Eviews软件实验报告
Eviews实验报告
![Eviews实验报告](https://img.taocdn.com/s3/m/dc4ff3a4dbef5ef7ba0d4a7302768e9951e76ea2.png)
Eviews实验报告
本次实验使用Eviews对数据进行了分析和建模,主要分为以下几个部分:
一、数据预处理
1. 数据清洗:对数据进行了初步的检查和清洗,处理了数据中的缺失值和异常值;
2. 数据变换:对原始数据进行了对数化处理,使其符合正态分布。
二、数据分析
1. 描述性统计:通过统计均值、标准差、相关系数等指标,对数据进行了分析和描述;
2. 单因素分析:使用单因素方差分析对不同自变量与因变量之间的关系进行了检验。
三、建模分析
1. 模型选择:根据变量相关性和变量显著性等因素,最终选择了一组自变量,建立了多元线性回归模型;
2. 模型检验:对建立的模型进行了残差分析,验证了模型的可靠性和稳定性;
3. 预测分析:利用建立的模型对新数据进行了预测,并进行了模型预测精度的评估。
四、实验结论
通过Eviews的分析和建模,得出了以下结论:
1. 数据清洗和变换可以提高数据分析的准确性和可靠性;
2. 描述性统计和单因素分析可以为建模提供有用的参考和决策依据;
3. 多元线性回归模型可以较好地解释自变量与因变量之间的关系,并可进行预测和决策分析。
综上所述,本次实验通过Eviews软件对数据进行了分析和建模,得出了有关数据的一些重要结论,为后续数据分析和决策提供了基础和支持。
Eviews软件实验报告
![Eviews软件实验报告](https://img.taocdn.com/s3/m/9b0632d54128915f804d2b160b4e767f5acf8005.png)
┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊分析国内生产总值与最终消费的关系一、研究的目的要求由于消费是所有经济行为有效实现的最终环节,唯有消费需求的不断上升才有经济增长的持久拉动力有经济增长的持久拉动力..而居民的消费水平在很大程度上又受整体经济状况的影响影响..国内生产总值是用于衡量一国总收入的一种整体经济指标,经济扩张时期经济扩张时期,,居民收入稳定居民收入稳定,GDP ,GDP 也高也高,,居民用于消费的支出较多居民用于消费的支出较多,,消费水平较高消费水平较高;;反之反之,,经济收缩时,收入下降收入下降,GDP ,GDP 也低也低,,用于消费的支出较少用于消费的支出较少,,消费水平随之下降消费水平随之下降..改革开放以来改革开放以来,,我国的GDP 不断增长的同时不断增长的同时,,人民的物质生活也在不断提高人民的物质生活也在不断提高..研究国内生产总值与最终消费的数量关系,对于探寻最终消费增长的规律性,预测最终消费的发展趋势有重大意义。
势有重大意义。
二、模型设定为了分析国内生产总值对消费的推动作用,选择中国国民最终消费为被解释变量(用Y 表示),选择中国国内生产总值为解释变量(用X 表示)。
搜集到以下数据。
数据。
中国国民收入与最终消费(单位:亿元)中国国民收入与最终消费(单位:亿元)年份年份 国内国内生产总值(亿元)元) 最终消费 年份年份国内生产国内生产总值(亿元)最终消费最终消费X Y X Y1978 3624.1 2239.1 1995 58478.1 36748.2 1979 4038.2 2633.7 1996 67884.6 43919.5 1980 4517.8 3007.9 1997 74462.6 48140.6 1981 4862.4 3361.5 1998 78345.2 51588.2 1982 5294.7 3714.8 1999 82067.5 55636.9 1983 5934.5 4126.4 2000 89468.1 61516 1984 7171 4846.3 2001 97314.8 66878.3 1985 8964.4 5986.3 2002 104790.6 71691.2 1986 1986 10202.2 10202.2 6821.8 2003 135822.8 77449.5 1987 1987 11962.5 11962.5 7804.62004 159878.3 87032.9 1988 1988 14928.3 14928.3 9839.52005 183217.4 97822.7┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊1989 1989 16909.2 16909.2 16909.2 11164.2 11164.2 2006 211923.5110595.31990 1990 18547.9 18547.9 18547.9 12090.5 12090.52007 249529.9 128444.6 1991 1991 21617.8 21617.8 21617.8 14091.9 14091.9 2008 316228.8 149000 1992 1992 26638.1 26638.1 26638.1 17203.3 17203.3 2009343464.7 176060.31993 1993 34634.4 34634.4 34634.4 21899.9 21899.9 2010 397983 148447.7 1994 1994 46759.4 46759.4 46759.4 29242.2 29242.2 29242.2为了分析居民最终消费(为了分析居民最终消费(Y