华师大版八年级下册数学知识点复习总结
华师大版八年级数学下函数及其图像知识点归纳

华师大版八年级数学下《函数及其图像》知识点归纳一.变量与函数1 .函数的定义:一般的,在某个变化过程中有两个变量x和y,对于x的每一个数值y都有唯一的值与之对应,我们说x叫做自变量,y叫做因变量,y叫做x的函数。
2.自变量的取值范围:(1)能够使函数有意义的自变量的取值全体。
(2)确定函数自变量的取值范围要注意以下两点:一是使自变量所在的代数式有意义;二是使函数在实际问题中有实际意义。
(3)不同函数关系式自变量取值范围的确定:①函数关系式为整式时自变量的取值范围是全体实数。
②函数关系式为分式时自变量的取值范围是使分母不为零的全体实数。
③函数关系式为二次根式时自变量的取值范围是使被开方数大于或等于零的全体实数。
3 .函数值:当自变量取某一数值时对应的函数值。
这里有三种类型的问题:(1)当已知自变量的值求函数值就是求代数式的值。
(2)当已知函数值求自变量的值就是解方程。
(3)当给定函数值的一个取值范围,欲求自变量的取值范围时实质上就是解不等式或不等式组。
二.平面直角坐标系:1.各象限内点的坐标的特征:(1)点p(x,y)在第一象限→x>0,y>0.(2)点p(x,y)在第二象限→x<0,y>0.(3)点p(x,y)在第三象限→x<0,y<0(4)点p(x,y)在第四象限→x>0,y<0.2 .坐标轴上的点的坐标的特征:(1)点p(x,y)在x轴上→x为任意实数,y=0(2)点p(x,y)在y轴上→x=0,y为任意实数3 .关于x轴,y轴,原点对称的点的坐标的特征:(1)点p(x,y)关于x轴对称的点的坐标为(x,-y).(2)点p(x,y)关于y轴对称的点的坐标为(-x,y).(3)点p(x,y)关于原点对称的点的坐标为(-x,-y)4 .两条坐标轴夹角平分在线的点的坐标的特征:(1)点p(x,y)在第一、三象限夹角平分在线→x=y.(2)点p(x,y)在第二,四象限夹角平分在线→x+y=05.与坐标轴平行的直线上的点的坐标的特征:(1)位于平行于x轴的直线上的所有点的纵坐标相同。
华东师大版八年数学下知识点归纳

一、数与式1.整数的运算:加法、减法、乘法、除法,能够熟练运用各种整数运算的性质。
2.整数的科学计数法和运算:掌握科学计数法的表示方法,并能进行加、减、乘、除运算。
3.分数的加减乘除:熟练掌握分数的加减乘除法运算,注意化简分数和找到最简分数。
4.百分数的应用:能够将百分数转化为小数和分数,灵活运用百分比解决实际问题。
5.带分数的加减乘除:理解带分数的含义,掌握带分数的加减乘除法运算。
二、函数1.函数的概念:理解函数的定义,能够给出函数的自变量、因变量和函数表达式。
2.函数间的关系:掌握函数之间关系的性质,如一次函数、二次函数、反比例函数等。
3.函数的解析式:能够根据已知函数的性质写出其解析式,如直线的解析式、抛物线的解析式等。
4.函数的图象和性质:能够根据函数的解析式绘制出函数的图象,理解函数图象的特点和性质。
三、图形的研究1.平面图形的展开和计算:熟练计算平面图形的周长和面积,理解面积和周长的概念。
2.直角三角形的研究:熟练使用勾股定理解决实际问题,理解正弦、余弦和正切的概念。
3.平行四边形和梯形的研究:能够计算平行四边形和梯形的周长和面积,理解这些图形的性质。
4.圆的性质和计算:理解圆的直径、半径、圆周和圆心角的概念,能够计算圆的周长和面积。
四、常用图形和统计1.线段和角的相交关系:理解直线和线段的相交性质,掌握平行线和垂直线的性质。
2.平面镜像和旋转:理解平面镜像和旋转的概念,能够根据图形的变换关系进行计算和推理。
3.统计调查和数据处理:能够进行统计调查和数据分析,掌握平均数、中位数和众数的计算方法。
五、概率1.随机事件的概率计算:理解事件的概率和样本空间的概念,能够计算事件的概率。
