新人教版必修二高中数学1.3.2空间几何体的体积教案
高中数学人教A版必修2《1.3.2球的体积和表面积》教学案1

必修二《1.3.2球的体积和表面积》教学案一、教材分析本节教材直接给出了球的表面积和体积公式,并用两个例题来说明其应用.值得注意的是教学的重点放在球与其他几何体的组合体的有关计算上,这是高考的重点.二、教学目标1.知识与技能(1)了解几何体体积的含义,以及柱体、锥体与台体的体积公式.(不要求记忆公式)(2)熟悉台体与柱体和锥体之间体积的转换关系.(3)培养学生空间想象能力和思维能力.2.过程与方法(1)让学生通过对照比较,理顺柱体、锥体、台体之间的体积关系.(2)通过相关几何体的联系,寻找已知条件的相互转化,解决一些特殊几何体体积的计算.3.情感、态度与价值观通过柱体、锥体、台体体积公式之间的关系培养学生探索意识.三、重点难点教学重点:球的表面积和体积公式的应用.教学难点:关于球的组合体的计算.四、课时安排约1课时五、教学设计(一)导入新课思路1.位于香港栈桥回澜阁西部、西陵峡路东端海滨,有一座新异奇秀的半球形建筑.由香港好世界饮食服务(中国)有限公司等三方合资兴建,1996年9月正式开业,既是岛城饮食服务业的“特一级”店,又是新增加的一处景点.酒店的总建筑面积11380平方米,现酒店管理层决定在半球形屋顶嵌上一层特殊化学材料以更好地保护酒店,那么,需要多少面积的这种化学材料呢?思路2.球既没有底面,也无法像柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?球的大小与球的半径有关,如何用球半径来表示球的体积和面积?教师引出课题:球的体积和表面积.(二)推进新课、新知探究球的半径为R ,它的体积和表面积只与半径R 有关,是以R 为自变量的函数.事实上,如果球的半径为R ,那么S =4πR 2,V =334R π.注意:球的体积和表面积公式的证明以后证明.(三)应用示例思路1例1 如图1所示,圆柱的底面直径与高都等于球的直径,求证:图1(1)球的体积等于圆柱体积的32; (2)球的表面积等于圆柱的侧面积.活动:学生思考圆柱和球的结构特征,并展开空间想象.教师可以使用信息技术帮助学生读懂图形.证明:(1)设球的半径为R ,则圆柱的底面半径为R ,高为2R .[来源:学+科+网] 则有V 球=334R π,V 圆柱=πR 2·2R =2πR 3,所以V 球=圆柱V 32. (2)因为S 球=4πR 2,S 圆柱侧=2πR ·2R =4πR 2,所以S 球=S 圆柱侧.点评:本题主要考查有关球的组合体的表面积和体积的计算.解决此类问题的关键是明确组合体的结构特征.变式训练1.如图2(1)所示,表面积为324π的球,其内接正四棱柱的高是14,求这个正四棱柱的表面积.图2解:设球的半径为R ,正四棱柱底面边长为a ,则轴截面如图2(2),所以AA ′=14,AC =a 2,又∵4πR 2=324π,∴R =9.∴AC =28''22=-CC AC .∴a =8.∴S 表=64×2+32×14=576,即这个正四棱柱的表面积为576.2有一种空心钢球,质量为142 g ,测得外径(直径)等于5 cm ,求它的内径(钢的密度为7.9 g /cm 3,精确到0.1 cm ).解:设空心球内径(直径)为2x cm ,则钢球质量为 7.9·[3334)25(34x ππ-•]=142, ∴x 3=14.349.73142)25(3⨯⨯⨯-≈11.3,∴x ≈2.24,∴直径2x ≈4.5.答:空心钢球的内径约为4.5 cm .例2 如图3所示,表示一个用鲜花做成的花柱,它的下面是一个直径为1 m 、高为3 m 的圆柱形物体,上面是一个半球形体.如果每平方米大约需要鲜花150朵,那么装饰这个花柱大约需要多少朵鲜花(π取3.1)?图3活动:学生思考和讨论如何计算鲜花的朵数.鲜花的朵数等于此几何体的表面积(不含下底面)与每朵鲜花占用的面积.几何体的表面积等于圆柱的侧面积再加上半球的表面积.解:圆柱形物体的侧面面积S 1≈3.1×1×3=9.3(m 2), 半球形物体的表面积为S 2≈2×3.1×(21)2≈1.6(m 2), 所以S 1+S 2≈9.3+1.6=10.9(m 2). 10.9×150≈1 635(朵).答:装饰这个花柱大约需要1 635朵鲜花.点评:本题主要考查球和圆柱的组合体的应用,以及解决实际问题的能力. 变式训练有一个轴截面为正三角形的圆锥容器,内放一个半径为R 的内切球,然后将容器注满水,现把球从容器中取出,水不损耗,且取出球后水面与圆锥底面平行形成一圆台体,问容器中水的高度为多少?分析:转化为求水的体积.画出轴截面,充分利用轴截面中的直角三角形来解决. 解:作出圆锥和球的轴截面图如图4所示,图4圆锥底面半径r =R R330tan =︒,圆锥母线l =2r =R 32,圆锥高为h =r 3=3R , ∴V 水=334332πππ=-R h r ·3R 2·3R 333534R R ππ=-, 球取出后,水形成一个圆台,下底面半径r =R 3,设上底面半径为r ′, 则高h ′=(r -r ′)tan 60°=)'3(3r R -, ∴'3353h R ππ=(r 2+r ′2+rr ′),∴5R 3=)3'3')('3(322R Rr r r R ++-, ∴5R 3=)'33(333r R -, 解得r ′=6331634R R =, ∴h ′=(3123-)R .答:容器中水的高度为(3123-)R .思路2例1 (2006广东高考,12)若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为____________.活动:学生思考长方体和球的结构特征.教师可以借助于信息技术画出图形. 分析:画出球的轴截面可得,球的直径是正方体的对角线,所以球的半径R =233,则该球的表面积为S =4πR 2=27π.答案:27π点评:本题主要考查简单的组合体和球的表面积.球的表面积和体积都是半径R 的函数.对于和球有关的问题,通常可以在轴截面中建立关系.画出轴截面是正确解题的关键.变式训练1.(2006全国高考卷Ⅰ,理7)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( )A .16πB .20πC .24πD .32π 分析:由V =Sh ,得S =4,得正四棱柱底面边长为2.画出球的轴截面可得,该正四棱柱的对角线即为球的直径,所以,球的半径为R =642221222=++,所以球的表面积为S =4πR 2=24π.答案:C2.(2005湖南数学竞赛,13)一个球与正四面体的六条棱都相切,若正四面体的棱长为a ,则这个球的体积为_____________.分析:把正四面体补成正方体的内接正四面体,此时正方体的棱长为a 22,于是球的半径为a 42,V =3242a π. 答案:3242a π3.(2007天津高考,理12)一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为___________.分析:长方体的对角线为14321222=++,则球的半径为214,则球的表面积为4π(214)2=14π. 答案:14π例2 图5是一个底面直径为20 cm 的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为6 cm ,高为20 cm 的一个圆锥形铅锤,当铅锤从水中取出后,杯里的水将下降几厘米?图5活动:学生思考杯里的水将下降的原因,通过交流和讨论得出解题思路.因为玻璃杯是圆柱形的,所以铅锤取出后,水面下降部分实际是一个小圆柱,这个圆柱的底面与玻璃杯的底面一样,是一直径为20 cm 的圆,它的体积正好等于圆锥形铅锤的体积,这个小圆柱的高就是水面下降的高度.解:因为圆锥形铅锤的体积为2)26(31⨯⨯π×20=60π(cm 3), 设水面下降的高度为x ,则小圆柱的体积为x 2)220(π=100πx ( cm 3). 所以有60π=100πx ,解此方程得x =0.6( cm ). 答:杯里的水下降了0.6 cm .点评:本题主要考查几何体的体积问题,以及应用体积解决实际问题的能力.明确几何体的形状及相应的体积公式是解决这类问题的关键.解实际应用题的关键是建立数学模型.本题的数学模型是下降的水的体积等于取出的圆锥形铅锤的体积.明确其体积公式中的相关量是列出方程的关键.变式训练1.一个空心钢球,外直径为12 cm ,壁厚0.2 cm ,问它在水中能浮起来吗?(钢的密度为7.9 g /cm 3)和它一样尺寸的空心铅球呢?(铅的密度为11.4 g /cm 3)分析:本题的关键在于如何判断球浮起和沉没,因此很自然要先算出空心钢球的体积,而空心钢球的体积相当于是里、外球的体积之差,根据球的体积公式很容易得到空心钢球的体积,从而算出空心钢球的质量,然后把它与水的质量相比较即可得出结论,同理可以判断铅球会沉没.解:空心钢球的体积为V 钢=348.53463433πππ=⨯-⨯×20.888≈87.45(cm 3), ∴钢的质量为m 钢=87.45×7.9=690.86(g ). ∵水的体积为V 水=34π×63=904.32(cm 3), ∴水的质量为m 水=904.32×1=904.32(g )>m 钢.∴钢球能浮起来,而铅球的质量为m 铅=87.45×11.4=996.93(g )>m 水. ∴同样大小的铅球会沉没.答:钢球能浮起来,同样大小的铅球会沉没.2.(2006全国高中数学联赛试题第一试,10)底面半径为1 cm 的圆柱形容器里放有四个半径为21cm 的实心铁球,四个球两两相切,其中底层两球与容器底面相切.现往容器里注水使水面恰好浸没所有铁球,则需要注水___________cm 3.分析:设四个实心铁球的球心为O 1、O 2、O 3、O 4,其中O 1、O 2为下层两球的球心,A 、B 、C 、D 分别为四个球心在底面的射影,则ABCD 是一个边长为22cm 的正方形,所以注水高为(1+22) cm .故应注水π(1+22)-4×)2231()21(343+=ππ cm 3. 答案:(31+22)π(四)知能训练1.三个球的半径之比为1∶2∶3,那么最大球的表面积是其余两个球的表面积之和的( )A .1倍B .2倍C .59倍 D .47倍 分析:根据球的表面积等于其大圆面积的4倍,可设最小的一个半径为r ,则另两个为2r 、3r ,所以各球的表面积分别为4πr 2、16πr 2、36πr 2,5916436222=+rr r πππ(倍). 答案:C2.(2006安徽高考,理9)表面积为32的正八面体的各个顶点都在同一个球面上,则此球的体积为( )A .32π B .3π C .32π D .322π分析:此正八面体是每个面的边长均为a 的正三角形,所以由8×32432=a 知,a =1,则此球的直径为2.答案:A3.(2007北京西城抽样,文11)若与球心距离为4的平面截球所得的截面圆的面积是9π,则球的表面积是____________.分析:画出球的轴截面,则球心与截面圆心的连线、截面的半径、球的半径构成直角三角形,又由题意得截面圆的半径是3,则球的半径为2234+=5,所以球的表面积是4π×52=100π.答案:100π4.某街心花园有许多钢球(钢的密度是7.9 g /cm 3),每个钢球重145 kg ,并且外径等于50 cm ,试根据以上数据,判断钢球是实心的还是空心的.如果是空心的,请你计算出它的内径(π取3.14,结果精确到1 cm ).解:由于外径为50 cm 的钢球的质量为7.9×3)250(34⨯π≈516 792(g ), 街心花园中钢球的质量为145 000 g ,而145 000<516 792, 所以钢球是空心的.设球的内径是2x cm ,那么球的质量为7.9·[3334)250(34x ππ-•]=145 000, 解得x 3≈11 240.98,x ≈22.4,2x ≈45(cm ). 答:钢球是空心的,其内径约为45 cm .5.(2007海南高考,文11)已知三棱锥S —ABC 的各顶点都在一个半径为r 的球面上,球心O 在AB 上,SO ⊥底面ABC ,AC =r 2,则球的体积与三棱锥体积之比是( )A .πB .2πC .3πD .4π分析:由题意得SO =r 为三棱锥的高,△ABC 是等腰直角三角形,所以其面积是21×2r ×r =r 2,所以三棱锥体积是33132r r r =⨯⨯,又球的体积为343r π,则球的体积与三棱锥体积之比是4π.答案:D点评:面积和体积往往涉及空间距离,而新课标对空间距离不作要求,因此在高考试题中其难度很低,属于容易题,2007年新课标高考试题就体现了这一点.高考试题中通常考查球、三棱锥、四棱锥、长方体、正方体等这些简单几何体或它们的组合体的面积或体积的计算.我们应高度重视这方面的应用.(五)拓展提升问题:如图6,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A —BEFD 与三棱锥A —EFC 的表面积分别是S 1,S 2,则必有( )图6A .S 1<S 2B .S 1>S 2C .S 1=S 2D .S 1,S 2的大小关系不能确定探究:如图7,连OA 、OB 、OC 、OD ,则V A —BEFD =V O —ABD +V O —ABE +V O —BEFD +V O —ADF ,V A—EFC=V O—AFC+V O—AEC+V O—EFC,又V A—BEFD=V A—EFC,而每个小三棱锥的高都是原四面体的内切球的半径,故S△ABD+S△ABE+S BEFD+S△ADF=S△AFC+S△AEC+S△EFC,又面AEF是公共面,故选C.图7答案:C(五)课堂小结本节课学习了:1.球的表面积和体积.2.计算组合体的体积时,通常将其转化为计算柱、锥、台、球等常见的几何体的体积.3.空间几何体的表面积与体积的规律总结:(1)表面积是各个面的面积之和,求多面体表面积时,只需将它们沿着若干条棱剪开后展成平面图形,利用平面图形求多面体的表面积.求旋转体的表面积时,可从回忆旋转体的生成过程及其几何特征入手,将其展开求表面积,但要搞清它们的底面半径、母线长与对应的侧面展开图中的边长关系,注意球面不可展开.(2)在体积公式中出现了几何体的高,其含义是:柱体的高:从柱体的一个底面上任一点向另一个底面作垂线,这点和垂足间的距离称为柱体的高;锥体的高:从锥体的顶点向底面作垂线,这点和垂足间的距离称为锥体的高;台体的高:从台体的一个底面上任一点向另一个底面作垂线,这点和垂足间的距离称为台体的高.注意球没有高的结构特征.(3)利用侧面展开图或截面把空间图形问题转化为平面图形问题,是解决立体几何问题的常用手段.(4)柱体、锥体、台体和球是以后学习第二章点、直线、平面位置关系的载体,高考试题中,通常是用本模块第一章的图,考查第二章的知识.(5)与球有关的接、切问题是近几年高考的热点之一,常以选择题或填空题的形式出现,属于低档题.(六)作业课本本节练习1、2、3.。
高一数学必修2教案:1.3.2空间几何体的表面积和体积(教学设计)Word版