Y )和国内生产总值()和国内生产总值(X X )的关系,根据上表做如下散点图:点图:从散点图可以看出最终消费和国内生产总值大体呈现为线性关系,为分析中国居民最终消费水平随国民总收入变动的数量规律性,可建立如下简单回归模型:型:三、估计参数利用EViews 做简单线性回归分析的结果如下图所示:做简单线性回归分析的结果如下图所示:┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊装┊ ┊ ┊ ┊ ┊订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊可用规范的形式将参数估计和检验的结果写为可用规范的形式将参数估计和检验的结果写为ttXY454948.007.17662ˆ+=(2377.4702377.470))(0.017318)t= (3.222798) (26.27036) 33317.1690957012.02===nFR。
eviews实验报告
![eviews实验报告](https://img.taocdn.com/s3/m/4a352171be1e650e52ea996d.png)
图二 点击“view/ Multiple Graphs/XY line”得到下图。
图三 Xy line图中,横坐标表示表示EX出口额,纵坐标表示GDP生产总 值,从图中曲线的形状分析,EX与GDP的线性关系较强,有继续分析 的意义。 5、描述性统计 (1)、打开对象“EX”,点击“view/Descriptive statistics/Histogram and stats”,可得到EX的描述性统计量。 EX的描述性统计。 均值(mean)为1134213。 中位数(median)为429843。 最大值(maximum)为4673393、最小值(minimum)为2368,可 知EX序列数据跨度大。 标准差(std.dev)为1463811,说明Y序列数据离散程度大。
9、最终确定模型 综上所述,最终确定的模型为 LnEX = -7.756501 + 1.438620 LnGDP +0.574091AR(1) 该模型不仅与样本的拟合程度高,而且不存在自相关问题,具有对 显示经济现象进行解释与预测的意义。 经济分析:InGDP的系数为正,说明经济发展水平的提高的确可以 增加出口额,而这与现实经济现象也是一致的。 统计分析:R2 =0.995071,说明模型很好地拟合了样本,所有参数 的Prob(t-statistic) <0.05,说明显著性检验通过,D.W.= 1.898759, du <1.898759<4-du,说明模型不存在自相关问题。
图四 (2)、打开对象“GDP”,点击“view/Descriptive statistics/Histogram and stats”,可得到GDP的描述性统计量。
eviews实验报告一元线形回归模型
![eviews实验报告一元线形回归模型](https://img.taocdn.com/s3/m/7200a222cbaedd3383c4bb4cf7ec4afe04a1b196.png)
【实验编号】 1【实验名称】一元线形回归模型【实验目的】掌握一元线性回归分析的步骤【实验内容】一、实验数据表1 1978年-2009年中国税收与国内生产总值统计表单位:亿元年份税收GDP 年份税收GDP1978 519.28 3645.2 1994 5126.88 48197.91979 537.82 4062.6 1995 6038.04 60793.71980 571.7 4545.6 1996 6909.82 71176.61981 629.89 4891.6 1997 8234.04 78973.01982 700.02 5323.4 1998 9262.80 84402.31983 775.59 5962.7 1999 10682.58 89677.11984 947.35 7208.1 2000 12581.51 99214.61985 2040.79 9016.0 2001 15301.38 109655.21986 2090.73 10275.2 2002 17636.45 120332.71987 2140.36 12058.6 2003 20017.31 135822.81988 2390.47 15042.8 2004 24165.68 159878.31989 2727.4 16992.3 2005 28778.54 184937.41990 2821.86 18667.8 2006 34804.35 216314.41991 2990.17 21781.5 2007 45621.97 265810.31992 3296.91 26923.5 2008 54223.79 314045.41993 4255.30 35333.9 2009 59521.59 340506.9 资料来源:《中国统计年鉴2010》二、实验过程1、建立工作文件(1)点击桌面Eviews5.0图标,运行Eviews软件。
eviews实验报告总结(范本)
![eviews实验报告总结(范本)](https://img.taocdn.com/s3/m/d8ca0b3f657d27284b73f242336c1eb91a373307.png)
eviews实验报告总结eviews实验报告总结篇一:Evies实验报告实验报告一、实验数据:1994至201X年天津市城镇居民人均全年可支配收入数据 1994至201X年天津市城镇居民人均全年消费性支出数据 1994至201X年天津市居民消费价格总指数二、实验内容:对搜集的数据进行回归,研究天津市城镇居民人均消费和人均可支配收入的关系。
