华东师大版八年级数学下册全册教案
华东师大版八年级下册数学教案及配套课件
华东师大版八年级下册数学教案及配套课件篇一:华东师大版八年级下册数学教案全册华东师大版教师:2022年2月第17章分式17.1.1 分式的概念教学目标:1、学问与技能:经受实际问题的解决过程,从中熟悉分式,并能概括分式的意义。
2、过程与方法:使学生能正确地推断一个代数式是否是分式,能通过回忆分数的意义,类比地探究分式的意义。
3、情感态度与价值观:渗透数学中的类比,分类等数学思想。
教学重点:探究分式的意义及分式的值为某一特定状况的条件。
教学难点:能通过回忆分数的意义,探究分式的意义。
教学过程:一、做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为_____米;(2)面积为S平方米的长方形一边长a米,则它的另一边长为________米;(3)一箱苹果售价p元,总重m千克,箱重n千克,则每千克苹果的售价是___元;二、概括: A形如(A、B是整式,且B中含有字母,B≠0)的式子,叫做分式.其中 A叫做分式的B分子,B叫做分式的分母.整式,整式和分式统称有理式, 即有理式分式.三、例题:例1 以下各有理式中,哪些是整式?哪些是分式?(1)1x3x?y2xy;(2);(3);(4). 3x2x?y解:属于整式的有:(2)、(4);属于分式的有:(1)、(3).留意:在分式中,分母的值不能是零.假如分母的值是零,则分式没有意义.例如,在分S9式中,a≠0;在分式中,m≠n. m?na 例2 当x取什么值时,以下分式有意义?1x?2(1);(2). x-12x?3分析要使分式有意义,必需且只须分母不等于零.解(1)分母x-1≠0,即x≠1.1所以,当x≠1时,分式有意义. x-13(2)分母2x?3≠0,即x≠-. 23x?2所以,当x≠-时,分式有意义. 22x?3四、练习:P5习题17.1第3题(1)(3)1.推断以下各式哪些是整式,哪些是分式? 9x+4, 7 , 9?y, m?4, 8y?3,1 xx?9520y22. 当x取何值时,以下分式有意义?(1)(2)(3)x2?43?2xx?23. 当x为何值时,分式的值为0? 3x?52x?5五、小结:什么是分式?什么是有理式?六、作业:P5习题17.1第1、2题,第3题(2)(4)七、教学反思:通过分式概念的教学,让学生懂得了什么时分式,知道了分式与整式的区分,了解了分式成立的条件,为以后的学习打好了根底。
华东师大版八年级数学下全册教案
华东师大版八年级数学下全册教案文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]第17章 分式§ 分式的概念教学目标:1、经历实际问题的解决过程,从中认识分式,并能概括分式2、使学生能正确地判断一个代数式是否是分式3、能通过回忆分数的意义,类比地探索分式的意义及分式的值如某一特定情况的条件,渗透数学中的类比,分类等数学思想。
教学重点:探索分式的意义及分式的值为某一特定情况的条件。
教学难点:能通过回忆分数的意义,探索分式的意义。
教学过程:一、做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为_____米;(2)面积为S 平方米的长方形一边长a 米,则它的另一边长为________米;(3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是___元;二、概括: 形如BA (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.整式和分式统称有理式, 即有理式 整式,分式.三、例题:例1 下列各有理式中,哪些是整式哪些是分式(1)x 1; (2)2x ; (3)y x xy +2; (4)33y x -. 解:属于整式的有:(2)、(4);属于分式的有:(1)、(3).注意:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.例如,在分式a S 中,a ≠0;在分式n m -9中,m ≠n. 例2当x 取什么值时,下列分式有意义 (1)11-x ; (2)322+-x x . 分析 要使分式有意义,必须且只须分母不等于零.解 (1)分母1-x ≠0,即x ≠1.所以,当x ≠1时,分式11-x 有意义. (2)分母23+x ≠0,即x ≠-23. 所以,当x ≠-23时,分式322+-x x 有意义. 四、练习:P5习题第3题(1)(3)1.判断下列各式哪些是整式,哪些是分式 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义(1) (2) (3) 3. 当x 为何值时,分式的值为0 (1) (2) (3) 五、小结:什么是分式什么是有理式六、作业:P5习题第1、2题,第3题(2)(4)教学反思:§ 分式的基本性质教学目标:1、掌握分式的基本性质,掌握分式约分方法,熟练进行约分,并了解最简分式的意义。
优秀华师大版八年级数学下册教案全集5篇
优秀华师大版八班级数学下册教案全集(精选5篇)优秀华师大版八班级数学下册教案全集(精选5篇)新的数学方法和概念,常常比解决数学问题本身更重要。
上帝是一位算数家。
数学是一种别具匠心的艺术。
这里给大家共享一些关于优秀华师大版八班级数学下册教案全集,供大家参考学习。
优秀华师大版八班级数学下册教案全集(篇1)教学目标:1、知道负整数指数幂=(a≠0,n是正整数)、2、把握整数指数幂的运算性质、3、会用科学计数法表示小于1的数、教学重点:把握整数指数幂的运算性质。