探究几种方法, 找出 形成归纳、
公式背后的理论依
猜想和证
据
明的科学
思维习惯
圆台的上、下底面半径分别为 r,r′,母线 为 l,其表面积 S= __________________.
根据台体的特征,如何求台体的体积? 由于圆台 ( 棱台 ) 是由圆锥 ( 棱锥 ) 截成的, 因此可以利用 两个锥体的体积差.得到圆台 ( 棱台 ) 的体积公式.
2 A.3
B.2
3 C. 2
1 D.2
环节四: 归 纳总结 , 知 识回顾
棱台的侧面展开是什么图形? 圆台的侧面展示是什么图形? 棱台和圆台的侧面积和体积公式
环节五: 作 业与测试
练习与测试
学生整理反思, 深化 认识
独立完成作业 限时完成测试
通过作业 与测试巩 固知识提 升应用能 力
类比得出圆台的体积
环节二: 例 题讲解
例 1 、已知一正四棱台的上底边长为 8cm,高为 3cm,求其体积。
4cm,下底边长为
例 2.如图,一个圆台形花盆盆口直径 20cm,盆底直径
为 15cm,底部渗水圆孔直径为 1.5cm,盆壁长 15cm.为
了美化花盆的外观,需要涂油漆.已知每平方米用
100
1.3 空间几何体的表面积和体积(第二课时)
【教学过程】
教学流程
教师活动
环节一: 问 题导入
类比棱柱、棱锥,思考: 棱台也是由多个平面图形围成的几何体, 什么?如何计算它的表面积?
它的展开图是
学生活动 结合已有知识进行 思考,引出新知识
设计意图 新旧知识 建立联系
环节二: 探 棱台侧面展开图 究过程
忆,加强应用方面的
A. 81π C. 14π
《球的表面积和体积》人教版高中数学必修二PPT课件(第1.3.2课时)

