优越的性能。
(2)直线感应电机取代了旋转电机,提高了车辆的运行稳定性和曲线通过性能,便于车辆小型化。
(3)容易避开在建和规划中的施工路线,降低土建工程造价。
城市轨道交通直线电机牵引系统设计规范
城市轨道交通直线电机牵引系统设计规范
一、结构设计
1、电机牵引系统由主车、控制车、牵引电机、轨道轴承、头车、灯光设备等组成。
2、乘客车所用电动机应具有较高的功率、质量轻、噪音低等特点,同时具备良好的空载牵引能力和有效率,并达到最优效率运行。
3、电机牵引系统的设计要求电压范围稳定,电源供应能力充足,电流稳定,电气设备应具备足够的容量,具备自动保护和断路装置。
二、参数设计
1、电动机电流应符合IEC/EN 60034-1标准。
2、电机牵引系统的最大牵引力应满足乘客车辆的运行要求,当乘客车辆质量超载时,牵引电机仍具有动力足以维持车辆的正常运行。
3、电动机牵引力计算时,应考虑乘客车辆的静摩擦转矩及抗滑系数。
4、电机牵引系统应具备能够维护牵引效率的有效自控功能,提高牵引系统的可用性。
5、电动机应考虑头车的空载牵引能力,特别是在坡度较大和无法设置转角护栏的铁路段,牵引电机的最小牵引力应能保证车辆的安全行驶。
三、电路设计
1、电机牵引系统电源系统设计要求稳定可靠,塔立式接触网布置在轨道之上,应配有可靠的故障指示系统。
2、电源系统应采用双相异步电动机,符合电力系统的抗干扰能力,电动机应配有足够的励磁电容器,以确保其动力特性。
3、电源系统的起动方式,采用软启动、硬启动等方式,至少采用两种起动方式,以确保牵引效率。
4、电动机牵引系统的安全防护系统设计应考虑到电气设备的安全隔离及电源系统的抗干扰性能。
;。
直线电机在轨道交通系统中的应用
直线电机在轨道交通系统中的应用Ap I a in on a o o b nMasT「n ipitfLie「MtriU「asastco nZ e gL n hn o g Abta t W i n ito u t no h m il n p la in src t a rd ci ft epicpea da pi t h n o c o on a tri h n h iMa IvDe o sr t n Liea du——fl ermoo Saga gemn tai nrinonbn masta s。
t i pp rdsu sst epo I so c le n a S「n i hs a e icse h rbe c ut d i t mtep we u py ssea a d te p emiay s It n frd - h o rs p I y t, n h rl n r oui o e n i o cesn h n eia c n eli n h ta u「n . raig tel er s n ea drcamigt esryc ret i s t Ke r s I e rmoo, u b n n ywod i a tr ra ® ns se a yt nta st p we u py rn i, o r sp IAuh r sa d es S a g a i TrfcEq ime tDe dO一to1 d rs h n h i I af up n v pRa imei C丄d,2 0 4, h n h i hn r o, t. 0 0 1 S a g a.C ia t图2同步长定子直线电机原理示意图直线电机如同将旋转电机的转子与定子展开成直线形状,相当予把一个旋转电机沿旋转方向切开后平铺而成,在理论上,可以把它看成具有无限大半径的传统的旋转电机。