难点:会用科学计数法表示小于1的数。
情感态度与价值观:通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践。
能利用事物之间的类比性解决问题、教学过程:一、课堂引入1、回忆正整数指数幂的运算性质:(1)同底数的幂的乘法:am?an = am+n(m,n是正整数);(2)幂的乘方:(am)n = amn (m,n是正整数);(3)积的乘方:(ab)n = anbn (n是正整数);(4)同底数的幂的除法:am÷an = am?n(a≠0,m,n 是正整数,m>n);(5)商的乘方:()n = (n是正整数);2、回忆0指数幂的规定,即当a≠0时,a0 = 1、3、你还记得1纳米=10?9米,即1纳米=米吗?4、计算当a≠0时,a3÷a5 ===,另一方面,假如把正整数指数幂的运算性质am÷an = am?n (a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0)。
二、总结:一般地,数学中规定:当n是正整数时,=(a ≠0)(留意:适用于m、n可以是全体整数)老师启发学生由特殊情形入手,来看这条性质是否成立、事实上,随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质都可推广到整数指数幂;am?an = am+n(m,n是整数)这条性质也是成立的、三、科学记数法:我们已经知道,一些较大的数适合用科学记数法表示,有了负整数指数幂后,小于1的正数也可以用科学记数法来表示,例如:0。
华东师大版八年级下册数学教案
华东师大版八年级下册数学教案华东师大版八年级下册数学教案【精选5篇】聪明出于勤奋,天才在于积累。
数学是无穷的科学。
观察可能导致发现,观察将揭示某种规则、模式或定律。
这里给大家分享一些关于华东师大版八年级下册数学教案,供大家参考学习。
华东师大版八年级下册数学教案(篇1)一、学习目标1.多项式除以单项式的运算法则及其应用。
2.多项式除以单项式的运算算理。
二、重点难点重点:多项式除以单项式的运算法则及其应用。
难点:探索多项式与单项式相除的运算法则的过程。
三、合作学习(一)回顾单项式除以单项式法则(二)学生动手,探究新课1.计算下列各式:(1)(am+bm)÷m;(2)(a2+ab)÷a;(3)(4x2y+2xy2)÷2xy。
2.提问:①说说你是怎样计算的;②还有什么发现吗?(三)总结法则1.多项式除以单项式:先把这个多项式的每一项除以__________X,再把所得的商______2.本质:把多项式除以单项式转化成______________四、精讲精练例:(1)(12a3—6a2+3a)÷3a;(2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);(3)[(x+y)2—y(2x+y)—8x]÷2x;(4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。
随堂练习:教科书练习。
五、小结1、单项式的除法法则2、应用单项式除法法则应注意:A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号;B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行;E、多项式除以单项式法则。
华东师大版八年级数学下全册教案
数学教学是培养学生逻辑思维、分析问题解决问题能力的重要途径之一、下面是华东师大版八年级数学下全册的教案,通过合理的教学安排和方法选择,帮助学生掌握数学知识,提高数学运算和解题能力。
教学目标:知识目标:1.回顾并巩固八年级上册的数学知识,包括整式全等和双重根式等;2.学习并掌握新的数学知识,如反比例函数和一次函数的性质等;3.发展学生的抽象思维和逻辑推理能力。
能力目标:1.能够应用数学知识进行问题的分析,找出解题的关键;2.能够正确运用数学方法解决实际问题;3.能够进行数学推理,培养学生的逻辑思维能力。
情感目标:1.培养学生对数学学习的兴趣和自信心;2.培养学生的合作意识和团队精神;3.培养学生的创新思维,培养学生的解决问题能力。
教学重点:1.整合和巩固八年级上册的数学知识;2.学习和掌握新的数学知识,如反比例函数和一次函数的性质。
教学难点:1.培养学生的逻辑思维能力;2.培养学生的解决问题能力。
教学过程:第一课时:复习上册知识1.复习上册知识。
通过小组讨论和交流,复习整式全等和双重根式等知识点。
2.检测学生对上册知识的掌握情况。
设计相应的习题,检测学生的运算能力和解题能力。
第二课时:第一章反比例函数1.导入。
通过问题引入,激发学生思考的兴趣。
2.学习反比例函数的定义和性质。
引导学生进行观察和总结。
3.解决问题。
通过例题引导学生应用反比例函数的性质解决实际问题。
第三课时:第二章一次函数的性质1.导入。
通过实例展示一次函数的应用。
2.学习一次函数的性质。
引导学生进行观察和总结。
3.解决问题。
通过例题引导学生应用一次函数的性质解决实际问题。
第四课时:第三章几何中的一次函数1.导入。
通过几何例题引导学生认识几何中的一次函数。
2.学习几何中的一次函数性质和定理。
3.解决问题。
通过几何例题引导学生应用几何中的一次函数解决实际问题。
第五课时:复习与考核1.复习本章知识点。
通过小组合作,复习本章的重点知识。
2.设计考核题目。
八年级下册数学华东师范教案大全5篇
八年级下册数学华东师范教案大全5篇八年级下册数学华东师范教案大全5篇纯粹数学可以是实际有用的,而应用数学也可以是优美高雅的。