三、实验步骤:1、百度进入“中华人民共和国国家统计局”中的“统计数据”,找到相关数据并输入Exc el,统计结果如下表1:表11994年--201X年天津市城镇居民消费支出与人均可支配收入数据2、先定义不变价格(1994=1)的人均消费性支出(Yt)和人均可支配收入(Xt)令:Yt=cn sum/priceXt=ine/pri ce 得出Yt与Xt的散点图,如图1.很明显,Yt和X t服从线性相关。
图1 Yt和Xt散点图3、应用统计软件EVies完成线性回归解:根据经济理论和对实际情况的分析也都可以知道,城镇居民人均全年耐用消费品支出Yt依赖于人均全年可支配收入Xt的变化,因此设定回归模型为 Yt=β0+β?Xt﹢μt(1)打开E Vies软件,首先建立工作文件, Fil e rkfile ,然后通过bject建立 Y、X系列,并得到相应数据。
(2)在工作文件窗口输入命令:l s y c x,按E nter键,回归结果如表2 :表2 回归结果根据输出结果,得到如下回归方程:Y t=977.908+0.670Xt s=(172.3797) (0.0122) t=(5.673) (54.950) R2=0.995385 Adjust ed R2=0.995055 F-sta tistic=3019.551 残差平方和Sum sq uared resi d =1254108回归标准差S.E.f regressi n=299.2978(3)根据回归方程进行统计检验:拟合优度检验由上表2中的数分别为0.995385和0.995055,计算结果表明,估计的样本回归方程较好地拟合了样本观测值。
Eviews实验报告2
![Eviews实验报告2](https://img.taocdn.com/s3/m/32a6d16530126edb6f1aff00bed5b9f3f80f7254.png)
(Error Correction Model)Srba 和Yeo 于模型。
它常常作为协整回归模型的补充模型出现。
两步法建立误差修正模型
p t B Y -++
绘制中国城镇居民月人均生活费支出(y)和可支配收入序列(x)的折线图: 可以看到两者呈现公共的上升趋势。
对X与Y分别取对数:
然后对xt与yt序列进行平稳性检验:
容易发现: XT与YT序列均不是平稳的, 但是其一阶差分都是平稳的, 因此猜测他们具有协整关系。
对YT和XT序列进行回归后发现:
可以看到对应的两个参数的系数的p值都显著小于0.001。
生成一列序列=残差, 对该序列进行ADF检验后可以发现p值小于0.05, 因
此认为不存在单位根, 序列是平稳的。
因此, 尽管国城镇居民月人均生活费支出(y )和可支配收入序列(x )都是非平稳的, 但是由于它们之间具有协整关系, 因此可以建立动态回归模型准确预测其长期互动关系。
模型拟合的预测值DCPIF 的折线图和与dcpi 的对比图如下:
可以看到, 最后的拟合效果非常好。
从而我们得到最后的拟合方程为:
t t t x y ε++=)ln(*934.0328.0)ln(
即:
因此, 城镇居民收入没增加一个百分点, 其消费支出也增加0.934各百分点。
【结论】(结果)
我国城镇居民月人均生活费支出(y )和可支配收入序列(x )的对数化后的XT 与YT 序列均不是平稳的, 但是其一阶差分都是平稳的, 因此猜测他们具有协。
Eviews实验报告4
![Eviews实验报告4](https://img.taocdn.com/s3/m/a09b4f7230126edb6f1aff00bed5b9f3f90f7282.png)
【实验目的及要求】● 深刻理解平稳性的要求和arima 建模的思想。
● 学会如何通过观察自相关系数和偏相关系数,确定并建立模型。
● 学会如何利用模型进行预测。
● 熟练掌握EVIEWS 的结果,看懂eviews 的输出结果。
【实验原理】ARIMA(p, q )过程的平稳域和可逆域对于非平稳序列的时变均值函数,最简单的处理方法就是考虑均值函数可以由一个时间的确定性函数来描述,这时,可以用回归模型来描述。
假如均值函数服从于线性趋势我们可以利用确定性的线性趋势模型如果均值函数服从二次函数则我们可以用假如均值函数服从k 次多项式我们可以使用下列模型建模()22012,~0,t t t X t t WN αααεεσ=+++()201,~0,k t k t t X t t WN αααεεσ=++++【实验方案设计】4.2数据和指标的选取我们的模型估计选取了我国1990年1月到2008年12月的CPI月度数据附表(1))作为研究的对象。
度量通货膨胀的指标通常有CPI(消费者价格指生产者物价指数(PPI)、批发物价指数(wholesale price index)、GDP平减指数(deflator)等。
消费者物价指数(CPI)(consumer price index)是用来度量一期内居民所支付消费商品和劳务价格变化程度的相对数指标,它是反映通货水平的重要指标。
CPI指数作为生活成本指数,不仅能够及时和明确地反映子商品和服务价格的变化,而且是定期公布,广为人知,易于获取和明了,被公众理解。
选取CPI作为通货膨胀的指标有利于合理引导公众和市场对经预期,有利于政府综合运用价格和其他经济手段,实现宏观经济调控目标。
为了研究这些问题,笔者搜集了1985-2007年的年度中国消费者物价指数的相关数据,利用EVIEWS软件,将这几个指标数据进行了相关分析。