(3)若两球表面积之比为1:2,则其体积之比是 1: 2 2 .
(4)若两球体积之比是1:2,则其表面积之比是 1: 3 4 .
2、若一个圆锥的底面半径和一个半球的半径相等,体积也相等,则它们的高度之比为( A )
(A)2:1 (B) 2:3 (C) 2:
(D) 2:5
随堂练习
立体图形的内切和外接问题 例4:求球与它的外切圆柱、外切等边圆锥的体积之比。
初态温度T1=(273+27) K=300 K
由 p1V1 p2V2
T1
T2
V2 =
p1T2 p2T1
V1
6.25 m3
课堂训练
3.如图所示,粗细均匀一端封闭一端开口的U形玻
璃管,当t1=31 ℃,大气压强p0=76 cmHg时,
两管水银面相平,这时左管被封闭的气柱长L1=8
10.9150 1635(朵)
答:装饰这个花柱大约需要1635朵鲜花.
新知探究
例3、如图,圆柱的底面直径与高都等于球的直径,求证:
(1)球的体积等于圆柱体积的 2 ; 3
(2)球的表面积等于圆柱的侧面积.
RO
随堂练习
(1)若球的表面积变为原来的2倍,则半径变为原来的 2 倍.
(2)若球半径变为原来的2倍,则表面积变为原来的 4 倍.
3、从微观上说:分子间以及分子和器壁间,除碰撞外无其他作用力,分子本身没有体积,即它 所占据的空间认为都是可以被压缩的空间。
4、从能量上说:理想气体的微观本质是忽略了分子力,没有分子势能,理想气体的内能只有分 子动能。
一、理想气体
一定质量的理想气体的内能仅由温度决定 ,与气体的体积无关.
例1.(多选)关于理想气体的性质,下列说法中正确的是( ABC )
高中数学必修2《空间几何体的表面积与体积》教案