整数的简单构成,若干世纪以来一直是使数学获得新生的源泉。
这里给大家分享一些关于八年级下册数学华东师范教案,供大家参考学习。
八年级下册数学华东师范教案(精选篇1)一、课堂引入1.什么叫做平行四边形?什么叫做矩形?2.矩形有哪些性质?3.矩形与平行四边形有什么共同之处?有什么不同之处?4.事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的方法可行?通过讨论得到矩形的判定方法.矩形判定方法1:对角钱相等的平行四边形是矩形.矩形判定方法2:有三个角是直角的四边形是矩形.(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.)二、例习题分析例1(补充)下列各句判定矩形的说法是否正确?为什么?(1)有一个角是直角的四边形是矩形;(×)(2)有四个角是直角的四边形是矩形;(√)(3)四个角都相等的四边形是矩形;(√)(4)对角线相等的四边形是矩形;(×)(5)对角线相等且互相垂直的四边形是矩形;(×)(6)对角线互相平分且相等的四边形是矩形;(√)(7)对角线相等,且有一个角是直角的四边形是矩形;(×)(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;(√)(9)两组对边分别平行,且对角线相等的四边形是矩形.(√)指出:(l)所给四边形添加的条件不满足三个的肯定不是矩形;(2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.例2(补充)已知ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4cm,求这个平行四边形的面积.分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积值.解:∵ 四边形ABCD是平行四边形,∴AO=A C,BO=BD.∵ AO=BO,∴ AC=BD.∴ ABCD是矩形(对角线相等的平行四边形是矩形).在Rt△ABC中,∵ AB=4cm,AC=2AO=8cm,∴BC=(cm).例3(补充)已知:如图(1),ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.分析:要证四边形EFGH是矩形,由于此题目可分解出基本图形,如图(2),因此,可选用“三个角是直角的四边形是矩形”来证明八年级下册数学华东师范教案(精选篇2)一、学生起点分析通过前一章《勾股定理》的学习,学生已经明白什么是勾股数,但也发现并不是所有的直角三角形的边长都是勾股数,甚至有些直角三角形的边长连有理数都不是,例如:①腰长为1的等腰直角三角形的底边长不是有理数,②两条直角边分别为1,2的直角三角形的斜边长不是有理数,这为引入“新数”奠定了必要性.二、教学任务分析《数不够用了》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节.本节内容安排了2个课时完成,第1课时让学生感受无理数的存在,初步建立无理数的印象,结合勾股定理知识,会根据要求画线段;第2课时借助计算器感受无理数是无限不循环小数,会判断一个数是无理数.本课是第1课时,学生将在具体的实例中,通过操作、估算、分析等活动,感受无理数的客观存在性和引入的必要性,并能判断一个数是不是有理数.本节课的教学目标是:①通过拼图活动,让学生感受客观世界中无理数的存在;②能判断三角形的某边长是否为无理数;③学生亲自动手做拼图活动,培养学生的动手能力和探索精神;④能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解;三、教学过程设计本节课设计了6个教学环节:第一环节:置疑;第二环节:课题引入;第三环节:获取新知;第四环节:应用与巩固;第五环节:课堂小结;第六环节:作业布置.第一环节:质疑内容:【想一想】⑴一个整数的平方一定是整数吗?⑵一个分数的平方一定是分数吗?目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理.效果:为后续环节的进行起了很好的铺垫的作用第二环节:课题引入内容:1.【算一算】已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长的平方,并提出问题:是整数(或分数)吗?2.【剪剪拼拼】把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”.效果:巧设问题背景,顺利引入本节课题.第三环节:获取新知内容:【议一议】→【释一释】→【忆一忆】→【找一找】【议一议】:已知,请问:① 可能是整数吗?② 可能是分数吗?【释一释】:释1.满足的为什么不是整数?释2.满足的为什么不是分数?【忆一忆】:让学生回顾“有理数”概念,既然不是整数也不是分数,那么一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段目的:创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣效果:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性.第四环节:应用与巩固内容:【画一画1】→【画一画2】→【仿一仿】→【赛一赛】【画一画1】:在右1的正方形网格中,画出两条线段:1.长度是有理数的线段2.长度不是有理数的线段【画一画2】:在右2的正方形网格中画出四个三角形(右1)2.三边长都是有理数2.