对于ARIMA(p q)模型,可以利用其样本的自相关函数和样本的偏自相关函数的截尾性判定模型的阶数,若平稳时间序列的偏相而自相关函数是截尾的则可断定此序列适合MA 模型; 若平稳时间序列的偏相关函数和自相关函数均是拖尾的则此序列适合模型。
eviews计量经济学实验报告
![eviews计量经济学实验报告](https://img.taocdn.com/s3/m/3d37bf9227fff705cc1755270722192e45365809.png)
eviews计量经济学实验报告EViews计量经济学实验报告引言计量经济学是经济学领域中的一个重要分支,它运用数学、统计学和计量学的方法来分析经济现象。
EViews是一个常用的计量经济学软件,它提供了丰富的数据分析和模型建立工具,被广泛应用于学术研究和实际经济分析中。
本实验报告将利用EViews软件进行计量经济学实验,以探讨经济现象并得出相关结论。
实验目的本实验旨在利用EViews软件对某一经济现象进行实证分析,通过建立相应的计量经济模型,对经济现象进行量化分析,并得出相关结论。
实验步骤1. 数据收集:首先,我们需要收集与所研究经济现象相关的数据,包括时间序列数据和横截面数据等。
这些数据可以来自于官方统计机构、学术研究机构或者自行收集整理。
2. 数据预处理:接下来,我们需要对收集到的数据进行预处理,包括数据清洗、缺失值处理、异常值处理等,以确保数据的质量和完整性。
3. 模型建立:在数据预处理完成后,我们可以利用EViews软件建立计量经济模型,包括回归分析、时间序列分析、面板数据分析等,以探讨经济现象的内在规律和影响因素。
4. 模型估计:建立模型后,我们需要对模型进行参数估计,得到模型的具体参数估计值,并进行显著性检验和模型拟合度检验,以验证模型的可靠性和有效性。
5. 结果分析:最后,我们将对模型估计结果进行分析,得出与经济现象相关的结论,并对实证分析结果进行解释和讨论。
实验结论通过以上实验步骤,我们得出了关于某一经济现象的实证分析结果,并得出了相关的结论。
这些结论对于理解经济现象的内在规律和制定经济政策具有重要的参考价值。
总结EViews计量经济学实验报告通过利用EViews软件进行实证分析,对经济现象进行了深入探讨,并得出了相关结论。
这些结论对于经济学研究和实际经济分析具有重要的理论和实践意义,为我们深入理解经济现象和推动经济发展提供了重要的参考依据。
EViews软件的应用为我们提供了一个强大的工具,帮助我们更好地理解和分析经济现象,为经济学领域的研究和实践提供了重要的支持和帮助。
(完整word版)实验一Eviews软件的基本操作-学生实验报告
![(完整word版)实验一Eviews软件的基本操作-学生实验报告](https://img.taocdn.com/s3/m/8ff1dacdaf45b307e9719783.png)
实验报告课程名称: 计量经济学实验项目:实验一EViews软件的基本操作实验类型:综合性□设计性□验证性专业班别:姓名:学号:实验课室:指导教师:石立实验日期:广东商学院华商学院教务处制一、实验项目训练方案小组合作:是□否小组成员:无实验目的:了解熟悉EViews软件的基本操作对象,掌握软件的基本操作。
实验场地及仪器、设备和材料实验室:普通配置的计算机,Eviews软件及常用办公软件。
实验训练内容(包括实验原理和操作步骤):【实验内容】1.打开运行并认识Eviews软件;2.EViews软件的数据输入、编辑与序列生成;3.图形分析与描述统计分析;4.数据文件的存储与调用。
【实验数据】实验以附件“数据”所列出数据资料为例进行操作。
【实验步骤】一、打开运行软件实验中采用Eviews软件6.0版本绿色版,实验计算机上已安装,请找到图标,点击即可打开软件的操作界面.【注意:FTP中上传了软件的压缩包,同学们可以拷贝到自己的电脑,将压缩包解压后,打开文件夹,双击注册表,进行注册,注册成功后即可使用。
】二、认识软件界面Eviews软件窗口有无部分组成:标题栏、主菜单、命令窗口、状态栏、工作区.三、输入数据1.创建工作文件(1)菜单方式在主菜单上依次点击File/New/Workfile,即选择新建对象的类型为工作文件,将弹出一个对话框,由用户选择数据的时间频率(frequency)、起始期和终止期。
注:根据数据的不同类型,应创建不同的工作文件,Eviews提供的数据工作文件可分为三种:a、无结构数据/截面数据:Unstructured/Undatedb、时间序列数据:Dated-regular frequency具体有:年度数据(Annual)、半年数据(Semi-annual)、季度数据(Quarterly)、月度数据(Monthly)、周数据(Weekly)、一周五天的数据(Daily-5days week)、一周七天的数据(Daily-7days week)、每日数据(Daily/integer date)c、面板数据Balanced Panel在本例中,按照下图的方式选取选项和填写数据:(2)命令方式在EViews软件的命令窗口中直接键入CREATE命令,也可以建立工作文件.命令格式为:CREATE 时间频率类型起始期终止期(时间频率类型以该类型英文首字母标记)则本例实验中的程序可写为:CREATE A 1978 2005在创建的工作文件中,一开始其就包含了两个对象:(如图)*系数向量C(保存估计系数用)*残差序列RESID(实际值与拟合值之差)2.输入数据并命名(1)添加新序列..点击Objects/New Object(或在工作区右击鼠标,选取New Object),对象类型选择Series,并给定序列名,一次只能创建一个新序列。