直线电机的驱动根据定子、转子安装的位置可分为两种应用方式:一种为长定子直线电机,定子安装在轨道上,转子安装在车辆上;另一种为短定子直线电机,转子安装在轨道上,定子安装在车辆上。
《直线电机轨道交通》课件
社会影响
促进城市可持续发展
直线电机轨道交通的建设将有力推动城市可持续发展,缓解城市 交通拥堵,降低空气污染。
提升城市形象
新型直线电机轨道交通将成为城市的新名片,提升城市的形象和 国际影响力。
带动相关产业发展
直线电机轨道交通的建设和运营将带动相关产业的发展,如装备 制造、电子信息、新能源等产业。
05 直线电机轨道交通的案例 分析
优势
高效节能
直线电机直接驱动列车,减少机械损耗,提 高能源利用效率。
高速度与大载客量
直线电机技术使得列车运行速度更快,且能 承载更多乘客。
低噪音
采用非接触式驱动方式,减少机械摩擦和振 动,降低噪音污染。
维护成本低
由于减少了机械部件,使得维护工作量减少 ,降低长期运营成本。
挑战
技术成熟度
相较于传统轮轨技术,直线电机轨道 交通技术仍需进一步成熟和验证。
上海磁悬浮列车
案例介绍
上海磁悬浮列车是中国第一条商业化运营的磁悬 浮线路,具有高速、安全、舒适的特点。
技术特点
磁悬浮技术通过磁场力使列车悬浮于轨道上,减 少了摩擦和阻力,实现了高速运行。
应用情况
上海磁悬浮列车连接了浦东国际机场和龙阳路地 铁站,为旅客提供了便捷的出行选择。
日本新干线
案例介绍
日本新干线是全球第一条高速铁路,具有高速度、高安全、高舒适 的特点。
起源
起源于20世纪初,但直到最近几十年才得到广 泛应用。
应用阶段
20世纪末至21世纪初,多个城市开始建设直线 电机轨道交通系统。
ABCD
初期探索
20世纪初,人们开始探索直线电机技术。
未来展望
随着技术的进步和环保需求的增加,直线电机轨 道交通有望在未来得到更广泛的应用。
直线电机地铁车辆
直线电机地铁车辆
图8-1 旋转异步电机向直线异步电机的演变 (a)沿径向剖开 (b)把圆周展成平面
பைடு நூலகம்线电机地铁车辆
图8-2 直线电机的工作原理 (a)旋转电机 (b)展开 (c)直线电机
直线电机地铁车辆
2 直线电机地铁车辆的主要特点
直线电机地铁车辆将直线异步电机的定子安 装在车辆转向架上,将转子安装在轨道中间, 转子也可称为感应板,采用非磁性体(铜板或 铝板)和磁性体(钢板)构成的复合金属板, 以兼具两者的优点。
5.辅助系统 列车辅助系统由静止三相逆变器、 DC/DC110V电源以及它们的负载组成。
7.制动系统
列车采用先进的EP2002制 动系统。
谢谢观看!
直线电机地铁车辆
2.车体 直线电机地铁车辆的车体包括底架、侧墙、端墙、车 顶、司机室等部件;一般采用焊接整体承载结构。 3.转向架
图8-4 广州地铁4 号线车辆转向架
直线电机地铁车辆
4.电气牵引系统 直线电机由VVVF
逆变器供电和驱动。
6.列车控制技术
列车管理系统集中提 供控制和监视车载系统和 设备的功能。
项目
直线电机地铁 车辆
直线电机地铁车辆
1 直线电机简介
直线电机是一种能将电能直接转换成直线运动的机械能 ,而不需要中间转换机构的传动装置。如图8-1所示,直线 异步电机则可理解为旋转异步电机沿轴向剖开,展成平面 的电机传动系统。如图8-2所示,系统在行波磁场与次级永 磁体的作用下产生驱动力,从而实现运动部件的直线运动 。
直线电机地铁车辆
2 直线电机地铁车辆的主要特点