只有两边长是有理数3.只有一边长是有理数4.三边长都不是有理数【仿一仿】:例:在数轴上表示满足的解:(右2)仿:在数轴上表示满足的【赛一赛】:右3是由五个单位正方形组成的纸片,请你把它剪成三块,然后拼成一个正方形,你会吗?试试看!(右3)目的:进一步感受“新数”的存在,而且能把“新数”表示在数轴上效果:加深了对“新知”的理解,巩固了本课所学知识.第五环节:课堂小结内容:1.通过本课学习,感受有理数又不够用了,请问你有什么收获与体会? 2.客观世界中,的确存在不是有理数的数,你能列举几个吗?3.除了本课所认识的非有理数的数以外,你还能找到吗?目的`:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.效果:学生总结、相互补充,学会进行概括总结.第六环节:布置作业习题2.1六、教学设计反思(一)生活是数学的源泉,兴趣是学习的动力大量事实都证明一点,与生活贴得越近的东西最容易引起学习者的浓厚兴趣,才能激发学习者的学习积极性,学习才可能是主动的.本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作.(二)化抽象为具体常言道:“数学是锻炼思维的体操”,数学教师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进行解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存在,让学生觉得新数并不抽象.(三)强化知识间联系,注意纠错既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不可以用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:“新数”不能表示成分数,为无理数的教学奠好基.八年级下册数学华东师范教案(精选篇3)平方差公式学习目标:1、能推导平方差公式,并会用几何图形解释公式;2、能用平方差公式进行熟练地计算;3、经历探索平方差公式的推导过程,发展符号感,体会特殊一般特殊的认识规律.学习重难点:重点:能用平方差公式进行熟练地计算;难点:探索平方差公式,并用几何图形解释公式.学习过程:一、自主探索1、计算:(1)(m+2) (m-2) (2)(1+3a) (1-3a)(3) (x+5y)(x-5y) (4)(y+3z) (y-3z)2、观察以上算式及其运算结果,你发现了什么规律再举两例验证你的发现.3、你能用自己的语言叙述你的发现吗4、平方差公式的特征:(1)、公式左边的两个因式都是二项式。
(完整word)华东师大版八年级下册数学教案全册,推荐文档
第16章 分式安岳县自治九年义务教育学校----王耀尚§16.1.1 分式的概念教学目标:1、知识与技能:经历实际问题的解决过程,从中认识分式,并能概括分式 的意义。
2、过程与方法:使学生能正确地判断一个代数式是否是分式,能通过回忆 分数的意义,类比地探索分式的意义。
3、情感态度与价值观:渗透数学中的类比,分类等数学思想。
教学重点:探索分式的意义及分式的值为某一特定情况的条件。
教学难点:能通过回忆分数的意义,探索分式的意义。
教学过程:一、做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为_____米; (2)面积为S 平方米的长方形一边长a 米,则它的另一边长为________米; (3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是___元; 二、概括:形如BA(A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母.整式和分式统称有理式, 即有理式 整式,分式.三、例题:例1 下列各有理式中,哪些是整式?哪些是分式?(1)x 1; (2)2x; (3)y x xy +2; (4)33y x -.解:属于整式的有:(2)、(4);属于分式的有:(1)、(3).注意:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.例如,在分式aS中,a ≠0;在分式n m -9中,m ≠n.例2 当x 取什么值时,下列分式有意义?(1)11-x ; (2)322+-x x .分析 要使分式有意义,必须且只须分母不等于零. 解 (1)分母1-x ≠0,即x ≠1.所以,当x ≠1时,分式11-x 有意义.(2)分母23+x ≠0,即x ≠-23.所以,当x ≠-23时,分式322+-x x 有意义. 四、练习:P5习题17.1第3题(1)(3)1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x2. 当x 取何值时,下列分式有意义? (1) (2) (3)3. 当x 为何值时,分式的值为0?(1) (2) (3) 五、小结:什么是分式?什么是有理式? 六、作业:P5习题17.1第1、2题,第3题(2)(4) 七、教学反思:通过分式概念的教学,让学生懂得了什么时分式,知道了分式与整式的区别,了解了分式成立的条件,在什么条件下分式值为零,为以后的学习打好了基础。
华师大版八年级数学下册教案
华师大版八年级数学下册教案第1章平行四边形第1节平行四边形的性质一、教学目标1.理解平行四边形的定义,掌握平行四边形的基本性质。
2.能够运用平行四边形的性质解决实际问题。
二、教学重难点重点:平行四边形的性质。
难点:运用平行四边形的性质解决问题。
三、教学过程1.导入新课通过复习四边形的基本概念,引导学生思考平行四边形的特点。