实验一 Eviews软件的基本操作 学生实验报告【VIP专享】
![实验一 Eviews软件的基本操作 学生实验报告【VIP专享】](https://img.taocdn.com/s3/m/97429196240c844769eaee68.png)
实验报告课程名称:计量经济学实验项目:实验一EViews软件的基本操作实验类型:综合性□设计性□验证性 专业班别:姓名:学号:实验课室:指导教师:石立实验日期:广东商学院华商学院教务处制一、实验项目训练方案小组合作:是□否 小组成员:无实验目的:了解熟悉EViews软件的基本操作对象,掌握软件的基本操作。
实验场地及仪器、设备和材料实验室:普通配置的计算机,Eviews软件及常用办公软件。
实验训练内容(包括实验原理和操作步骤):【实验内容】1.打开运行并认识Eviews软件;2.EViews软件的数据输入、编辑与序列生成;3.图形分析与描述统计分析;4.数据文件的存储与调用。
【实验数据】实验以附件“数据”所列出数据资料为例进行操作。
【实验步骤】一、打开运行软件实验中采用Eviews软件6.0版本绿色版,实验计算机上已安装,请找到图标,点击即可打开软件的操作界面。
【注意:FTP中上传了软件的压缩包,同学们可以拷贝到自己的电脑,将压缩包解压后,打开文件夹,双击注册表,进行注册,注册成功后即可使用。
】二、认识软件界面Eviews软件窗口有无部分组成:标题栏、主菜单、命令窗口、状态栏、工作区。
三、输入数据1.创建工作文件(1)菜单方式在主菜单上依次点击File/New/Workfile,即选择新建对象的类型为工作文件,将弹出一个对话框,由用户选择数据的时间频率(frequency)、起始期和终止期。
注:根据数据的不同类型,应创建不同的工作文件,Eviews提供的数据工作文件可分为三种:a、无结构数据/截面数据:Unstructured/Undatedb、时间序列数据:Dated-regular frequency具体有:年度数据(Annual)、半年数据(Semi-annual)、季度数据(Quarterly)、月度数据(Monthly)、周数据(Weekly)、一周五天的数据(Daily-5days week)、一周七天的数据(Daily-7days week)、每日数据(Daily/integer date)c、面板数据Balanced Panel在本例中,按照下图的方式选取选项和填写数据:(2)命令方式在EViews软件的命令窗口中直接键入CREATE命令,也可以建立工作文件。
eviews实验报告
![eviews实验报告](https://img.taocdn.com/s3/m/0f1d7e206ad97f192279168884868762caaebb01.png)
eviews实验报告Eviews 实验报告摘要Eviews 是一个被广泛应用于经济学、金融学等领域的计量经济学软件。
本实验报告通过一个具体案例,介绍了如何运用 Eviews进行数据处理、模型建立和分析。
通过对此案例的完整实施流程,读者能够了解到 Eviews 的基本使用方法以及它在实际经济问题中的应用能力。
引言Eviews(Econometric Views)是一种功能强大的计量经济学软件工具,能够处理和分析经济与金融数据。
它不仅仅是一个数据处理工具,还可用于建立经济模型、估计经济关系、进行预测以及进行模型检验等。
本实验报告将通过一个案例,介绍如何利用Eviews 进行数据处理、模型建立和分析。
数据处理在使用 Eviews 进行数据处理之前,首先需要准备好待分析的数据。
这些数据可以是收集到的实际数据,也可以是从其他来源获取的公开数据。
无论数据来源如何,都需要通过 Eviews 的数据导入功能将其导入到软件中。
在导入数据之后,可以使用 Eviews 的数据处理功能对数据进行清洗和转换。
例如,可以通过计算某个变量的平均值、标准差等统计指标,快速了解数据的基本特征。
此外,还可以使用Eviews 的图表功能绘制各种统计图表,如折线图、散点图等,以便更好地理解数据。
模型建立在数据处理完成后,可以根据研究目的建立相应的经济模型。
Eviews 提供了丰富的模型建立功能,可以根据需要选择不同的模型类型。
例如,可以建立回归模型、时间序列模型等。
对于回归模型,可以通过 Eviews 的回归分析功能进行模型的估计和检验。
此功能可根据输入的自变量和因变量数据,自动估计出回归方程的参数,并计算出各种统计指标。
通过对模型的参数估计和假设检验,可以判断模型的有效性。
分析和预测在模型建立完成后,可以利用 Eviews 的分析功能对模型进行进一步的分析和预测。
Eviews 提供了丰富的统计方法和技术,如方差分析、协整分析等,可以帮助用户深入理解模型关系。
Eviews实验报告
![Eviews实验报告](https://img.taocdn.com/s3/m/d37459c3195f312b3169a57b.png)
计量经济学26号实验报告大连海事大学实验名称:计量经济学软件应用专业班级:2013 级经济学(1)班*名:***指导教师:***交通运输管理学院二○一六年六月一、实验目的学会常用经济计量软件的基本功能,并将其应用在一元线性回归、多元线性回归、异方差以及序列相关模型的分析中。
具体包括:Eviews的安装,样本数据基本统计量计算,一元线性回归模型的建立、检验及结果输出与分析,多元回归模型的建立与分析,异方差、序列相关模型的检验与处理等。