⾼中数学必修2《空间⼏何体的表⾯积与体积》教案 ⾼中数学必修2《空间⼏何体的表⾯积与体积》教案 1教学⺫标 1.知道柱体、锥体、台体侧⾯展开图,弄懂柱体、锥体、台体的表⾯积的求法. 2.能运⽤公式求解柱体、锥体和台体的表⾯积,并知道柱体、锥体和台体表⾯积之间的关系. 2学情分析 通过学习空间⼏何体的结构特征,空间⼏何体的三视图和直观图,了解了空间⼏何体和平⾯图形之间的关系,从中反映出⼀个思想⽅法,即平⾯图形和空间⼏何体的互化,尤其是空间⼏何问题向平⾯问题的转化。
该部分内容中有些是学⽣已经熟悉的,在解决这些问题的过程中,⾸先要对学⽣已有的知识进⾏再认识,提炼出解决问题的⼀般思想——化归的思想,总结出⼀般的求解⽅法,在此基础上通过类⽐获得解决新问题的思路,通过化归解决问题,深化对化归、类⽐等思想⽅法的应⽤。
3重点难点 重点:知道柱体、锥体、台体侧⾯展开图,弄懂柱体、锥体、台体的表⾯积公式。
难点:会求柱体、锥体和台体的表⾯积,并知道柱体、锥体和台体表⾯积之间的关系. 4教学过程 4.1 第⼀学时教学活动活动1【导⼊】第1课时 柱体、锥体、台体的表⾯积 (⼀)、基础⾃测: 1.棱⻓为a的正⽅体表⾯积为__________. 2.⻓、宽、⾼分别为a、b、c的⻓⽅体,其表⾯积为___________________. 3.⻓⽅体、正⽅体的侧⾯展开图为__________. 4.圆柱的侧⾯展开图为__________. 5.圆锥的侧⾯展开图为__________. (⼆).尝试学习 1.柱体的表⾯积 (1)侧⾯展开图:棱柱的侧⾯展开图是____________,⼀边是棱柱的侧棱,另⼀边等于棱柱的__________,如图①所⽰;圆柱的侧⾯展开图是_______,其中⼀边是圆柱的⺟线,另⼀边等于圆柱的底⾯周⻓,如图②所⽰. (2)⾯积:柱体的表⾯积S表=S侧+2S底.特别地,圆柱的底⾯半径为r,⺟线⻓为l,则圆柱的侧⾯积S侧=__________,表⾯积S表=__________. 2.锥体的表⾯积 (1)侧⾯展开图:棱锥的侧⾯展开图是由若干个__________拼成的,则侧⾯积为各个三⾓形⾯积的_____,如图①所⽰;圆锥的侧⾯展开图是_______,扇形的半径是圆锥的______,扇形的弧⻓等于圆锥的__________,如图②所⽰. (2)⾯积:锥体的表⾯积S表=S侧+S底.特别地,圆锥的底⾯半径为r,⺟线⻓为l,则圆锥的侧⾯积S侧=__________,表⾯积S表=__________. 3.台体的表⾯积 (1)侧⾯展开图:棱台的侧⾯展开图是由若干个__________拼接⽽成的,则侧⾯积为各个梯形⾯积的______,如图①所⽰;圆台的侧⾯展开图是扇环,其侧⾯积可由⼤扇形的⾯积减去⼩扇形的⾯积⽽得到,如图②所⽰. (2)⾯积:台体的表⾯积S表=S侧+S上底+S下底.特别地,圆台的上、下底⾯半径分别为r′,r,⺟线⻓为l,则侧⾯积S侧=____________,表⾯积S表=________________________. (三).互动课堂 例1:在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,∠AA1B1=∠AA1C1=60°,∠BB1C1=90°,侧棱⻓为b,则其侧⾯积为( ) A. B.ab C.(+)ab D.ab 例2:(1)若⼀个圆锥的轴截⾯是等边三⾓形,其⾯积为,则这个圆锥的侧⾯积是( )A.2πB.C.6πD.9π (2)已知棱⻓均为5,底⾯为正⽅形的四棱锥S-ABCD,如图,求它的侧⾯积、表⾯积. 例3:⼀个四棱台的上、下底⾯都为正⽅形,且上底⾯的中⼼在下底⾯的投影为下底⾯中⼼(正四棱台)两底⾯边⻓分别为1,2,侧⾯积等于两个底⾯积之和,则这个棱台的⾼为( ) A. B.2 C. D. (四).巩固练习: 1.⼀个棱柱的侧⾯展开图是三个全等的矩形,矩形的⻓和宽分别为6 cm,4 cm,则该棱柱的侧⾯积为________. 2.已知⼀个四棱锥底⾯为正⽅形且顶点在底⾯正⽅形射影为底⾯正⽅形的中⼼(正四棱锥),底⾯正⽅形的边⻓为4 cm,⾼与斜⾼的夹⾓为30°,如图所⽰,求正四棱锥的侧⾯积________和表⾯积________(单位:cm2). 3.如图所⽰,圆台的上、下底半径和⾼的⽐为1:4:4,⺟线⻓为10,则圆台的侧⾯积为( )A.81πB.100πC.14πD.169π (五)、课堂⼩结: 求柱体表⾯积的⽅法 (1)直棱柱的侧⾯积等于它的底⾯周⻓和⾼的乘积;表⾯积等于它的侧⾯积与上、下两个底⾯的⾯积之和. (2)求斜棱柱的侧⾯积⼀般有两种⽅法:⼀是定义法;⼆是公式法.所谓定义法就是利⽤侧⾯积为各侧⾯⾯积之和来求,公式法即直接⽤公式求解. (3)求圆柱的侧⾯积只需利⽤公式即可求解. (4)求棱锥侧⾯积的⼀般⽅法:定义法. (5)求圆锥侧⾯积的⼀般⽅法:公式法:S侧=πrl. (6)求棱台侧⾯积的⼀般⽅法:定义法. (7)求圆台侧⾯积的⼀般⽅法:公式法S侧=2(r+r′)l. 五、当堂检测 1.(2011·北京)某四棱锥的三视图如图所⽰,该四棱锥的表⾯积是( )A.32B.16+16C.48D.16+32 ⺴] 2.(2013·重庆)某⼏何体的三视图如图所⽰,则该⼏何体的表⾯积为( )A.180B.200C.220D.240 3.(2013⼲东)若⼀个圆台的正视图如图所⽰,则其侧⾯积等于( )A.6B.6πC.3πD.6π 六、作业:(1)课时闯关(今晚交) 七、课后反思:本节课你会哪些?还存在哪些问题? 1.3 空间⼏何体的表⾯积与体积 课时设计课堂实录 1.3 空间⼏何体的表⾯积与体积 1第⼀学时教学活动活动1【导⼊】第1课时 柱体、锥体、台体的表⾯积 (⼀)、基础⾃测: 1.棱⻓为a的正⽅体表⾯积为__________. 2.⻓、宽、⾼分别为a、b、c的⻓⽅体,其表⾯积为___________________. 3.⻓⽅体、正⽅体的侧⾯展开图为__________. 4.圆柱的侧⾯展开图为__________. 5.圆锥的侧⾯展开图为__________. (⼆).尝试学习 1.柱体的表⾯积 (1)侧⾯展开图:棱柱的侧⾯展开图是____________,⼀边是棱柱的侧棱,另⼀边等于棱柱的__________,如图①所⽰;圆柱的侧⾯展开图是_______,其中⼀边是圆柱的⺟线,另⼀边等于圆柱的底⾯周⻓,如图②所⽰. (2)⾯积:柱体的表⾯积S表=S侧+2S底.特别地,圆柱的底⾯半径为r,⺟线⻓为l,则圆柱的侧⾯积S侧=__________,表⾯积S表=__________. 2.锥体的表⾯积 (1)侧⾯展开图:棱锥的侧⾯展开图是由若干个__________拼成的,则侧⾯积为各个三⾓形⾯积的_____,如图①所⽰;圆锥的侧⾯展开图是_______,扇形的半径是圆锥的______,扇形的弧⻓等于圆锥的__________,如图②所⽰. (2)⾯积:锥体的表⾯积S表=S侧+S底.特别地,圆锥的底⾯半径为r,⺟线⻓为l,则圆锥的侧⾯积S侧=__________,表⾯积S表=__________. 3.台体的表⾯积 (1)侧⾯展开图:棱台的侧⾯展开图是由若干个__________拼接⽽成的,则侧⾯积为各个梯形⾯积的______,如图①所⽰;圆台的侧⾯展开图是扇环,其侧⾯积可由⼤扇形的⾯积减去⼩扇形的⾯积⽽得到,如图②所⽰. (2)⾯积:台体的表⾯积S表=S侧+S上底+S下底.特别地,圆台的上、下底⾯半径分别为r′,r,⺟线⻓为l,则侧⾯积S侧=____________,表⾯积S表=________________________. (三).互动课堂 例1:在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,∠AA1B1=∠AA1C1=60°,∠BB1C1=90°,侧棱⻓为b,则其侧⾯积为( ) A. B.ab C.(+)ab D.ab 例2:(1)若⼀个圆锥的轴截⾯是等边三⾓形,其⾯积为,则这个圆锥的侧⾯积是( )A.2πB.C.6πD.9π (2)已知棱⻓均为5,底⾯为正⽅形的四棱锥S-ABCD,如图,求它的侧⾯积、表⾯积. 例3:⼀个四棱台的上、下底⾯都为正⽅形,且上底⾯的中⼼在下底⾯的投影为下底⾯中⼼(正四棱台)两底⾯边⻓分别为1,2,侧⾯积等于两个底⾯积之和,则这个棱台的⾼为( ) A. B.2 C. D. (四).巩固练习: 1.⼀个棱柱的侧⾯展开图是三个全等的矩形,矩形的⻓和宽分别为6 cm,4 cm,则该棱柱的侧⾯积为________. 2.已知⼀个四棱锥底⾯为正⽅形且顶点在底⾯正⽅形射影为底⾯正⽅形的中⼼(正四棱锥),底⾯正⽅形的边⻓为4 cm,⾼与斜⾼的夹⾓为30°,如图所⽰,求正四棱锥的侧⾯积________和表⾯积________(单位:cm2). 3.如图所⽰,圆台的上、下底半径和⾼的⽐为1:4:4,⺟线⻓为10,则圆台的侧⾯积为( )A.81πB.100πC.14πD.169π (五)、课堂⼩结: 求柱体表⾯积的⽅法 (1)直棱柱的侧⾯积等于它的底⾯周⻓和⾼的乘积;表⾯积等于它的侧⾯积与上、下两个底⾯的⾯积之和. (2)求斜棱柱的侧⾯积⼀般有两种⽅法:⼀是定义法;⼆是公式法.所谓定义法就是利⽤侧⾯积为各侧⾯⾯积之和来求,公式法即直接⽤公式求解. (3)求圆柱的侧⾯积只需利⽤公式即可求解. (4)求棱锥侧⾯积的⼀般⽅法:定义法. (5)求圆锥侧⾯积的⼀般⽅法:公式法:S侧=πrl. (6)求棱台侧⾯积的⼀般⽅法:定义法. (7)求圆台侧⾯积的⼀般⽅法:公式法S侧=2(r+r′)l. 五、当堂检测 1.(2011·北京)某四棱锥的三视图如图所⽰,该四棱锥的表⾯积是( )A.32B.16+16C.48D.16+32 ⺴] 2.(2013·重庆)某⼏何体的三视图如图所⽰,则该⼏何体的表⾯积为( )A.180B.200C.220D.240 3.(2013⼲东)若⼀个圆台的正视图如图所⽰,则其侧⾯积等于( )A.6B.6πC.3πD.6π 六、作业:(1)课时闯关(今晚交) 七、课后反思:本节课你会哪些?还存在哪些问题? ⼩编推荐各科教学设计: 、、、、、、、、、、、、 ⼩编推荐各科教学设计: 、、、、、、、、、、、、。
高中数学人教A版必修2教案:1.3.3 空间几何体的表面积和体积(教学设计)