2.多个随机事件的概率:掌握与事件相应的几种概率的计算方法,如和事件、积事件等。
以上是华东师大版八年级数学下册的主要知识点归纳,包括数与式、函数、图形的研究、常用图形和统计、概率等内容。
希望对你的学习有所帮助。
华师大版八年级数学知识点归纳

华师大版八年级数学知识点归纳天才就是勤奋曾经有人这样说过。
假如这话不完全正确,那至少在很大程度上是正确的。
学习,就算是天才,也是需要不断练习与记忆的。
下面是我给大家整理的一些〔〔八年级〕数学〕的学问点,希望对大家有所关怀。
八年级数学学问点〔总结〕函数及其相关概念1、变量与常量在某一转变过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一转变过程中有两个变量x与y,假如对于x的每一个值,y 都有确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法用图像表示函数关系的〔方法〕叫做图像法。
4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:依据自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
初二下册数学学问点总结【解一元一次方程】1.等式与等量:用=号连接而成的式子叫等式.留意:等量就能代入!2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;留意:方程的解就能代入!5.移项:转变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).8.一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0).9.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合1/ 3并同类项……系数化为1……(检验方程的解).10.列一元一次方程解应用题:(1)读题分析法:…………多用于和,差,倍,分问题仔细读题,找出表示相等关系的关键字,例如:大,小,多,少,是,共,合,为,完成,增加,削减,配套-----,利用这些关键字列出文字等式,并且据题意设出未知数,最终利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:…………多用于行程问题利用图形分析数学问题是数形结合思想在数学中的表达,仔细读题,根据题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最终利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。
(完整版)华东师大版八年数学下知识点归纳

华师大版八年级数学下册各章知识汇总精编第16章分式1、形如AB(A、B都是整式,且B中含有字母,B≠0)的式子叫做分式。
整式和分式统称有理式。
2、分母≠0时,分式有意义。
分母=0时,分式无意义。
3、分式的值为0,要同时满足两个条件:分子=0,而分母≠0。
4、分式基本性质:分式的分子、分母都乘以或除以同一个不为0的整式,分式的值不变。
5、分式、分子、分母的符号,任意改变其中两个的符号,分式的值不变。
6、分式四则运算1)分式加减的关键是通分,把异分母的分式,转化为同分母分式,再运算.2)分式乘除时先把分子分母都因式分解,然后再约去相同的因式。
3)分式的混合运算,注意运算顺序及符号的变化,4)分式运算的最后结果应化为最简分式或整式.7、分式方程1)分式化简与解分式方程不能混淆.分式化简是恒等变形,不能随意去分母.2)解分式方程的步骤:第一、化分式方程为整式方程;第二,解这个整式方程;第三,验根,通过检验去掉增根。
3)解有关应用题的步骤和列整式方程解应用题的步骤是一样的:设、列、解、验、答。