二、实验环境Windows XP或Windows 7的操作系统下,基于Eviews 6版本,来进行实验。
三、实验模型建立与分析案例一:在当今社会中,随着经济的增长和科学技术的发展,截至2015年12月,中国网民规模达6.88亿,互联网普及率为50.3%;手机网民规模达6.2亿,占比提升至90.1%。
现如今,半数中国人已经接入互联网,网民规模增速提升,同时网民个人上网设备进一步向手机端集中。
互联网已经成为我们生活中的一部分,随着网络环境的日益完善、移动互联网技术的发展,各类移动互联网应用的需求逐渐被开发。
未来,移动互联网应用将更加贴近生活,从而带动三四线城市、农村地区人口的使用,进一步提升我国互联网普及率。
我国2007-2015年我国网民和手机网民规模的的统计资料(资料来源于中国互联网信息中心CNNIC发布的《中国互联网络发展状况统计报告》),如下所示:年份中国网民规模X1 中国手机网民规模Y(万人)(万人)2007 5040 210002008 11760 298002009 23344 384002010 30274 457302011 35558 513102012 41997 564002013 50006 617582014 55678 648752015 61981 68826为了研究中国手机网民规模和中国网民之间规模的关系,运用以上数据:(1)做散点图中国手机网民规模(Y)和中国网民之间规模(X1)的关系散点图,如下图所示:从散点图可以看出中国手机网民规模(Y)和中国网民规模(X1)之间大体呈现为线性关系,所以建立的计量经济模型为如下线性模型:Y = β1 + β2*X + U(2)做回归分析,回归结果如下图所示:参数估计的结果为:Y = -22450.76 + 1.181685*X1(3)模型检验1.经济意义检验所估计的参数β2= 1.181685中国网民每增加1万人,中国将增加1.181685万人手机网民。
计量经济学eviews实验报告
![计量经济学eviews实验报告](https://img.taocdn.com/s3/m/f53f1fa59a89680203d8ce2f0066f5335a8167b9.png)
计量经济学eviews实验报告计量经济学Eviews实验报告引言:计量经济学是经济学中的一个重要分支,它通过运用统计学和数学方法来分析经济现象,并建立经济模型来预测和解释经济变量之间的关系。
Eviews是一种流行的计量经济学软件,它提供了丰富的数据分析和模型建立工具,被广泛应用于经济学研究和实证分析。
一、数据收集与处理在进行计量经济学实验之前,首先需要收集相关的经济数据。
这些数据可以来自于各种来源,如经济统计局、金融机构或者自行收集。
然后,我们需要对数据进行处理,包括数据清洗、转换和整理,以便于后续的分析和建模。
二、描述性统计分析描述性统计分析是计量经济学中的第一步,它通过计算数据的均值、方差、相关系数等统计量来描述数据的基本特征。
在Eviews中,我们可以使用各种命令和函数来进行描述性统计分析,比如mean、var、cor等。
通过描述性统计分析,我们可以对数据的分布和变化情况有一个初步的了解。
三、回归分析回归分析是计量经济学中最常用的方法之一,它用于研究一个或多个自变量对一个因变量的影响。
在Eviews中,我们可以使用OLS(Ordinary Least Squares)命令来进行回归分析。
首先,我们需要选择一个合适的回归模型,然后通过最小二乘法估计模型的参数。
通过回归分析,我们可以得到模型的拟合优度、参数估计值和统计显著性等信息,从而判断变量之间的关系和影响程度。
四、模型诊断与改进在进行回归分析之后,我们需要对模型进行诊断和改进。
模型诊断主要包括残差分析、异方差性检验和多重共线性检验等。
在Eviews中,我们可以使用DW (Durbin-Watson)统计量来检验残差的自相关性,使用Breusch-Godfrey检验来检验异方差性,使用VIF(Variance Inflation Factor)来检验多重共线性。
如果模型存在问题,我们可以通过引入其他变量、转换变量或者使用其他的回归方法来改进模型。
eviews实验报告
![eviews实验报告](https://img.taocdn.com/s3/m/f158bff268dc5022aaea998fcc22bcd126ff42b5.png)
eviews实验报告EViews实验报告引言:EViews是一款经济学和金融学领域常用的计量经济学软件,它提供了丰富的数据分析和模型建立功能。
本实验报告将通过一个实例来展示EViews在经济分析中的应用。
实验目的:本实验旨在通过EViews软件对某国家的经济数据进行分析,以探索其经济发展的趋势和特点,并构建合适的经济模型,以期对未来的经济走势进行预测。
实验步骤:1. 数据收集与导入首先,我们需要收集某国家的经济数据,如GDP、通货膨胀率、失业率等。
这些数据可以从官方统计机构或相关研究机构获取。
然后,我们将这些数据导入EViews软件中,以便进行后续的数据分析和建模。
2. 数据预处理与可视化在进行数据分析之前,我们需要对数据进行预处理,包括处理缺失值、异常值和数据平滑等。
EViews提供了丰富的数据处理工具,如插值法、平滑算法等,可以帮助我们更好地处理数据。
同时,我们还可以利用EViews的可视化功能,绘制出各个经济指标的趋势图和相关性分析图,以便更好地理解数据。
3. 统计分析与模型建立在对数据进行预处理和可视化之后,我们可以进行统计分析,探索各个经济指标之间的关系。