1.3空间几何体的表面积和体积(第三课时)1.会求球体的表面积和体积.2.理解球体的切接问题.3.培养学生主动探究知识、自主学习和合作交流的意识.4.激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识【重点难点】1.会求球体的表面积和体积.(重点)2.理解球体的切接问题.(难点)【教学策略与方法】讲述,练习【教学过程】教学流程教师活动学生活动设计意图环节一:问题导入问题1:一个充满空气的足球和一个充满空气的篮球,球内的气压相同,若忽略球内部材料的厚度,则哪一个球充入的气体较多?为什么?问题2:如果用油漆去涂一个足球和一个篮球,且涂的油漆厚度相同,问哪一个球所用的油漆多?为什么?球面被经过球心的平面截得的圆叫做大圆不过球心的截面截得的圆叫做球的小圆设球的半径为R,截面半径为r,平面α与截面的距离为那么 r =因此 S圆 = π结合已有知识进行思考,引出新知识新旧知识建立联系环节二:探究过程1.排液法测小球的体积探究几种方法,找出公式背后的理论依据形成归纳、猜想和证明的科学思维习惯2.类推法3、分割极限法:球的表面积球面被分割成n个网格,表面积分别为:则球的表面积则球的体积为:球的体积和表面积公式环节二:例题讲解例一:(1)球的体积是323π,则此球的表面积是( )A.12πC.163π(2)两个球的体积之比是8∶27,那么这两个球的表面积之比是( )A.2∶3C.2∶ 3例二:某个几何体的三视图如图所示(单位:m)(1)求该几何体的表面积;(2)求该几何体的体积.学生做题总结思考,笔记通过做题可以加深学生对基础知识的记忆与利用.教师结合实际情况适当讲解例3、如图,正方体ABCD-A1B1C1D1的棱长为a,它的各个顶点都在球O的球面上,问球O的表面积。
例4、已知过球面上三点A、B、C的截面到球心O的距离等于球半径的一半,且AB=BC=CA=2cm,求球的体积,表面积.教师讲解环节三:课堂演练练习一:1、球的直径伸长为原来的2倍,体积变为原来的_倍.2、一个正方体的顶点都在球面上,它的棱长是4cm,这个球的体积为___cm3.3、有三个球,一球切于正方体的各面,一球切于正方体的各侧棱,一球过正方体的各顶点,求这三个球的体积之比_________.练习二:1、若球的表面积变为原来的2倍,则半径变为原来的___倍.2、若球半径变为原来的2倍,则表面积变为原来的___倍.3、若两球表面积之比为1:2,则其体积之比是______.4、若两球体积之比是1:2,则其表面积之比是______.5、长方体的共顶点的三个侧面积分别为,则它的外接球的表面积为_____.学生自主做题,思考讨论的同时,可以加深本节知识点的记忆,加强应用方面的方法技巧,加深对知识的认识.通过演练直击本节知识点,起到巩固作用.。
高中数学必修二1.3.2《球的体积和表面积》课件

函数即S=4πR2.
3.求球的表面积和体积关键是求出球的半径,为此常考虑
球的轴截面.
一个球内有相距9 cm 的两个平行截面,它们的面 积分别为49π cm2和400π cm2,求球的表面积和体积. [提示] 因为题中并没有说明两个平行截面是在球心的 两侧,还是同侧,因此解题时应分类讨论.
[解] (1)当截面在球心的同侧时,如图所 示为球的轴截面.由球的截面性质,知
AO1∥BO2,且O1、O2分别为两截 面圆的圆心,则OO1⊥AO1, OO2⊥BO2. 设球的半径为R. ∵π·O2B2=49π,∴O2B=7. 同理,π·O1A2=400π,∴O1A=20.
设 OO1=x,则 OO2=x+9. 在 Rt△OO1A 中,R2=x2+202, 在 Rt△OO2B 中,R2=(x+9)2+72, ∴x2+202=72+(x+9)2.解得 x=15.
设球O的半径为5,一个内接圆台的两底 面半径分别是3和4,求圆台的体积.
[错解] 如图,由球的截面的性质知, 球心到圆台的上、下底面的距离分别为 d1= 52-32=4,d2= 52-42=3. ∴圆台的高为 d1-d2=h=4-3=1. ∴圆台的体积为 V=13πh(r21+r22+r1r2) =13×π×1×(32+42+3×4)=337π.
答案:D
探究点三 球的表面积和体积的实际应用
球是非常常见的空间几何体,应用比较广泛, 特别在实际生活中,应用球的表面积和体积公式解 决问题的例子更是普遍.
如图所示,一个圆锥形的空杯 子上放着一个直径为8 cm的半球形的 冰淇淋,请你设计一种这样的圆锥形 杯子(杯口直径等于半球形的冰淇淋的 直径,杯子壁厚忽略不计),使冰淇淋 融化后不会溢出杯子,怎样设计最省 材料? [提示] 应使半球的体积小于或等于圆锥的体积.可 先设出圆锥的高,再求其侧面积.
人教课标版高中数学必修二《空间几何体的表面积和体积(第2课时)》教案-新版