第17章函数及图象1、规定了原点、正方向和单位长度的直线叫数轴。
数轴上的点与实数一一对应。
数轴上的点A、B的坐标为x1、x2, 则AB=。
2、具有公共原点且互相垂直的两条数轴就构成平面直角坐标系。
坐标平面内的点与有序实数对一一对应。
3、坐标轴上的点不属于任何象限。
x轴上的点纵坐标y=0;y轴上的点横坐标x=0。
第一象限内的点x>0,y>0;第二象限内的点x<0,y>0;第三象限内的点x<0,y<0;第四象限内的点x>0,y<0;由此可知,x轴上方的点,纵坐标y>0;x轴下方的点,纵坐标y<0;y轴左边的点,横坐标x<0;y轴右边的点,横坐标x>0.4、关于某坐标轴对称的点,这个轴的坐标不变,另一个轴的坐标互为相反数。
关于原点对称的点,纵、横坐标都互为相反数。
关于第一、三象限角平分线对称的点,横纵坐标交换位置;关于第二、四象限角平分线上对称的点,不但横纵坐标交换位置,而且还要变成相反数。
华师大版八年级下册数学初中数学知识点总结

知识点1:一元二次方程的基本概念1.一元二次方程3x 2+5x-2=0的常数项是-2.2.一元二次方程3x 2+4x-2=0的一次项系数为4,常数项是-2. 3.一元二次方程3x 2-5x-7=0的二次项系数为3,常数项是-7. 4.把方程3x(x-1)-2=-4x 化为一般式为3x 2-x-2=0.知识点2:直角坐标系与点的位置1.直角坐标系中,点A (3,0)在y 轴上。
2.直角坐标系中,x 轴上的任意点的横坐标为0. 3.直角坐标系中,点A (1,1)在第一象限. 4.直角坐标系中,点A (-2,3)在第四象限. 5.直角坐标系中,点A (-2,1)在第二象限.知识点3:已知自变量的值求函数值1.当x=2时,函数y=32-x 的值为1. 2.当x=3时,函数y=21-x 的值为1.3.当x=-1时,函数y=321-x 的值为1.知识点4:基本函数的概念及性质1.函数y=-8x 是一次函数. 2.函数y=4x+1是正比例函数. 3.函数x y 21-=是反比例函数. 4.抛物线y=-3(x-2)2-5的开口向下. 5.抛物线y=4(x-3)2-10的对称轴是x=3. 6.抛物线2)1(212+-=x y 的顶点坐标是(1,2).7.反比例函数xy 2=的图象在第一、三象限. 知识点5:数据的平均数中位数与众数1.数据13,10,12,8,7的平均数是10. 2.数据3,4,2,4,4的众数是4.3.数据1,2,3,4,5的中位数是3.知识点6:特殊三角函数值1.cos30°=23. 2.sin 260°+ cos 260°= 1. 3.2sin30°+ tan45°= 2. 4.tan45°= 1.5.cos60°+ sin30°= 1.知识点7:圆的基本性质1.半圆或直径所对的圆周角是直角. 2.任意一个三角形一定有一个外接圆.3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆. 4.在同圆或等圆中,相等的圆心角所对的弧相等. 5.同弧所对的圆周角等于圆心角的一半. 6.同圆或等圆的半径相等. 7.过三个点一定可以作一个圆. 8.长度相等的两条弧是等弧.9.在同圆或等圆中,相等的圆心角所对的弧相等. 10.经过圆心平分弦的直径垂直于弦。
+第20+章数据的整理与初步处理基础复习++2023—2024学年华东师大版数学八年级下册+