EViews提供了多种统计方法,如相关性分析、回归分析等,可以帮助我们发现变量之间的关联性。
基于统计分析的结果,我们可以构建合适的经济模型,如VAR模型、ARIMA模型等,以期对未来的经济走势进行预测。
4. 模型评估与优化构建经济模型后,我们需要对模型进行评估和优化,以提高其预测准确性。
EViews提供了多种模型评估指标,如均方根误差(RMSE)、平均绝对误差(MAE)等,可以帮助我们评估模型的拟合效果。
如果模型的预测效果不理想,我们可以通过调整模型参数或选择不同的模型结构来优化模型。
5. 经济预测与政策建议在模型评估和优化之后,我们可以利用经济模型对未来的经济走势进行预测。
基于预测结果,我们可以提出相应的经济政策建议,以帮助决策者制定合理的经济政策。
eviews
![eviews](https://img.taocdn.com/s3/m/0f4bc2c2050876323012120d.png)
Eviews软件实验报告学号:姓名:专业:金融学班级:1班实验步骤:1、提出问题:类似于凯恩斯预期收入理论等理论都强调了收入对消费的影响。
但除此之外,还有其他一些因素也会对消费行为产生影响。
比如说;(1)利率。
传统的看法认为,提高利率会刺激储蓄,从而减少消费。
当然现代经济学家也有不同意见,他们认为利率对储蓄的影响要视其对储蓄的替代效应和收入效应而定,具体问题具体分析。
(2)价格指数。
价格的变动可以使得实际收入发生变化,从而改变消费。
对于上述这些经济理论,我找到福建省1979-2008年人均消费以及人均国内生产总值、居民消费价格指数、银行一年期存款利率的官方数据。
借此来分析福建省消费的影响因素以及它们具体是如何对消费产生影响的。
2、建立模型建立居民消费水平和居民人均可支配收入、人均GDP、居民消费价格指数、存款基准利率的一个4元线性回归模型:Y =β0+β1x1+β2x2+β3x3+β4x4+μ其中:β0 、β1 、β2 、β3 、β4是待定参数.μ是随机误差项样本大小: n=30总平方和的自由度: n-1回归平方和的自由度:k=4 (解释变量的个数)残差平方和的自由度: n-k-1待定参数个数:k+1=53、准备数据福建省1979-2008年居民消费及其相关影响因素统计表资料来源:《福建统计年鉴2009》、《中国统计年鉴2009》4、模型估计在相关理论的基础上,利用eviews软件对模型进行回归根据输出结果可以得到如下回归方程Y =-165.9647 + 0.108858×X1 +0.230598×X2 + 2.911579×X3 - 7.665350×X45、模型检验及修正T值分析:由回归结果可以看出,x1、x3的t的相伴概率明显接近于0,所以对应的估计系数是显著的。
而x4的系数估计值的t相伴概率明显大于0.05,所以是不显著地。
F值来看,回归结果很明显是十分显著地,也就是说解释变量对模型的共同影响是显著的。
eviews实验报告
![eviews实验报告](https://img.taocdn.com/s3/m/3c66cca9162ded630b1c59eef8c75fbfc77d94b5.png)
eviews实验报告EViews实验报告引言:EViews是一种广泛应用于经济学和金融学领域的计量经济学软件,它提供了一套强大的数据分析和建模工具。
本实验报告将通过一个实际案例,展示EViews 在经济数据分析中的应用。
数据收集与导入:首先,我们需要收集与我们研究主题相关的数据。
在本实验中,我们将以中国GDP和失业率数据为例。
我们可以通过EViews的数据导入功能将这些数据导入到软件中。
这样,我们就可以在EViews中对这些数据进行分析。
数据描述与可视化:在导入数据后,我们可以使用EViews的数据描述和可视化功能来了解数据的基本特征。
我们可以查看数据的统计摘要,包括均值、标准差、最小值和最大值等。
此外,我们还可以通过绘制折线图、散点图和直方图等图表来更好地理解数据的分布和趋势。
时间序列分析:EViews在时间序列分析方面具有强大的功能。
我们可以使用EViews中的自回归移动平均模型(ARMA)来对时间序列数据进行建模和预测。
通过对中国GDP数据进行ARMA建模,我们可以获得一个模型,该模型可以用来预测未来的GDP值。
面板数据分析:除了时间序列分析,EViews还支持面板数据分析。
面板数据是一种同时包含多个个体和多个时间点观测的数据类型。
通过EViews的面板数据分析功能,我们可以对个体和时间的固定效应进行建模和分析。
例如,我们可以使用面板数据分析功能来研究不同城市之间的失业率差异,并探索与失业率相关的因素。
计量经济模型估计:EViews还提供了一系列计量经济模型的估计方法,包括最小二乘法、广义矩估计和极大似然估计等。
我们可以使用这些方法来估计经济模型的参数。
例如,我们可以使用EViews的OLS(Ordinary Least Squares)方法来估计一个简单的线性回归模型,以研究GDP与失业率之间的关系。
假设检验与模型诊断:在进行计量经济分析时,假设检验和模型诊断是非常重要的步骤。
EViews提供了一系列假设检验和模型诊断的工具。
eviews 实验报告
![eviews 实验报告](https://img.taocdn.com/s3/m/f7b22758fe00bed5b9f3f90f76c66137ee064ffa.png)
eviews 实验报告Eviews实验报告引言:Eviews是一款功能强大的经济学和金融学数据分析软件,广泛应用于学术研究和商业决策。
本实验报告将介绍我对Eviews软件的使用和实验结果,以及我对其优缺点的评估。