1.3.2柱体、锥体、台体的表面积与体积(二)一、教学目标 (一)核心素养通过学习,使学生感受几何体体积的求解过程,锻炼自己的空间思维能力,从而增强学习的积极性. (二)学习目标1.掌握柱、锥、台体积的求法.2.让学生通过对照比较,理顺柱体、锥体、台体三者间体积的关系 (三)学习重点 运用公式解决问题. (四)学习难点理解计算公式之间的关系. 二、教学设计 (一)课前设计 1.预习任务(1)读一读:阅读教材第25页至第27页.填空: 棱长为a 的正方体的体积计算公式为3a .长、宽、高分别为c b a 、、的长方体的体积的计算公式为abc . 圆柱体积公式:Sh V =.一般柱体的体积:Sh V =.(S 为底面面积,h 为柱体的高)椎体的体积Sh V 31=(S 为底面面积,h 为高).台体的体积()h S SS S V ++=''31('S S 、分别为上、下底面面积,h 为台体的高). 2.预习自测(1)已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V 和2V ,则1V :2V =______.【答案】1:3【知识点】柱体、椎体的体积公式【解题过程】设圆柱、圆柱的底面积为S ,高为h , 则由柱体、锥体的体积公式得:()121313V :V Sh :Sh :,⎛⎫== ⎪⎝⎭故选D.【思路点拨】直接用公式解(2)设直角三角形的两直角边43==AC AB ,,则它绕AB 旋转一周得到的旋转体的体积为____________. 【答案】π16【知识点】锥体体积公式、旋转体【解题过程】根据题意可知,所得的立体图形是一个圆锥:底面半径是4,高为3,圆锥体积=2143163π⨯⨯⨯=π. 【思路点拨】运用锥体体积公式求解.(3)已知棱台的上下底面面积分别为16,4,高为3,则该棱台的体积为___________. 【答案】28【知识点】台体的体积公式【解题过程】台体体积()()1141632833'V S S h =++=⨯+⨯= 【思路点拨】牢记台体体积公式 (二)课堂设计 1.知识回顾已学柱体、椎体、台体表面积计算方法. 2.问题探究探究一柱体、锥体体积计算公式 活动① 结合实例,进行猜想将正方体、长方体的体积公式分别改写为:h S a a a V ⋅=⋅==底正方体23,其中a h =;h S c ab abc V ⋅=⋅==底长方体,其中c h =.据此猜想棱柱的体积公式是什么?h S V ⋅=底棱柱,其中h 表示棱柱的高.类比棱柱,可得圆柱体积: h S V ⋅=底圆柱【设计意图】根据已有知识经验获得一般的结论,培养学生合情推理的意识和习惯.活动②互动交流,得出结论如何把一个三棱柱分割成三个等体积的棱锥?''用几何画板展示动态过程,并进行相应的证明,加深学生对等底、等高的锥体与柱体体积之间的关系的了解,由此可得 锥体的体积计算公式:h S V ⋅=底锥31,其中h 表示棱锥的高.【设计意图】虽然此处还不能进行理论的论证,但是在猜想的基础上可以引导学生进行说理,培养学生的理性思维习惯. 活动③巩固练习,熟记公式例1若一个圆柱的侧面展开图是边长为2的正方形,则此圆柱的体积为( ) A.π1B.π2C.π3D.π4【知识点】圆柱 【数学思想】空间想象【解题过程】底面半径ππ122==r ,πππ2122=⎪⎭⎫ ⎝⎛⋅=柱V .【思路点拨】利用公式直接计算. 【答案】B同类训练 若圆锥的表面积是π15,侧面展开图的圆心角是060,则圆锥的体积是( ) A.π715 B.π7315 C.π725D.π7325 【知识点】圆锥 【数学思想】空间想象【解题过程】设圆锥的底面半径为r ,母线为l ,则l r ππ312=,得r l 6=,ππππ157622==⋅+=r r r r S ,得715=r ,圆锥的高71535⨯=h πππ73257153571531312=⨯⨯⨯==h r V【思路点拨】利用公式直接计算. 【答案】D例2一个几何体的三视图如所示,则该几何体的体积是( )A.432+π B.42+π C.4+π D.2+π 【知识点】由三视图求面积、体积. 【数学思想】空间想象【解题过程】解:由三视图可知几何体为半圆柱与长方体的组合体. 半圆柱的底面半径为1,高为2,长方体的棱长分别为1、2、2,所以几何体的体积422121212+=⨯⨯+⨯⨯⨯=ππV .【思路点拨】几何体为半圆柱与长方体的组合体. 【答案】C同类训练 某几何体的三视图如图所示,则该几何体的体积为( )A.π838+B.π8316+C.π1638+D.π16316+ 【知识点】由三视图求简单几何体的体积. 【数学思想】空间想象【解题过程】由已知中的三视图可得:该几何体是一个三棱锥与半圆柱的组合体,半圆柱的底面半径为2,高为4,故体积为:ππ842212=⨯⋅⨯,三棱锥的底面面积为:44221=⨯⨯,高为2,故体积为:38,故组合体的体积π838+=V ,【思路点拨】由已知中的三视图可得:该几何体是一个三棱锥与半圆柱的组合体,分别求出体积,相加可得答案. 【答案】A【设计意图】巩固检查学生对柱体、椎体体积公式的掌握. 探究二 台体体积的求法 活动①分组合作,讨论交流类比棱台、圆台侧面积的求法,你能解决求棱台、圆台体积的问题吗?如何求?如图,设圆台的上下底面积分别为'S 和S ,高为h ,试求其体积. 转化为棱锥、圆锥的体积差问题求解.(以圆台为例):如下图,设x O O =''',上下底面的半径分别为'r 和r ,圆台的上下底面积分别为'S 和S .SS S S rr h x x '''===+ππ ,''SS S h x -=∴()x S Sx Sh x S x h S V ''31313131-+=-+=台()()''''31313131SS S h S S Sh x S S Sh --+=-+=()()''''313131S SS S h S hS S Sh ++=++=【设计意图】感受圆台体积的计算过程,从而加深台体体积公式的记忆 活动②基础训练,加深印象例3四棱台的上下底面均是正方形,边长分别为cm 3和cm 5,高是cm 6,求此棱台的体积。
1.3.2空间几何体的体积(1)(2014年人教A版数学必修二导学案)

2.已知一个铜质的五棱柱的底面积为 16cm ,高为 4cm ,现将它熔化后铸成一个正 方体铜块,那么铸成的铜块的棱长为多少(不计损耗)?
2
3.若一个六棱锥的高为10 cm ,底面是边长为 6cm 的正六边形,求这个六棱锥的体积.
/ /
7.若干体积的水倒入底面半径为 2cm 的圆柱形器皿中,量得水平面的高度为 6cm , 若将这些水倒入轴截面是正三角形的倒圆锥器皿中,求水面的高度.
/ /
备课大师:免费备课第一站!
【课外作业】
20cm , 1. 圆台上下底面直径分别为 10 cm , 高为 2cm , 则圆台的体积为_______ cm2 .
2. 已知矩形的长为 2 a , 宽为 a , 将此矩形卷成一个圆柱, 则此圆柱的体积为________.
3.长方体相邻的三个面的面积分别为 2 , 3 和 6 ,则该长方体的体积为______. 4.若一个圆台的下底面面积是上底面面积的 4 倍,高是 3cm ,体积是 63 cm3 , 则圆台的侧面积是____________. 5.若一圆锥的轴截面是边长为 a 的正三角形,则该圆锥的内切球的体积为_______. 6.已知正三棱锥的侧面积为 18 3 ,高为 3 ,求它的体积.
备课大师:免费备课第一站!
课题:1.3.2 空间几何体的体积(1)导学案
班级: 【学习目标】 【课前预习】
1.圆锥形烟囱的底面半径是 40cm ,高是 30 cm .已知每平方米需要油漆 150g ,油漆
姓名:
学号:
第
学习小组
了解柱、锥、台、球体积的计算公式
100 个这样的烟囱帽的外表面,共需油漆多少千克?( 取 3.14 ,精确到 0.1kg )
V柱体 ____________________________________________.
高中数学 13空间几何体的表面积与体积教案(pdf)新人教A版必修2 教案

( ) ( ) -πr′ rl-rr′-l =πl rr-2r′-rr-′r2′ =πl(r+r′).
例3 正四 棱 台 两 底 面 边 长 分
D1
C1
别为a 和b(a<b). (1)若侧棱所在直线 与 上、下 底 A1
面正方形中心 的 连 线 所 成 的 角 为
D
45°,求 棱 台 的 侧 面 积 ;
积公式为 S侧 =C·l,其中 C 为直截面周长,l为侧棱长.
例1 若一圆柱 的 侧 面 展 开 图 是 一 个 边 长 为 4 的 正 方 形 ,则 该 圆 柱 的 表 面 积 是 .
解 析 正方形的面 积 即 为 圆 柱 的 侧 面 积,圆 柱 底 面 的 周
长
2πr=4,所
如图137所示,设圆台的上、下底面半径 分 别 为r′、r,
母
线
长
为l,则
S圆
台
侧
=π(r′+r)·l=
1 2
(C′+C)l,其
中r′、r
分别 为 上、下 底 面 的 半 径,C′、C 分 别 为 上、下 底 面 的 周 长,
l为圆台的母线长,所以圆 台 的 表 面 积 公 式 为 S=π(r′2+r2 +r′l+rl).
20
由 题 意 知 ∠C1CO=45°,
CE=CO-EO=CO-C1O1=槡22(b-a),
在 Rt△C1CE 中C1E=CE=槡22(b-a),
又
EF=CE·sin45°=
1 2
(b-a),
∴ 斜 高C1F= 槡C1E2+EF2
槡[ ] [ ] =
2
槡22(b-a) +
1 2
(b-a)
2
=槡23(b-a).
高中数学人教版必修二:1.3.2《球的体积与表面积》课件