第20 章数据的整理与初步处理基础复习知识点 1 平均数1. 为了增强学生对新型冠状病毒的认识与防控能力,某学校组织了“抗击疫情,我们在行动”学生手抄报比赛活动.其中八年级五个班收集的作品数量(单位:幅)分别为:42,48,45,46,49,则这组数据的平均数是 ( )A.44B.45C.46D.472. 某快递公司快递员张山某周每日投放快递物品件数为:有4天是30件,有2天是35件,有1天是41件,这周张山日平均投递物品件数为 ( )A.35.3件B.35件C.33件D.30件3. 八年级某班五个合作学习小组的人数如下:5,7,6,x,7.已知这组数据的平均数是6,则x的值为 ( )A.7B.6C.5D.44. 一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三方面为选手打分,并分别按5:3:2的比例计入总评成绩,小明的三项成绩(单位:分)分别是90、95、90,他的总评成绩是 ( )A.91分B.91.5分C.92分D.92.5分5.如果公司分别赋予面试和笔试7和3的权.根据甲、乙两人的平均成绩,公司将录取 .7. 某班有50名学生,平均身高为166 cm,其中20名女生的平均身高为160 cm,则30名男生的平均身高为cm.8. 某公司招聘职员两名,对甲、乙、丙、丁四名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%(1)这四名候选人面试成绩的平均数为 .(2)现得知候选人丙的综合成绩为87.6分,则表中x的值等于 .(3)求其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名人选.知识点 2数据的集中趋势1. 一般地,将一组数据按由小到大的顺序排列(即使有相等的数据也要全部参加排列),处于正中间位置的一个数据(或中间位置两个数据的平均数)叫做这组数据的中位数.2. 一组数据中出现次数最多的数据称为这组数据的众数,一组数据可以有不止一个众数,也可以没有众数.3. 平均数、中位数和众数的选用:平均数能充分利用各数据的信息,但易受极端值的影响;当一组数据中的个别数据波动较大时,一般用中位数来描述这组数据的集中趋势,但中位数不能充分地利用各数据的信息;当一组数据中某些数据多次重复出现时,众数往往更能反映问题,但当各数据重复出现的次数大致相同时,它往往没有什么特别意义.9. 在一次女子跳水比赛中,八名运动员的年龄(单位:岁)分别为:12,13,13,14,15,13,13,15.这组数据的众数是( )A.12B.13C.14D.1510. 新冠肺炎疫情爆发以来,山西共派出13 批医疗队支援湖北,共计1516人,白衣逆行,千里驰援.如表是山西11A.33人B.86人C.91人D.98人11. 若一组数据:2,2,x,5,7,7的众数为7,则x为 ( )A.2B.5C.6D.712. 通过测试从9位书法兴趣小组的同学中,择优挑选5位去参加中学生书法表演,若每位同学的测试成绩各不相同.则被选中同学的成绩肯定不少于这9位同学测试成绩统计量中的 ( )A.平均数B.众数C.中位数D.加权平均数13.该班此次英语听力口语考试成绩众数比中位数多分.14. 在一次数学答题比赛中,六位同学答对题目的个数分别为:7,5,3,7,5,10,则这组数据的众数是 .15. 为了保障人民群众的身体健康,在预防新型冠状病毒期间,进入超市购物人员都需要测量体温,某8位顾客已知这8位顾客的平均体温为37C.求:(1)表中a的值.(2)这组数据的中位数和众数.16. 某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数.(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标? 请说明理由.温馨提示:确定一个适当的月销售目标是一个关键问题,如果目标定得太高,多数营业员完不成任务,会使营业员完不成任务,进而失去信心;如果目标定得太低,不能发挥营业员的潜力。
初二下册数学第21章知识点大全(华师大版)

初二下册数学第21章知识点大全(华师大版)
初二下册数学第21章知识点大全(华师大版)多阅读和积累,可以使学生增长知识,使学生在学习中做到举一反三。
在此查字典数学网为您提供初二下册数学第21章知识点,希望给您学习带来帮助,使您学习更上一层楼!