2.探索平行四边形的性质引导学生通过观察、操作、推理等方式,发现平行四边形的性质。
性质1:对边平行。
性质2:对角相等。
性质3:邻角互补。
性质4:对角线互相平分。
4.应用平行四边形的性质举例说明如何运用平行四边形的性质解决实际问题。
学生练习,巩固所学知识。
5.课堂小结强调平行四边形的性质在实际问题中的应用。
四、课后作业1.请同学们结合教材,熟记平行四边形的性质。
2.完成课后练习题,巩固所学知识。
第2节平行四边形的判定一、教学目标1.掌握平行四边形的判定方法。
2.能够运用平行四边形的判定方法判断四边形是否为平行四边形。
二、教学重难点重点:平行四边形的判定方法。
难点:运用平行四边形的判定方法判断四边形。
三、教学过程1.导入新课复习平行四边形的性质,引导学生思考如何判断一个四边形是否为平行四边形。
2.探索平行四边形的判定方法引导学生通过观察、操作、推理等方式,发现平行四边形的判定方法。
判定1:两组对边分别平行。
判定2:两组对边分别相等。
判定3:两组对角分别相等。
判定4:一组对边平行且相等。
4.应用平行四边形的判定方法举例说明如何运用平行四边形的判定方法判断四边形。
学生练习,巩固所学知识。
5.课堂小结强调平行四边形的判定方法在实际问题中的应用。
四、课后作业1.请同学们结合教材,熟记平行四边形的判定方法。
2.完成课后练习题,巩固所学知识。
第3节平行四边形的证明一、教学目标1.掌握平行四边形的证明方法。
2.能够运用平行四边形的证明方法解决实际问题。
二、教学重难点重点:平行四边形的证明方法。
难点:运用平行四边形的证明方法解决问题。
华师大版初中八年级数学下册全套教案
分式【教学目标】1.经历实际问题的解决过程,从中认识分式,并能概括分式。
2.使学生能正确地判断一个代数式是否是分式。
3.能通过回忆分数的意义,类比地探索分式的意义及分式的值如某一特定情况的条件,渗透数学中的类比,分类等数学思想。
【教学重难点】1.探索分式的意义及分式的值为某一特定情况的条件;2.能通过回忆分数的意义,探索分式的意义及分式的值为某一特定情况的条件。
【教学过程】一、复习与情境导入1.填空(1)面积为2平方米的长方形一边长为3米,则它的另一边长为 米。
(2)面积为S 平方米的长方形一边长为a 米,则它的另一边长为 米。
(3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的住售价是 元。
(4)根据一组数据的规律填空:1,161,91,41……(用n 表示) 观察你列出的式子,与以前学过的有什么不同?像这样的式子叫分式。
先根据题意列代数式,并观察出它们的共性:分母中含字母的式子。
2.概括:形如BA (A 、B 是整式,且B 中含有字母,B≠0)的式子,叫做分式。
其中 A 叫做分式的分子,B 叫做分式的分母。
整式和分式统称有理式。
二、实践与探索例1 下列各式中,哪些是整式?哪些是分式?(1)x 1 (2)2x (3)y x xy +2 (4)33y x -例2 探究1.当x 取什么值时,下列分式有意义?(1)1x x -; (2)223x x -+。
2.当x 是什么数时,分式522-+x x 的值是零? 3.x 取何值时,分式11-+x x 的值为正?可能为负吗? 4.x 取何整数值时,16-x 的值为整数? 三、练习当x 取什么数时,分式2||24x x -- (1)有意义?(2)值为零? 例3 已知分式bax a x +-2,当x=3时,分式值为0,当x=-3时,分式无意义,求a ,b 的值。
【作业布置】1.下列各式分别回答哪些是整式?哪些是分式?52+x , m n , 2a-3b , 32-y y , )2)(1(92---x x x ,53- 2.分式 23y y +-,当y 时,分式有意义;当y 时,分式没有意义;当y 时,分式的值为0?3.讨论探索:当x 取什么数时,分式2||24x x -- (1)有意义?(2)值为零? 各抒己见,看谁说得最全。
华东师大版八年级下册数学教案全册
第16章 分式§ 分式的概念教学目标:1、知识与技能:经历实际问题的解决过程,从中认识分式,并能概括分式 的意义。
2、过程与方法:使学生能正确地判断一个代数式是否是分式,能通过回忆 分数的意义,类比地探索分式的意义。
3、情感态度与价值观:渗透数学中的类比,分类等数学思想。
教学重点:探索分式的意义及分式的值为某一特定情况的条件。
教学难点:能通过回忆分数的意义,探索分式的意义。
教学过程:一、做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为_____米;(2)面积为S 平方米的长方形一边长a 米,则它的另一边长为________米;(3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是___元;二、概括: 形如BA (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中?A 叫做分式的分子,B 叫做分式的分母.整式和分式统称有理式, 即有理式 整式,分式.三、例题:例1 下列各有理式中,哪些是整式?哪些是分式? (1)x 1; (2)2x ; (3)y x xy +2; (4)33y x -. 解:属于整式的有:(2)、(4);属于分式的有:(1)、(3).注意:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.例如,在分式aS 中,a ≠0;在分式n m -9中,m ≠n. 