D1
C1
A1
B1
表面积为 4 ( 3 a) 2 3 a 2 2
典例展示
由三视图求几何体的体积和表面积 2r
例5.(2015年新课标I)圆柱被一 个平面截去一部分后与半球(半 径为r)组成一个几何体,该几何 体三视图中的正视图和俯视图如 r 图所示。若该几何体的表面积为 16 + 20 ,则r=( ) ( A) 1 ( B) 2 ( C) 4 ( D) 8
正视图
侧视图
1 ( A) 8 1 ( C) 6
1 (B) 7 1 ( D) 5
俯视图
【解析】由三视图得,在正方体 ABCD A1B1C1D1 中,截去四面体 A A1B1D1,如图所示, 设正方体棱长为 a 则 VA A B D
1 1 1
D1
C1
A1
B1
【答案】D
1 所以截去部分体积与剩余部分体积的比值为 5
2 V球 = V柱 3
与球组合的组合体的表面积和体积
两个几何体相切: 一个几何体的各个面与另一个几何体的各面相切.
典例展示
例3.求棱长为
a 的正方体的内切球的体积和表面积.
D1 A1 C1
分析:正方体的中心为球的球心, 正方体的棱长为球的直径。
【解析】正方体的内切球的直径为
4 3 所以球的体积为 a . 3
1 3 5 3 故剩余几何体体积为 a a a 6 6
3
1 1 3 1 3 a a 3 2 6
一、基本知识
柱体、锥体、台体、球的表 面积 展开图
圆柱 S 2r (r l ) 圆台S (r2 r 2 rl rl )
圆锥 S r (r l )
高中数学必修2第一章第三节《空间几何体的表面积与体积》全套教案

空间几何体的表面积与体积1.3.1柱体、锥体、台体的表面积与体积【教学目标】(1)通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法。
(2)能运用公式求解,柱体、锥体和台全的全积,并且熟悉台体与术体和锥体之间的转换关系。
(3)培养学生空间想象能力和思维能力。
【教学重点难点】【教学重点】:柱体、锥体、台体的表面积和体积计算【教学难点】:台体体积公式的推导【学前准备】:多媒体,预习例题(3)初中时,我们已经学习了计算特殊的柱体——正方体、长方体以及圆柱的体积公式:如图,把正方体截去四个角,得到一个体比2a和积此圆柱的底面在圆锥的底面上,圆柱的高等于圆锥底面半径,且圆柱的全面积:圆锥的底面积3:2=.)求圆锥母线与底面多成的角的正切值;(2)圆锥的侧面积参考答案:1. B 2. C 3. 1 , 3 4. A 5. B 6. B 7. 1:3 3a π或32aπ9.已知圆锥有一个内接圆柱此圆柱的底面在圆锥的底面上,圆柱. 三棱锥的外接球问题【教学目标】⑴通过对球的体积和面积公式的推导,了解推导过程中所用的基本数学思想方法:“分割——求和——化为准确和”,有利于同学们进一步学习微积分和近代数学知识。
⑵能运用球的面积和体积公式灵活解决实际问题。
⑶培养学生的空间思维能力和空间想象能力。
【教学重难点】【教学重点】:引导学生了解推导球的体积和面积公式所运用的基本思想方法。
【教学难点】:推导体积和面积公式中空间想象能力的形成。
【学前准备】:多媒体,预习例题4:如图是一个空间几何体的三视图,则该几何体的外接球的表面积为.类型四:一条测棱垂直底面,底面为非直角三角形的四面体的外接球问题5已知点A,B,C,D,四点在同一个球面上,DA⊥平面ABC,DA=AB=AC=3,∠ABC=60,则球半径是类型五:正三棱锥的外接球问题6:已知正三棱锥底面边长为1,侧棱长为2,求外接球半径。
1.3.2空间几何体的体积(2)(2014年人教A版数学必修二导学案)

姓名:
学号:
第
学习小组
3.已知: ABCD A1 B1C1 D1 是棱长为 a 的正方体, E , F 分别为棱 AA 1 与 CC1 的 中点,求四棱锥 A1 EBFD 1 的体积.
4、如图,在长方体 ABCD A1 B1C1 D1 中, AB AD 3cm , AA1 2cm , 求三棱锥 A B1 D1 D 的体积
S M C E D A B
2
/ /
备课大师:免费备课第一站!
课题:1.3.2 空间几何体的体积(2)导学案
班级: 【学习目标】 姓名: 学号: 第 学习小组
初步掌握求体积的常规方法,例如割补法,等积转换等 【课前预习】 1.如图,在三棱锥 P ABC 中,已知 PA BC , PA BC l , PA ED ,
BC ED ,且 ED h .求证:三棱锥 P ABC 的体积为 V
D1 A1 D B B1
C1
C
A
/ /
备课大师:免费备课第一站!
【课外作业】
1. 一个圆锥的底面半径和一个球的半径相等, 体积也相等, 则它们的高度之比为____.
2.球面面积膨胀为原来的两倍,其体积变为原来的____________________倍.来自【学后反思】/ /
备课大师:免费备课第一站!
课题:1.3.2 空间几何体的体积(2)检测案
班级: 【课堂检测】
1. 两个球的体积之比为 8 : 27 , 则这两个球的表面积之比是_____________________. 2.若两个球的表面积之差为 48 ,两球面上两个大圆周长之和为 12 ,则这两球 的半径之差为________________________.
高中数学教案之高数学人教版必修二球的表面积和体积

高一数学必修二教案科目:数学课题§1.3.2球的表面积和体积课型新课教学目标(1)了解球的表面积与体积公式(不要求记忆公式).(2)培养学生空间想象能力和思维能力.(3)通过作轴截面,寻找旋转体类组合体中量与量之间的关系.(4)让学生更好地认识空间几何体的结构特征,培养学生学习的兴趣.教学过程教学内容备注一、自主学习1.柱体、锥体、台体的体积公式分别是什么圆柱、圆锥、圆台的表面积公式分别是什么2.球是一个旋转体,它也有表面积和体积,怎样求一个球的表面积和体积也就成为我们学习的内容.二、质疑提问思考1:从球的结构特征分析,球的大小由哪个量所确定思考2:底面半径和高都为R的圆柱和圆锥的体积分别是什么思考3:如图,对一个半径为R的半球,其体积与上述圆柱和圆锥的体积有何大小关系思考4:根据上述圆柱、圆锥的体积,你猜想半球的体积是什么思考5:由上述猜想可知,半径为R的球的体积334Rπ=球V,这是一个正确的结论,你能提出一些证明思路吗祖暅原理幂势既同,则积不容异夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.三、问题探究思考1:半径为r的圆面积公式是什么它是怎样得出来的思考2:把球面任意分割成n个“小球面片”,它们的面积之和等于什么思考3:以这些“小球面片”为底,球心为顶点的“小锥体”近似地看成棱锥,那么这些小棱锥的底面积和高近似地等于什么它们的体积之和近似地等于什么思考4:你能由此推导出半径为R的球的表面积公式吗思考5:经过球心的截面圆面积是什么它与球的表面积有什么关系球的表面积等于球的大圆面积的4倍例1:如图,圆柱的底面直径与高都等于球的直径,求证:(1)球的体积等于圆柱体积的;(2)球的表面积等于圆柱的侧面积.例2:已知正方体的八个顶点都在球O的球面上,且正方体的表面积为a2,求球O的表面积和体积.例3:有一种空心钢球,质量为142g(钢的密度为cm3),测得其外径为5cm,求它的内径(精确到).四、课堂检测将一个气球的半径扩大1倍,它的体积扩大到原来的几倍已知A、B、C为球面上三点,AC=BC=6,AB=4,球心O与△ABC的外心M的距离等于球半径的一半,求这个球的表面积和体积.五、小结评价本节课主要学习了球的体积和球的表面积公式的推导,以及利用公式解决相关的球的问题。
人教A版高中数学必修2《 一章 空间几何体 1.3 空间几何体的表面积与体积(通用)》优质课教案_10