21.1算术平均数与加权平均数
加权算术平均数公式
加权算术平均数主要用于处理经分组整理的数据。
设原始数据为被分成K组,各组的组中的值为X1,X2,...,Xk,各组的频数分别为f1,f2,...,fk,加权算术平均数的计算公式为:M=(X1f1+X2f2+...+Xkfk)/(f1+f2+...+fk) >>>>初二数学知识点:算术平均数与加权平均数知识点
21.2平均数、中位数和众数的选用
1.平均数
平均数是指在一组数据中所有数据之和再除以数据的个数。
2.中位数
中位数是指将统计总体当中的各个变量值按大小顺序排列
起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数。
>>>>初二上册数学知识点归纳:平均数、中位数、众数
21.3极差、方差与标准差
本节以自主探索为主,并初步体验:对图的观察和分析是科学研究的重要方法。
通过例题发现极差(最大值-最小值)的。
华师大版八年级下册数学知识点总结知识讲解

华师大版八年级下册数学知识点总结八年级华师大版数学(下)第16章分式§ 16.1分式及基本性质一、分式的概念1、分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子A叫做分式。
B2、对于分式概念的理解,应把握以下几点:(1)分式是两个整式相除的商。
其中分子是被除式,分母是除式,分数线起除号和括号的作用;(2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;(3)分母不能为零。
3、分式有意义、无意义的条件(1)分式有意义的条件:分式的分母不等于0;(2)分式无意义的条件:分式的分母等于0。
4、分式的值为0的条件:当分式的分子等于0,而分母不等于0时,分式的值为0。
即,使-=0的条B件是:A=0, B M 0。
5、有理式整式和分式统称为有理式。
整式分为单项式和多项式。
单项式整式单项式分类:有理式多项项分式 -单项式:由数与字母的乘积组成的代数式;多项式:由几个单项式的和组成的代数式。
二、分式的基本性质1、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
一 A AM A宁M用式子表示为:B =丽二,其中M (M工0)为整式。
2、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。
通分的关键是:确定几个分式的最简公分母。
确定最简公分母的一般方法是:(1)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同字母的最高次幕、所有不同字母及指数的积。
(2)如果各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去确定。
3、约分:根据分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。
在约分时要注意:(1)如果分子、分母都是单项式,那么可直接约去分子、分母的公因式,即约去分子、分母系数的最大公约数,相同字母的最低次幕;(2)如果分子、分母中至少有一个多项式就应先分解因式,然后找出它们的公因式再约分;(3)约分一定要把公因式约完。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华师大版数学八年级(下)第16章分式§16.1分式及基本性质一、分式的概念A叫做1.分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子B分式。
整式和分式统称有理式。
对于分式的概念的理解重点把握三点:A中的A、B是整式;(1)分式B(2)分母B中必须含有字母,这是区分整式与分式的主要依据;(3)整式B≠0。
2.分式有意义、无意义的条件(1)分式有意义的条件:分式的分母不等于0;(2)分式无意义的条件:分式的分母等于0。
3.分式的值为0的条件:A=0的条件是:当分式的分子等于0,而分母不等于0时,分式的值为0。
即,使BA=0,B≠0。
4.分式的值为正或负的条件:值为正:分子和分母同为正或同为负。
值为负:分子和分母异号。
二、分式的基本性质1.分式的基本性质:分式的分子与分母都乘以(或都除以)同一个不等于零的整式,分式的值不变。
2.约分:根据分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。