直线电机地铁车辆的基本特点总结如下: (1)具有良好的动力性能。 (2)振动和噪声小。 (3)可实现径向转向架。 (4)安全性和可靠性高。 (5)良好的编组灵活性和运营适应性。 (6)建设成本低。
城市轨道交通制式分类及适用性探讨
城市轨道交通制式分类及适用性探讨摘要:多制式轨道交通的协调发展是我国未来城市轨道交通发展的一个重要方向。
因此,本文将对各种制式进行精确地划分,并根据城市的发展情况对各种制式的轨道交通进行合理、科学地选择,以达到多制式轨道交通协同发展的目的。
关键词:城市轨道交通;制式分类;适用性城市轨道交通的现有制式和既有制式的分类存在一定的差异性,现有制式的分类较既有相比有了很大的创新与变化,所以在选择具体的轨道交通制式时应当根据城市的实际地理环境以及公交交通现状等多个方面予以综合考量,然后再进行科学的选择,使轨道交通制式能够与城市的发展相契合。
1.新型城市轨道交通制式分类1.1直线电机轨道交通(1)磁浮铁路磁浮铁路使用的是直线电机牵引、电磁导向、电磁悬浮或电力悬浮技术,从而让列车能够在轨道上实现非接触式地移动,现在它的主要类型有两种,一种是超高速磁浮,另一种是中低速磁浮交通。
目前,我国的超高速磁悬浮车辆普遍使用的是长定子线式同步电动机,其适用于长距离、城市间的轨道交通中。
中、低速的磁悬浮主要用短定子直线感应电机进行牵引,所以一般多用于城轨、机场等交通领域中。
电磁悬浮是利用车体上安装的电磁铁与铁轨(或电磁铁)之间的相互吸引实现的,垂直电磁力受钢轨不平顺的作用,需要通过对空气间隙及悬浮力进行调节。
电力悬浮是指在车体上安装了电磁铁,在轨道上设置了悬浮感应线圈,凭借着感应磁场和车上电磁铁同性相斥原理,产生了一种悬浮力。
在车辆的速度达到120-150 km/h之后,车辆才能获得充足的悬浮力,在低速范围中需要车轮支撑,无须采用复杂的空气间隙主动调节可实现自动悬浮。
(2)直线电机单轨交通东北单轨道由直线感应电机带动,由胶轮和横向引导轮组成。
东北是一个寒冷的地方,而且所有的单轨基本都是高架的,在冬季,铁轨上的积雪很多,轮胎很容易打滑,但是,直线发动机的驱动却不会受到这种情况的影响。
(3)直线电机气浮轨道交通直线电机气浮轨道交通使用直线电机驱动,气垫支撑,引导轮引导。
直线电机轨道交通系统
直线电机转子与定子之间气隙一般在 8-12mm,电机效率和功率因素降低,导致牵引能 耗增大,同等条件下牵引能耗增大约15-20%左右。
目前,世界范围内运营的直线电机轨道交通线 路共有18条。多伦多斯卡帕勒线为世界上第一条线 路,于1985年3月22日开通。其余分别是加拿大温 哥华世博线和千禧线、日本大阪长崛线和鹤见绿地 线、东京大江户线、福冈七隈线、神户海岸线、横 滨市营地铁4号线、仙台市营地铁东西线、美国纽 约肯尼迪机场线、底特律People Mover、韩国龙仁 Everline、马来西亚吉隆坡格兰纳再也线,以及我
广州地铁5号线于2009年12月28日开通,线路总 长度为31.9公里(其中地下线29公里,高架线2.9公 里),设站30座,其中换乘站18座,设车辆基地2座。 设计最高速度为90公里/小时,线路正线最小曲线半径 为200米,最大限制坡度为55‰,列车采用L型车6节编 组,DC1500V三轨供电。
广州地铁6号线于2013年12月28日开通,线路总长 度42.1公里(其中地下线39.4公里,高架线2.7公里), 设站32座,其中换乘站15座,设车辆基地1座。设计 最高速度为90公里/小时,线路正线最小曲线半径200 米,最大限制坡度为49‰,列车采用L型车4节编组, DC1500V三轨供电。
《新型城市轨道交通》第五讲-直线电机轨道交通