例2 当x 取什么值时,下列分式有意义?(1)11-x ; (2)322+-x x . 分析 要使分式有意义,必须且只须分母不等于零.解 (1)分母1-x ≠0,即x ≠1.所以,当x ≠1时,分式11-x 有意义. (2)分母23+x ≠0,即x ≠-23. 所以,当x ≠-23时,分式322+-x x 有意义.四、练习:P5习题第3题(1)(3)1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义?(1) (2) (3) 3. 当x 为何值时,分式的值为0? (1) (2) (3) 五、小结:什么是分式?什么是有理式?六、作业:P5习题第1、2题,第3题(2)(4)七、教学反思:通过分式概念的教学,让学生懂得了什么时分式,知道了分式与整式的区别,了解了分式成立的条件,为以后的学习打好了基础。
新版华师大版八年级下数学教案设计全册
第十六章 分式16.1分式16.1.1从分数到分式一、 教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件. 2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 三、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,as ,33200,sv .2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程. 设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为v+20100小时,逆流航行60千米所用时间v-2060小时,所以v+20100=v-2060.3. 以上的式子v+20100,v-2060,as ,sv ,有什么共同点?它们与分数有什么相同点和不同点? 五、例题讲解P5例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解 出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0? (1) (2) (3) [分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解. [答案] (1)m=0 (2)m=2 (3)m=1 六、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x2. 当x 取何值时,下列分式有意义?1-m m32+-m m 112+-m m 4522--x x xx 235-+23+x(1) (2) (3)3. 当x 为何值时,分式的值为0? (1) (2) (3)七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时. (3)x 与y 的差于4的商是 .2.当x 取何值时,分式 无意义?3. 当x 为何值时,分式的值为0? 八、答案:六、1.整式:9x+4, 209y +, 54-m 分式: x 7 , 238y y -,91-x2.(1)x ≠-2 (2)x ≠ (3)x ≠±2 3.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, b a s +,4y x -; 整式:8x, a+b, 4y x -;分式:x80, b a s + 2. X = 3. x=-1课后反思:x x 57+xx 3217-x x x --221x 802332xx x --212312-+x x16.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形. 二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形. 三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5. 四、课堂引入1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质. 五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.4320152498343201524983ab 56--, yx 3-, nm --2, nm 67--, yx 43---。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学下册教案第16章 分式16.1.1 分式的概念教学目标:1、经历实际问题的解决过程,从中认识分式,并能概括分式2、使学生能正确地判断一个代数式是否是分式3、能通过回忆分数的意义,类比地探索分式的意义及分式的值如某一特定情况的条件,渗透数学中的类比,分类等数学思想。
教学重点:探索分式的意义及分式的值为某一特定情况的条件。
教学难点:能通过回忆分数的意义,探索分式的意义。