确定公因式的方法:(1)如果分子、分母都是单项式:先找分子、分母系数的最大公约数,再找相同字母的最低次幂;(2)如果分子、分母中至少有一个多项式就应先分解因式,然后找出它们的公因式再约分;注意:约分一定要把公因式约完,化为最简分式。
3.最简分式:约分后,分子与分母不再有公因式,分子与分母没有公因式的分式称为最简分式。
通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。
通分的关键是:确定几个分式的最简公分母。
确定最简公分母的一般方法是:(1)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同字母的最高次幂、所有不同字母及指数的积。
(2)如果各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去确定。
三、分式的符号法则:B A B A B A B A --=--=--=)(1;BA B A B A B A ---=-=-=-)(2§16.2分式的运算一、分式的乘除法1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母,如果得到的不是最简分式,应该通过约分进行化简。
即:).0,0(≠≠=⋅d b bdac d cb a 2.分式的除法法则分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
即:).0,0,0(≠≠≠=⋅=÷d c b bcad c d b a d c b a应用法则时要注意:(1)分式中的符号法则与有理数乘除法中的符号法则相同,即“同号得正,异号得负,多个负号出现看个数,奇负偶正”;(2)当分子分母是多项式时,应先进行因式分解,以便约分;(3)分式乘除法的结果要化简到最简的形式。
3.分式的乘方分式的乘方等于把分子和分母分别乘方,用式子表示为:).,0(为正整数n b b a b a n n n≠=⎪⎭⎫ ⎝⎛提示:负数的偶次幂是正数,奇次幂是负数。
二、分式的加减法(一)同分母分式的加减法1.法则:同分母的分式相加减,分母不变,分子相加减。
用式子表示: 2.注意事项:(1)“分子相加减”是所有的“分子的整体”相加减,各个分子都应有括号;当分子是单项式时括号可以省略,但分母是多项式时,括号不能省略;(2)分式加减运算的结果必须化成最简分式或整式。
(二)异分母分式的加减法1.法则:异分母分式相加减,先通分,转化为同分母分式后,再加减。
用式子表示:bd bc ad bd bc bd ad d c b a ±=±=±。
2.注意事项:(1)在异分母分式加减法中,要先通分,这是关键,把异分母分式的加减法变成同分母分式的加减法。
(2)若分式加减运算中含有整式,应视其分母为1,然后进行通分。
(3)当分子的次数高于或等于分母的次数时,应将其分离为整式与真分式之和的形式参与运算,可使运算简便。
四、分式的混合运算注意事项:(1)有理数的运算顺序和运算规律对分式运算同样适用,要灵活运用交换律、结合律和分配律;(2)分式运算结果必须化到最简,能约分的要约分,保证运算结果是最简分式或整式。
§16.3 可化为一元一次方程的分式方程一、分式方程基本概念1.定义:方程中含有分式,并且分母中含有未知数的方程叫做分式方程。
二、分式方程的解法1.解分式方程的基本思想:化分式方程为整式方程。
方法是:方程两边都乘以各分式的最简公分母,约去分母,化为整式方程求解。
bc a b c b a ±=±2.解分式方程的一般步骤:(1)去分母。
即在方程两边都乘以各分式的最简公分母,约去分母,把原分式方程化为整式方程;(2)解这个整式方程;(3)验根。
验根方法:把整式方程的根代入最简公分母,使最简公分母不等于0的根是原分式方程的根,使最简公分母为0的根是原分式方程的增根,必须舍去。
3.分式方程的增根。
意义是:把分式方程化为整式方程后,解出的整式方程的根有时只是这个整式的方程的根而不是原分式方程的根,这种根就是增根,因此,解分式方程必须验根。
注意:分式方程的增根必须同时满足两个条件:(1)增根使最简公分母为0;(2)增根使分式方程化为整式方程的跟。
4.利用增根的概念解题的步骤:先将分式方程化为整式方程,再由最简公分母为0求出增根,最后将增根代入所化的整式方程求解。
5.分式方程无解,应考虑两个方面:(1)由分式方程化成整式方程后,此整式方程无解;(2)原分式方程有增根,方法同上。
注意分式方程有增根与分式方程无解既有区别又有联系。
三、分式方程的应用1.列分式方程解应用题的一般步骤如下:(1)审题。
理解题意,弄清已知条件和未知量;(2)设未知数。
合理的设未知数表示某一个未知量,有直接设法和间接设法两种;(3)列方程。
找出能够表示题目全部含义的等量关系,列出分式方程;(4)解方程。