新型城市轨道交通主讲刘景军2010年3月上海工程技术大学城市轨道交通学院新型城市轨道交通第五讲直线电机轨道交通1、直线电机的发展历史2、直线电机的基本原理3、直线电机轨道交通的特点4、直线电机轨道交通的应用情况直线电机的由来o一般电动机工作时都是转动的.但是用旋转的电机驱动的交通工具(比如电动机车和城市中的电车等)需要做直线运动,用旋转的电机驱动的机器的一些部件也要做直线运动,这就需要增加把旋转运动变为直线运动的一套装置,能不能直接运用直线运动的电机来驱动,从而省去这套装置,人们就提出了这个问题,现在已制成了直线运动的电动机,即直线电机。
概述o直线电机结构可以根据需要制成扁平型、圆筒型或盘型等各种型式。
它与其他非直线电机驱动的装置相比,具有以下优点:Ø采用直线电机驱动的传动装置,不需要任何转换装置而直接产生推力。
它可以省去中间转换机构,简化了整个装置或系统,而且运行可靠、效率提高、易于维护、降低成本。
Ø普通旋转电机由于受离心力的作用,其圆周速度受到限制,而直线电机运行时,它的直线速度可以不受限制。
Ø直线电机是通过电能直接产生电磁推力的,其运动可以无机械接触,大大减小了机械损耗。
Ø旋转电机通过钢绳、齿条、传动带等转换机构转换成直线运动,噪声是不可避免的,而直线电机是靠电磁力驱动装置运行的,噪声很小或无噪声。
Ø直线电机结构简单,初级铁心在嵌线后可用环氧树脂等密封成整体,可在潮湿、腐蚀或有害和高低温环境中使用。
Ø直线电机散热效果好,特别是常用的扁平型短初级直线电机,初级的铁心和绕组端部,直接暴露在空气中,同时次级很长,热量容易散发,热负荷可取较高值,不需要附加冷却装置。
o直线电机主要有两方面不足:Ø与同容量旋转电机相比,直线电机的效率和功率要素要低,尤其是在低速时比较明显。
主要原因:一是直线电机初、次级气隙一般比旋转电机的气隙要大,因此所需的磁化电流较大,使损耗增加;二是由于直线电机初级铁心两端开断,产生了所谓的边端效应,从而引起波形畸变等问题,也导致损耗增加,但从整个系统来看,直线电机省去中间传动装置,系统的效率有时还会比旋转电机的系统高。
城轨车辆直线牵引电动机原理和案例分析
4)噪声低。直线电机电梯没有减速器、旋转 电机及液压油泵运转时所产生的噪音,也没有钢 丝绳和曳引轮之间摩擦所产生的噪声,而且钢丝 绳的寿命也会大大提高。
3、 结构与原理
(1)直线异步电动机结构 定子:带齿槽的电工钢片叠成,槽里嵌有绕组 转子:非磁性体(铜板或铝板)和磁性体(钢板)构成的复合金属板。
直线牵引电动机原理分析
一、直线牵引电机工作原理
直线电机可认为是旋转电机在结构方面的一种演变
图2-50 直线异步电动机结构原理图
由于用直线运动取代了旋转运动,因此称之为直线电动机。
1、直线电机特点:
(1) 无旋转部件,呈扁平形,可降低城轨车辆的高度。 (2) 能够非接触式的直接实现直线运行,因此可不受粘着的
3.4 用于长距离的直线传输装置
(1)运煤车
图3.27所示为直线电机运煤车示意图。矿井 运煤轨道一般很长,每隔一段距离,在轨道中间 安置一台直线感应电动机的初级。一列运煤车由 若干矿车组成,每台矽车的底部装有铝钢复合次 级。直线电机的初级依次通电,便可把运煤车向 前推进。
(2)新型电梯 图3.16所示的永磁式直线同步电动机矿井提
5、边缘效应
直线电机是长直、两端开断的结构,存在 始端和终端,引起了边缘效应(端部效应)。
① 静态纵向边缘效应 ② 动态纵向边缘效应 ③ 横向边缘效应