教学过程:一、做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为_____米;(2)面积为S 平方米的长方形一边长a 米,则它的另一边长为________米;(3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是___元;二、概括: 形如B A(A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母.整式和分式统称有理式, 即有理式 整式,分式.三、例题:下列各有理式中,哪些是整式?哪些是分式?(1)x 1; (2)2x ; (3)y x xy +2; (4)33yx -.解:属于整式的有:(2)、(4);属于分式的有:(1)、(3). 注意:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.例如,在分式a S 中,a ≠0;在分式n m -9中,m ≠n.当x 取什么值时,下列分式有意义?(1)11-x ; (2)322+-x x .分析 要使分式有意义,必须且只须分母不等于零.解 (1)分母1-x ≠0,即x ≠1. 所以,当x ≠1时,分式11-x 有意义. (2)分母23+x ≠0,即x ≠-23. 所以,当x ≠-23时,分式322+-x x 有意义.四、练习:P5习题16.1第3题(1)(3)1.判断下列各式哪些是整式,哪些是分式?9x+4, x 7, 209y+, 54-m , 238y y -,91-x2. 当x 取何值时,下列分式有意义?(1) (2) (3)3. 当x 为何值时,分式的值为0?(1) (2) (3) 五、小结:什么是分式?什么是有理式?4522--x x x x 235-+23+x x x 57+x x 3217-x x x --22116.1.2 分式的基本性质教学目标:1、掌握分式的基本性质,掌握分式约分方法,熟练进行约分,并了解最简分式的意义。
2、使学生理解分式通分的意义,掌握分式通分的方法及步骤。
教学重点:让学生知道约分、通分的依据和作用,学会分式约分与通分的方法。
教学难点:1、分子、分母是多项式的分式约分;2、几个分式最简公分母的确定。
教学过程:1、分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示是:M B M A B A M B M A B A ÷÷=⨯⨯=, ( 其中M 是不等于零的整式)。
与分数类似,根据分式的基本性质,可以对分式进行约分和通分.2、例3 约分(1)4322016xy y x -; (2)44422+--x x x分析 分式的约分,即要求把分子与分母的公因式约去.为此,首先要找出分子与分母的公因式.解(1)4322016xy y x -=-y xy x xy 544433⋅⋅=-y x 54. (2)44422+--x x x =2)2()2)(2(--+x x x=22-+x x .练习P5 练习 第4题:约分约分后,分子与分母不再有公因式. 分子与分母没有公因式称为最简分式.4、例4 通分(1)b a 21,21ab ; (2)y x -1,y x +1; (3)221y x -,xy x +21解 (1)b a 21与21ab 的最简公分母为a2b2,所以b a 21=b b a b ⋅⋅21=22b a b , 21ab =a ab a ⋅⋅21=22b a a. (2)y x -1与y x +1的最简公分母为(x-y )(x+y),即x2-y2,所以y x -1=))((1y x y x y x +-+⋅)(=22y x y x -+, y x +1=))(()(1y x y x y x -+-⋅=22y x yx --. 请同学们根据这两小题的解法,完成第(3)小题。
5、练习P5 练习 第5题:通分6、小结:(1)请你分别用数学语言和文字表述分式的基本性质;(2)分式的约分运算,用到了哪些知识?让学生发表,互相补充,归结为:①因式分解;②分式基本性质;③分式中符号变换规律;约分的结果是,一般要求分、分母不含“-”。
(3)把几个异分母的分式,分别化成与原来分式相等的同分母的分式,叫做分式的通分。
分式通分,是让原来分式的分子、分母同乘以一个适当的整式,根据分式基本性质,通分前后分式的值没有改变。
通分的关键是确定几个分式的公分母,从而确定各分式的分子、分母要乘以什么样的“适当整式”,才能化成同一分母。
确定公分母的方法,通常是取各分母所有因式的最高次幂的积做公分母,这样的公分母叫做最简公分母。
16.2 分式的运算16.2.1 分式的乘除法教学目标:1、让学生通过实践总结分式的乘除法,并能较熟练地进行式的乘除法运算。
2、使学生理解分式乘方的原理,掌握乘方的规律,并能运用乘方规律进行分式的乘方运算3、引导学生通过分析、归纳,培养学生用类比的方法探索新知识的能力教学重点:分式的乘除法、乘方运算教学难点:分式的乘除法、混合运算,以及分式乘法,除法、乘方运算中符号的确定。
教学过程:一、复习与情境导入1、(1) :什么叫做分式的约分?约分的根据是什么?(2):下列各式是否正确?为什么?2、尝试探究:计算: (1)a b b a 32232⋅; (2)b a b a 232÷. 概括:分式乘分式,用分子的积作为积回忆:如何计算10965⨯、4365÷?从中可以得到什么启示。
的分子,分母的积作为积的分母.如果得到的不是最简分式,应该通过约分进行化简.分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.(用式子表示如右图所示)二、例题:例1计算:(1)x b ay by x a 2222⋅; (2)222222x b yz a z b xy a ÷. 解 (1)x b ay by x a 2222⋅=x b by ay x a 2222⋅⋅=33b a . (2)222222x b yz a z b xy a ÷=yz a x b z b xy a 222222⋅=33z x .例2计算:493222--⋅+-x x x x .解 原式=)2)(2()3)(3(32-+-+⋅+-x x x x x x =23+-x x .三、练习:P10 第1题四、思考怎样进行分式的乘方呢?试计算:(1)(m n )3 (2)(m n)k (k 是正整数)(1)(m n )3 =m n m n m n ⋅⋅=)()(m m m n n n ••••=________;(2)(m n )k = 个k m n m n m n ⋅⋅⋅=)()(m m m n n n •••••• =___________.仔细观察所得的结果,试总结出分式乘方的法则.五、小结:1、怎样进行分式的乘除法?2、怎样进行分式的乘方?回忆:如何计算5251+、6141+, 从中可以得到什么启示?16.2.2 分式的加减法教学目标:1、使学生掌握同分母、异分母分式的加减,能熟练地进行同分母,异分母分式的加减运算。