求出未知数的值;(5)检验。
不仅要检验所求未知数的值是否为原方程的根,还要检验未知数的值是否符合题目的实际意。
“双重验根”。
(6)写出答案。
可以简单地说成:审、设、列、解、验、答。
§16.4 零指数幂与负整数指数幂一、零指数幂1.定义:任何不等于零的实数的零次幂都等于1,即a0=1(a≠0)。
2.特别注意:零的零次幂无意义。
即00无意义。
若问当x=_____时,(x-2)0有意义。
答案是:x≠2。
二、负整数指数幂1.定义:任何不等于的数的-n(n为正整数)次幂,都等于这个数的n次幂的倒数,1(a≠0,n为正整数)即a-n=na2.注意事项:(1)负整数指数幂成立的条件是底数不为0;(2)正整数指数幂的所有运算法则均适用于负整式指数幂,即指数幂的运算可以扩大到整数指数幂范围;包括:同底数幂的乘法(除法)、幂的乘方、积的乘方三、用科学计数法表示绝对值小于1的数1.规则:绝对值小于1的数,利用10的负整式指数幂,把它表示成a×10-n(n为正整数),其中1≤|a|<10。
2.注意事项:(1)n为该数左边第一个非零数字前所有0的个数(包括小数点前的那个零)。
如-0.00021=-2.1×10-4(2)注意数的符号的变化,在数前面有负号的,其结果也要写符号。
(3)写科学记数法的关键的是确定10n的指数n的值。
第17章函数及其图象§17.1变量与函数一、函数概念1.常量和变量在某一变化过程中,取值始终保持不变的量叫做常量,可以取不同数值的量叫做变量。
2.定义:在某个变化过程中,如果有两个变量x和y,对于x的每一个确定的值,y都有唯一的值与其对应,那么,我们就说y是x的函数,其中x叫做自变量,y叫做因变量。
3.对函数概念的理解,主要抓住三点:(1)有两个变量;(2)一个变量的数值随另一个变量的数值的变化而变化;(3)自变量每确定一个值,因变量就有一个并且只有一个值与其对应。
二、函数的表示法:(1)列表法;(2)图象法;(3)解析法。
三、求函数自变量的取值范围1.实际问题中的自变量取值范围,按照实际问题是否有意义的要求来求。
2.用数学式子表示的函数的自变量取值范围(1)解析式为整式的,自变量的取值范围是全体实数;(2)解析式为分式的,自变量的取值范围是使分母不等于0的实数;(3)解析式为二次根式时(算术平方根),自变量的取值范围是使被开方数为非负数的实数;解析式是立方根的,自变量的取值范围是全体实数。
(4)解析式同时出现分式和算术平方根,必须同时满足其有意义。
四、函数关系式:用来表示函数关系的等式叫做函数关系式(也叫解析式)。
五、函数值:指自变量取一个数值代入解析式求出的数值,称为函数值;实际上就是以前学的求代数式的值。
§17.2函数的图象一、平面直角坐标系1、定义:平面内画两条原点重合、互相垂直且有相同单位长度的的数轴,就组成了平面直角坐标系。
通常把其中水平的数轴叫x轴或横轴,取向右的方向为正方向;铅直的数轴叫y轴或纵轴,取向上的方向为正方向;两数轴的交点O叫做坐标原点。
2、平面直角坐标系中的点与有序实数对一一对应。
注意:横纵坐标不能颠倒。
3、平面直角坐标系中坐标的特征:(1)象限内点的坐标特征:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-)。
(2)x 轴上点的坐标(x ,0);y 轴上点的坐标(0,y ).原点坐标(0,0)4、对称点的坐标特征(最好画图来看)(1)关于x 轴对称的两点:横坐标相同,纵坐标互为相反数;关于y 轴对称的两点:横坐标互为相反数,纵坐标相同;(2)关于原点对称的两点: 横坐标和纵坐标都互为相反数。
5.平移或平行点的坐标特征(1)左右平移:纵坐标不变;上下平移:横坐标不变。
(2)平行于x 轴的直线上的点:横坐标不同,纵坐标相同;平行于y 轴的直线上的点:横坐标相同,纵坐标不同6.象限角平分线上点的特征(1)一三象限角平分线上的点:横坐标和纵坐标相同。
(2)二四象限角平分线上的点:横坐标和纵坐标互为相反数。
7、距离(1)点到两坐标轴的距离:点A (a ,b )到x 轴的距离为|b|,点A (a ,b )到y轴的距离为|a|。
(2)同一坐标轴上两点间的距离:x 轴上两点A (x 1,0)与B (x 2,0)之间的距离为|x 1-x 2|;y 轴上两点A (0,y 1)与B (0,y 2)之间的距离为|y 1-y 2|(3)象限内的点到原点的距离:A (a ,b )到原点的距离为22b a +(4)直角坐标系中任意两点间的距离:A (x 1,y 1)与B (x 2,y 2)之间的距离为:221221)()(y y x x -+- 8.线段的中点坐标为两端点坐标和的一半。