中考数学与二次函数有关的压轴题含详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学与二次函数有关的压轴题含详细答案
一、二次函数
1.如图1,抛物线C1:y=ax2﹣2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C.已知点A的坐标为(﹣1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.
(1)求出抛物线C1的解析式,并写出点G的坐标;
(2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值:
(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=﹣1上是否存在点N,使得以P、Q、N 为顶点的三角形与△AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由.
【答案】(1)抛物线C1的解析式为y=﹣x2+2x+3,点G的坐标为(1,4);(2)k=1;
(3)M1113
+
0)、N1131);M2
113
+
,0)、N2(1,﹣1);M3
(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).
【解析】
【分析】(1)由点A的坐标及OC=3OA得点C坐标,将A、C坐标代入解析式求解可得;(2)设抛物线C2的解析式为y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,′作G′D⊥x轴于点D,设BD′=m,由等边三角形性质知点B′的坐标为(m+1,0),点G′的坐标为(1,
3m),代入所设解析式求解可得;
(3)设M(x,0),则P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2),根据PQ=OA=1且
∠AOQ、∠PQN均为钝角知△AOQ≌△PQN,延长PQ交直线y=﹣1于点H,证
△OQM≌△QNH,根据对应边相等建立关于x的方程,解之求得x的值从而进一步求解即可.
【详解】(1)∵点A的坐标为(﹣1,0),
∴OA=1,
∴OC=3OA,
∴点C的坐标为(0,3),
将A、C坐标代入y=ax2﹣2ax+c,得:
20
3
a a c
c
++=
⎧
⎨
=
⎩
,
解得:13a c =-⎧⎨=⎩
,
∴抛物线C 1的解析式为y=﹣x 2+2x+3=﹣(x ﹣1)2+4, 所以点G 的坐标为(1,4);
(2)设抛物线C 2的解析式为y=﹣x 2+2x+3﹣k ,即y=﹣(x ﹣1)2+4﹣k , 过点G′作G′D ⊥x 轴于点D ,设BD′=m ,
∵△A′B′G′为等边三角形, ∴G′D=3
B′D=3m ,
则点B′的坐标为(m+1,0),点G′的坐标为(1,3m ), 将点B′、G′的坐标代入y=﹣(x ﹣1)2+4﹣k ,得:
2
40
43m k k m
⎧-+-=⎪⎨
-=⎪⎩, 解得:1104m k =⎧⎨=⎩(舍),2231
m k ⎧=⎪⎨=⎪⎩,
∴k=1;
(3)设M (x ,0),则P (x ,﹣x 2+2x+3)、Q (x ,﹣x 2+2x+2), ∴PQ=OA=1,
∵∠AOQ 、∠PQN 均为钝角, ∴△AOQ ≌△PQN ,
如图2,延长PQ 交直线y=﹣1于点H ,
则∠QHN=∠OMQ=90°, 又∵△AOQ ≌△PQN , ∴OQ=QN ,∠AOQ=∠PQN , ∴∠MOQ=∠HQN ,
∴△OQM ≌△QNH (AAS ), ∴OM=QH ,即x=﹣x 2+2x+2+1, 解得:x=
113
2
±(负值舍去), 当x=
1132+时,HN=QM=﹣x 2+2x+2=1312-,点M (113
2
+,0), ∴点N 坐标为(1132++131
2
-,﹣1),即(13,﹣1); 或(
113+﹣131-,﹣1),即(1,﹣1); 如图3,
同理可得△OQM ≌△PNH ,
∴OM=PH ,即x=﹣(﹣x 2+2x+2)﹣1, 解得:x=﹣1(舍)或x=4,
当x=4时,点M 的坐标为(4,0),HN=QM=﹣(﹣x 2+2x+2)=6,
∴点N 的坐标为(4+6,﹣1)即(10,﹣1),或(4﹣6,﹣1)即(﹣2,﹣1); 综上点M 1113+0)、N 1131);M 2113
+0)、N 2(1,﹣1);M 3
(4,0)、N 3(10,﹣1);M 4(4,0)、N 4(﹣2,﹣1).
【点睛】本题考查的是二次函数的综合题,涉及到的知识有待定系数法、等边三角形的性质、全等三角形的判定与性质等,熟练掌握待定系数法求函数解析式、等边三角形的性质、全等三角形的判定与性质、运用分类讨论思想是解题的关键.
2.一座拱桥的轮廓是抛物线型(如图所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m.
(1)将抛物线放在所给的直角坐标系中(如图所示),其表达式是2y ax c =+的形式.请根据所给的数据求出a ,c 的值.
(2)求支柱MN 的长度.
(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3m 的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.
【答案】(1)y=-350
x 2
+6;(2)5.5米;(3)一条行车道能并排行驶这样的三辆汽车. 【解析】
试题分析:(1)根据题目可知A .B ,C 的坐标,设出抛物线的解析式代入可求解. (2)设N 点的坐标为(5,y N )可求出支柱MN 的长度.
(3)设DN 是隔离带的宽,NG 是三辆车的宽度和.做GH 垂直AB 交抛物线于H 则可求解.
试题解析: (1) 根据题目条件,A 、B 、C 的坐标分别是(-10,0)、(0,6)、(10,0).
将B 、C 的坐标代入2
y ax c =+,得 6,
0100.c a c =⎧⎨=+⎩
解得3
,650
a c =-
=. ∴抛物线的表达式是2
3650
y x =-+. (2) 可设N (5,N y ), 于是23
56 4.550
N y =-
⨯+=. 从而支柱MN 的长度是10-4.5=5.5米.
(3) 设DE 是隔离带的宽,EG 是三辆车的宽度和, 则G 点坐标是(7,0)(7=2÷2+2×3).
过G 点作GH 垂直AB 交抛物线于H ,则23176335050
H y =-
⨯+=+>. 根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.
3.如图所示,已知平面直角坐标系xOy ,抛物线过点A(4,0)、B(1,3)