2、通过同分母、异分母分式的加减运算,复习整式的加减运算、多项式去括号法则以及分式通分,培养学生分式运算的能力。
3、渗透类比、化归数学思想方法,培养学生的能力。
教学重点:让学生熟练地掌握同分母、异分母分式的加减法。
教学难点:分式的分子是多项式的分式减法的符号法则,去括号法则应用。
教学过程:一、实践与探索1、回忆:同分母的分数的加减法法则: 同分母的分数相加减,分母不变,把分子相加减。
2、试一试: 计算:(1)a a b 2+;(2)ab a 322- 3概括同分母的分式相加减,分母不变,把分子相加减;异分母的分式相加减,先通分,变为同分母的分式,然后再加减.二、例题1、例3计算:xy y x xy y x 22)()(--+ 2、例4 计算:1624432---x x .分析 这里两个加项的分母不同,要先通分.为此,先找出它们的最简公分母.注意到162-x =)4)(4(-+x x ,所以最简公分母是)4)(4(-+x x解 1624432---x x =)4)(4(2443-+--x x x =)4)(4(24)4)(4()4(3-+--++x x x x x =)4)(4(24)4(3-+-+x x x =)4)(4(123-+-x x x =)4)(4()4(3-+-x x x =43+x三、练习:P9第1题(1)(3)、第2题(1)(3)四、小结:1、同分母分式的加减法:类似于同分母的分数的加减法;2、异分母分式的加减法步骤:①. 正确地找出各分式的最简公分母。
求最简公分母概括为:(1)取各分母系数的最小公倍数;(2)凡出现的字母为底的幂的因式都要取;(3)相同字母的幂的因式取指数最大的。
取这些因式的积就是最简公分母。
②. 准确地得出各分式的分子、分母应乘的因式。
③. 用公分母通分后,进行同分母分式的加减运算。
④. 公分母保持积的形式,将各分子展开。
16.3 可化为一元一次方程的分式方程(1)教学目标:1、使学生理解分式方程的意义,会按一般步骤解可化为一元一次方程的分式方程.2、使学生理解增根的概念,了解增根产生的原因,知道解分式方程须验根并掌握验根的方法.3、使学生领会“ 转化”的思想方法,认识到解分式方程的关键在于将它转化为整式方程来解.4、培养学生自主探究的意识,提高学生观察能力和分析能力。
教学重点:使学生理解分式方程的意义,会按一般步骤解可化为一元一次方程的分式方程.教学难点:使学生理解增根的概念,了解增根产生的原因,知道解分式方程须验根并掌握验根的方法.教学过程:一、问题情境导入轮船在顺水中航行80千米所需的时间和逆水航行60千米所需的时间相同.已知水流的速度是3千米/时,求轮船在静水中的速度.分 析设轮船在静水中的速度为x 千米/时,根据题意,得360380-=+x x .概 括方程(1)中含有分式,并且分母中含有未知数,像这样的方程叫做分式方程.思 考怎样解分式方程呢?有没有办法可以去掉分式方程中的分母把它转化为整式方程呢?试动手解一解方程(1).方程(1)可以解答如下:方程两边同乘以(x+3)(x-3),约去分母,得80(x-3)=60(x+3).解这个整式方程,得x=21.所以轮船在静水中的速度为21千米/时.概 括上述解分式方程的过程,实质上是将方程的两边乘以同一个整式,约去分母,把分式方程转化为整式方程来解.所乘的整式通常取方程中出现的各分式的最简公分母.二、例题:1、例1 解方程:12112-=-x x .解 方程两边同乘以(x2-1),约去分母,得x+1=2.解这个整式方程,得x=1.解到这儿,我们能不能说x=1就是原分式方程的解(或根)呢?细心的同学可能会发现,当x=1时,原分式方程左边和右边的分母(x -1)与(x2-1)都是0,方程中出现的两个分式都没有意义,因此,x=1不是原分式方程的解,应当舍去.所以原分式方程无解.我们看到,在将分式方程变形为整式方程时,方程两边同乘以一个含未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根),这种根通常称为增根.因此,在解分式方程时必须进行检验.2、例2 解方程:730100-=x x .解 方程两边同乘以x(x-7),约去分母,得100(x-7)=30x.解这个整式方程,得x=10.检验:把x=10代入x(x-7),得10×(10-7)≠0所以,x=10是原方程的解.三、练习:P16第1题四、小结:⑴、什么是分式方程?举例说明;⑵、解分式方程的一般步骤:在方程的两边都乘以最简公分母,约去分母,化为整式方程.解这个整式方程..验根,即把整式方程的根代入最简公分母,看结果是不是零,若结果不是0,说明此根是原方程的根;若结果是0,说明此根是原方程的增根,必须舍去.⑶、解分式方程为什么要进行验根?怎样进行验根?16.3 可化为一元一次方程的分式方程(2)教学目标:1、进一步熟练地解可化为一元一次方程的分式方程。