在气隙中出现脉振磁场 在横向的边缘区域磁场削弱, 和反向行波磁场,运行过程 造成空载气隙磁场横向分布的不 中将产生阻力和增大附加损 均匀,这是第一类横向边缘效应。 耗。这种效应当初、次级相 次级导体板对电流分布及气隙 对静止时也存在,因而称为 磁场密度沿横向分布的影响,称 静态纵向边缘效应,纵向即 为第二类图横2-向61直边线缘电机效行应波磁场 磁场移方向动上的的涡方流向分布。
直线电机轨道交通的限界-横断面
2. 直线电机轮轨交通限界的特点直线电机轮轨交通限界的特点直线电机轮轨交通限界的特点直线电机轮轨交通限界的特点与传统旋转电机轮轨交通相比与传统旋转电机轮轨交通相比与传统旋转电机轮轨交通相比与传统旋转电机轮轨交通相比,,,,直线电机轮直线电机轮直线电机轮直线电机轮轨交通可以实现小限界断面轨交通可以实现小限界断面轨交通可以实现小限界断面轨交通可以实现小限界断面。•车辆轮廓尺寸减小•车辆重量减轻•车辆重量减轻•车辆性能提高•彻底悬挂设备简化•降低工程造价•减小环境影响•提高系统安全性•有利于设备布置
1.3 建筑限界建筑限界建筑限界建筑限界建筑限界是在设备限界的基础上,考虑了设备和管线安装尺寸后的最小有效断面。建筑界限分为矩形隧道建筑限界、马蹄形隧道建筑限界、圆形隧道建筑限界、高架及地面线建筑限界、车辆段车场线建筑限界。限界、车辆段车场线建筑限界。
直线电机系统在城市轨道交通中的应用研究
3
直线 电机 系统在城市轨道交通中
的应 用
在地铁建设 中,采用直线电机列车可降低开凿
[2l 吴俊泉. 直线电 机在温哥华Skytrain 系统中的应用及发
展. 《 机车电传动》. 2/ 2003. [3l 张振生. 直线电机城市轨道交通车辆综述. 《 变流技术
与电力牵引》. 4/ 2003.
地下隧道的成本, 从而对降低整个地铁的建设成本
盘制动作为进一步的停车制动。每辆车还安装有 4
装在地上的反作用板 (相当于二次线圈) 中通过二 次电流 (涡电流) 转向架上的直线电机得到
个磁轨制动器,通电后 , 产生巨大吸力与轨道吸附,
与旋转电机相比,直线电机的形状平坦,因而可以
可提供紧急制动。避免了采用空气压缩机带来的价
1985
19 86 ~
20 02
加拿大多伦多
加拿大温哥华
5 1.4
半径可减少到为80m, 有利于选线, 避开地下和地
面建筑物, 减少拆迁工作量, 降低工程造价。
1987
1990 1991
美国底特律
日本大阪市营地铁 7 号线 日本东京都营地铁 12 号线
4.8
52 38.7
2 . 5 直线电机与感应板之间气隙高度的控
格高、噪声大的缺点, 也减少了对制动闸瓦的维护。
降低车辆地板面高度和减少整个车辆尺寸, 但这并
不影响车辆内部的空间,即不会对旅客带来不便。
2 .4 采用径向转向架,使运行性能大大改善
由于采用直线电机系统,没有了旋转动力源和 机械变速传动系统,因此有利于采用径向转向架。
小而轻的车辆,使转向架结构简单轻巧 ,是该系统
动机沿前进方向产生移动磁场。让面对该磁场、安
直线电机控制技术在轨道交通中的应用研究
直线电机控制技术在轨道交通中的应用研究摘要:轨道交通作为一种高效、环保的交通工具在现代都市中扮演着重要角色。
为了提高轨道交通的运行效率和乘客的出行体验,直线电机控制技术得到了广泛的应用研究。
本文将重点探讨直线电机控制技术在轨道交通中的应用,并分析其优势和挑战。
引言随着城市化进程的加速和人口密集度的增加,现代都市对于高效、快速、环保的交通需求日益增长。
轨道交通作为一种低能耗、大运量的交通方式,具有不可替代的优势。
然而,要实现轨道交通的高速、高效运行,需要借助先进的控制技术。