学生自己动手将圆柱、圆锥及圆台的侧面进行展开,有助于在脑海中形成印象,清楚知识的前因后果。
【解决问题】
提问:现在你能解决“选择哪个形状的杯子才能使刻字画的面积最大”这一问题吗?
学生回答。
前后呼应,让学生体会到学习的知识可以解决实际生活中的问题。
【课堂练习】
学生在学过了长方体与正方体的侧面展开图及表面积公式与对各种空间几何体的认识的基础上,对圆柱、圆锥及圆台有了一定的认识,为这节课的学习打下了良好的基础;本节课设计了较多的课堂活动,包括圆柱、圆锥及圆台的侧面展开图、各个侧面积公式的总结、如何求圆台的侧面展开图等,通过这些课堂活动让学生对学习内容有较高的积极性,学生也更愿意通过自己探索学习到新知识,让他们真正融入到课堂、积极思索,才能学好知识,感受数学的魅力。
《空间几何体
授课人:
工作单位:
学科年级:高一
教材版本:人教版必修2
一、教学内容分析
本课题是人教版必修2第一章第三节的内容,由于本节课涵盖的内容较多,包括:“柱体、椎体、台体”三大块,而我考虑到所教学生的实际情况,只选取了其中的部分内容。
空间几何体的表面积是生产生活中常见的实际问题,这些问题的研究有助于培养学生的数学应用意识。
1、基础练习(PPT课件展示)
2、能力提升(PPT课件展示)
对于能力提升的练习,教师在黑板规1、对于基础练习,学生自己完成,随机抽选学生展示自己的答案;
2、对于能力提升的练习,学生与老师一起完成;
3、独立完成变式训练,并随机抽选学生展示自己的答案。
检验学生对新知识的掌握程度以及应用能力。
本节内容是在学生学过了长方体与正方体的侧面展开图及表面积公式、各种空间几何体的认识的基础上进行教学,让学生从空间几何体的平面展开图得出圆柱、圆锥及圆台的表面积公式,引导学生体会将空间几何问题转化为平面问题的数学思想。而该部分内容意在锻炼学生小组学习及探索学习的能力,让学生在课堂活动中理解空间几何体表面积的本质,重在理解三种空间几何体的侧面展开图,让学生真正成为学习的主人。
高中数学必修二空间几何体的体积教案(高二数学)

高中数学必修二空间几何体的体积教案
教学目标:
1.了解柱、锥、台的体积公式,能运用公式求解有关体积计算问题;
2.了解柱体、锥体、台体空间结构的内在联系,感受它们体积之间的关系;
3.培养学生空间想象能力、理性思维能力以及观察能力.
教材分析及教材内容的定位:
通过分析柱体、锥体和台体空间结构的内在联系,让学生感受柱体、锥体和台体的体积之间的关系,
体会数与形的完美结合.
教学重点:
柱、锥、台的体积计算公式及其应用.
教学难点:
运用公式解决有关体积计算问题.
教学方法:
通过分析柱体、锥体和台体空间结构的内在联系,让学生感受柱体、锥体和台体的体积之间的关系,
体会数与形的完美结合.
教学过程:
一、问题情境
类似于用单位正方形的面积度量平面图形的面积,我们可以用单位正方体(棱长为1个长度单位的正方体)的体积来度量几何体的体积.
一个几何体的体积是单位正方体体积的多少倍,那么这个几何体的体积的数值就是多少.
长方体的长、宽、高分别为a,b,c,那么它的体积为
V长方体=abc或V长方体=Sh
(这里,S,h分别表示长方体的底面积和高.)
二、学生活动
阅读课本P65“祖暅原理”.
第1页共3页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3.2 空间几何体的体积
教学目标:
1.了解柱、锥、台的体积公式,能运用公式求解有关体积计算问题;
2.了解柱体、锥体、台体空间结构的内在联系,感受它们体积之间的关系;
3.培养学生空间想象能力、理性思维能力以及观察能力.
教材分析及教材内容的定位:
通过分析柱体、锥体和台体空间结构的内在联系,让学生感受柱体、锥体和台体的体积之间的关系,体会数与形的完美结合.
教学重点:
柱、锥、台的体积计算公式及其应用.
教学难点:
运用公式解决有关体积计算问题.
教学方法:
通过分析柱体、锥体和台体空间结构的内在联系,让学生感受柱体、锥体和台体的体积之间的关系,体会数与形的完美结合
教学过程:
一、问题情境
类似于用单位正方形的面积度量平面图形的面积,我们可以用单位正方体(棱长为1个长度单位的正方体)的体积来度量几何体的体积.
一个几何体的体积是单位正方体体积的多少倍,那么这个几何体的体积的数值就是多少.
长方体的长、宽、高分别为a,b,c,那么它的体积为
V
=abc或V长方体=Sh
长方体
(这里,S,h分别表示长方体的底面积和高.)
二、学生活动
阅读课本P59“祖暅原理”.
思考:两个底面积相等、高也相等的棱柱(圆柱)的体积如何?
三、建构数学 1.柱体的体积.
棱柱(圆柱)可由多边形(圆)沿某一方向平移得到,因此,两个底面积相等、高也相等的棱柱(圆柱)应该具有相等的体积.
V
柱体
= sh 2.锥体的体积.
类似地,底面积相等,高也相等的两个锥体的体积也相等.
13
V sh =锥体
3.台体的体积.
上下底面积分别是S’,S ,高是h ,则
1
(')3
V h S S =台体
柱体、锥体、台体的体积公式之间有怎样的关系呢? 4.球的体积.
一个底面半径和高都等于R 的圆柱,挖去一个以上底面为底面,下底面圆心为顶点的圆锥后,所得几何体的体积与一个半径为R 的半球的体积有什么样神奇的关系呢?——相等.
223112233V R R R R R πππ=-=球,所以34
3
V R π=球. 四、数学运用
例1 有一堆规格相同的铁制(铁的密度是3
7.8/kg cm )六角螺帽共重6kg ,已知底面是正六边形,边长为12mm,内孔直径为10mm ,高为10mm ,问这堆螺帽大约有多少个(π 取3.14,可用计算器)?
分析:六角螺帽的体积是一个正六棱柱的体积与一个圆柱的体积的差,再由密度算出一个六角螺帽的质量.
解:223310
12610 3.14()102956() 2.956()2
V mm cm =
⨯⨯-⨯⨯≈=, 所以螺帽的个数为
61000(7.8 2.956)260⨯÷⨯≈(个)
答:这堆螺帽大约有260个.
例2 圆锥形封闭容器,高为h ,圆锥内水面高为11,3
h
h h =,若将圆锥倒置后,圆锥内水面高为2h ,求2h .
分析:圆锥正置与倒置时,水的体积不变,另外水面是平行于底面的平面,此平面截得的小圆锥与原圆锥成相似体,它们的体积之比为对应高的立方比.
解:
3283()27
S AB S CD
h
V V h --==
1
333
322191919::272727V V V h h h h V ⎛⎫∴===∴= ⎪⎝⎭
水
水锥锥倒置后: 例3 用刀切一个近似球体的西瓜,切下的较小部分的圆面直径为30 cm ,高度为5 cm ,该西瓜体积大约有多大?
练习:
1.直三棱柱ABC -A ′B ′C ′各侧棱和底面边长均为a ,点D 是CC ′上任意一点,连结
A ′
B ,BD ,A ′D ,AD ,则三棱锥A -A ′BD 的体积是多少?
2.将一个正三棱柱形的木块,旋成与它等高并且尽可能大的圆柱形,则旋去部分的体积是原三棱柱体积的 倍;
3.表面积为324π的球,其内接正四棱柱的高是14,求这个正四棱柱的表面积. 五、要点归纳与方法小结 本节课学习了以下内容
1.理解柱体、锥体、台体之间的关系; 2.球的表面积和体积公式.
仅此学习交流之用
谢谢。