直线电机控制技术作为一种先进且灵活的控制方式,在轨道交通中取得了广泛的应用。
本文将阐述直线电机控制技术在轨道交通中的应用研究,并探讨其优势和挑战。
一、直线电机控制技术的基本原理直线电机是一种将电能转换为机械能的设备,与传统的旋转电机相比,直线电机可以直接将运动转换为直线运动。
其基本原理是利用电磁力作用于导体中的电流,在磁场中产生直线运动。
直线电机控制技术通过改变电流和磁场强度来实现对电机速度和位置的精确控制。
二、直线电机控制技术在轨道交通中的应用1.列车牵引系统直线电机控制技术在轨道交通中的主要应用之一就是列车牵引系统。
传统的列车牵引系统多采用传动装置将旋转电机的动力传输给车轮。
然而,由于传动装置的损耗和振动会影响列车行驶的平稳性和效率。
直线电机控制技术的应用可以直接将动力传输给导轨,避免了传动装置的能量损失,提高了列车的牵引能力和运行效率。
2.导引系统导引系统在轨道交通中起到引导列车运行的作用。
直线电机控制技术可以应用于导引系统中的导向和导轨操控。
通过精确控制导向的电流和磁场强度,可以实现列车的精确导引,提高运行的稳定性和安全性。
3.制动系统直线电机控制技术在轨道交通中的另一个重要应用是制动系统。
传统的制动系统多采用摩擦制动或电阻制动。
这种制动方式会产生大量的热量,对环境和列车构成一定的威胁。
而直线电机控制技术可以通过改变电流和磁场强度来实现电磁制动,减少能量损耗和环境污染。
直线电机在轨道交通中的应用与关键技术综述
直线电机在轨道交通中的应用与关键技术综述摘要:轨道交通目前已经成为改善城市交通拥堵的有效方式,在大规模建设和发展的同时,也涌现出很多新的技术问题。
作为轨道交通中重要组成部分,直线电机的应用结构较为复杂,实际运行中容易受到诸多因素影响和干扰,进而威胁到轨道交通的安全运行。
因此,本文重点探究轨道交通中直线电机的应用原理,并分析其中的关键技术,积累经验进一步推动直线电机的实践应用。
关键词:轨道交通;直线电机轮轨;直线电机;交通安全城市化进程加快带动了交通事业发展,作为交通事业发展的重要组成部分,轨道交通凭借其快速、安全、稳定的优势特点,受到了人们的青睐和支持。
在轨道交通中,其中集合了诸多复杂、先进的技术,为了保证轨道交通列车安全行驶,应进一步加强核心技术的管控力度。
由于轨道交通列车运行速度提升和运行安全的要求不断提升,因此要求轨道交通车辆具备更强的爬坡能力和全天候运行能力。
由于直线电机结构简单,呈现非黏着驱动的优势特点,更适合磁悬浮列车的发展需要,有助于进一步增强列车的爬坡和转弯能力。
因此,1轨道交通车辆中直线感应电机的应用直线感应电机多呈现为单边型,铝板和钢板构成了结构的复合次级。
初级置于车上或沿轨道铺设,具体划分为长初级以及短初级两种。
1.1短初级直线感应电机对于轨道交通车辆而言,选择短初级直线感应电机,具有鲜明的特点:①初级在车辆上,其供电原理为受流靴经过接触网供电;②刺激属于复合型,结构简单,直接敷设在轨道上,总体造价不高;③接触轨供电方式一定程度上限制轨道交通车辆运行速度。
1.1.1直线电机轮轨车辆直线电机轮轨车辆行驶中,在转向架上设置初级悬挂,配备两台电机,一台逆变器供电,有别于旋转电机配合齿轮箱传动形式,优势更为突出[1]。
传递牵引力,可以规避钢轨和车轮黏着因素不良影响,提升车辆整体运行性能,具体表现在爬坡性能和转弯性能;精简轴箱定位结构,基于柔性定位方式赋予轨道交通车辆灵活的线路规划能力;直线电机不需要齿轮箱传动装置支持,因此结构约束适当的宽松,隧道断面是以往轨道车辆60%左右,土建工程造价可以大幅度下降。