一、数据导入和处理在开始实验之前,我首先需要将所需数据导入到Eviews中。
Eviews支持多种数据格式的导入,包括Excel、CSV和数据库等。
我选择了导入一个包含宏观经济指标的Excel文件。
通过简单的几步操作,我成功将数据导入到Eviews中,并对数据进行了初步的处理和清洗。
二、描述性统计分析在导入和处理完数据后,我进行了描述性统计分析。
Eviews提供了丰富的统计功能,包括均值、标准差、最大值、最小值等。
我通过对数据进行统计分析,得到了各个宏观经济指标的基本特征。
这些统计结果对于我后续的模型建立和分析提供了重要的参考。
三、时间序列分析除了描述性统计分析,我还进行了时间序列分析。
Eviews拥有强大的时间序列分析功能,可以进行趋势分析、季节性分析、周期性分析等。
我通过绘制时间序列图和自相关图,对数据的趋势和周期性进行了分析。
这些分析结果对于我理解数据的演变规律和预测未来走势非常有帮助。
四、回归分析回归分析是经济学和金融学中常用的一种分析方法,可以用来研究变量之间的关系。
在Eviews中,进行回归分析非常方便。
我选择了一个宏观经济指标作为因变量,选取了几个其他指标作为自变量,进行了回归分析。
通过分析回归结果和统计显著性,我得出了一些有意义的结论,并对未来的变量走势进行了预测。
五、模型评估和验证在进行回归分析之后,我对建立的模型进行了评估和验证。
Eviews提供了多种模型评估方法,包括残差分析、模型稳定性检验等。
我通过对模型的残差进行分析,检验了模型的拟合度和稳定性。
根据评估结果,我对模型进行了修正和优化,以提高模型的准确性和可靠性。
六、结论和展望通过本次实验,我对Eviews软件有了更深入的了解,并掌握了一些基本的数据分析和建模技巧。
Eviews实验报告
![Eviews实验报告](https://img.taocdn.com/s3/m/fa9aec45c850ad02de80414e.png)
Eviews实验报告一1启动程序双击桌面上EViews快捷图标,打开EViews2新建一个workfire点击EViews主窗口顶部命令菜单file\new\Workfile (如图1.1.2),弹出Workfile Create对话框(图1.1.3)。
在右边frequency下拉菜单中可选数据类型,Annual为默认的数据类型。
Workfile中有两个默认的对象,名称分别为c 、resid,分别为参数估计值向量和残差序列。
在没做回归估计之前,向量c的每个元素的值都为0,残差序列的每个值为NA,表示还没有赋值。
以后每做一次回归估计,c和resid就会被重新赋值(被分别赋予最新回归估计的参数估计值向量和残差序列)。
3录入数据点击EViews主窗口顶部菜单命令Object\new Object或者Workfile上面的菜单命令Object ,弹出New Object对话框,在Type of Object中选择Group类型,然后在右边文本框中为新建的group对象(Object)命名,比如为g1,然后点击OK,弹出一个表格形式的Group对话框,同时在Workfile中出现了新建的这个group对象g1。
在g1对话框的obs栏可输入多个序列对象名并在表格中录入这些序列的数据在group对象(g1)表格中录入数据表格右端的滑块拖到顶端,这时看到表格左侧出现两个obs。
建立序列对象Y:点击g1表格中第一列顶部的灰色条(第一个obs右侧),该列全部变蓝,输入变量名Y,回车,点OK即可。
如此便建立了序列Y(这时可在Workfile中发现多了一个序列Y),不过此时还没有给序列对象Y赋值(即录入数据),序列Y中每个年度的值现在都为NA。
在g1数据表格中Y所在列录入序列Y的各年观测值。
仿上可在g1第二列建立序列X(人均可支配收入),并录入各年人均可支配收入X。
这样便在g1中定义了两个序列对象(Y、X)并录入了数据双击Workfile中序列对象Y,点击序列对象Y的数据表上菜单命令edit +\-,将编辑状态切换为“可编辑”,然后在其单元格中录入数据。
应用时间序列eviews实验报告
![应用时间序列eviews实验报告](https://img.taocdn.com/s3/m/37a16bf10d22590102020740be1e650e52eacf85.png)
应用时间序列eviews实验报告时间序列分析是数据分析领域中一个重要的分析方法,主要用于研究某个变量随时间变化的趋势或周期性波动模式,具有非常广泛的应用领域,如经济学、金融学、社会学、医学等领域。
Eviews是一个经济学研究软件,具有强大的时间序列分析功能,可以用于时间序列的建模、预测等操作。
本文将对Eviews在时间序列分析实验中的应用进行介绍和分析。
一、实验介绍本次实验使用的数据为GDP数据,区间为1995-2019年,数据来源为国家统计局。
实验目的为使用Eviews进行时间序列分析,研究GDP的时间序列特征,建立合适的模型进行预测。
在实验中,我们将使用Eviews进行ADF检验、白噪声检验、建立ARIMA模型等操作,以充分展示Eviews在时间序列分析中的应用。
二、实验步骤1、数据导入首先打开Eviews软件,新建一个工作文件,导入GDP数据(见下图)。
2、ADF检验ADF检验是检验时间序列平稳性的常用方法,其原理是检验时间序列是否具有单位根。
在Eviews中进行ADF检验的操作如下:依次选择"View-Graph"-"Augmented Dickey-Fuller Test"菜单,弹出窗口后选择要分析的序列名称以及置信水平,单击"OK"按钮,即可看到ADF检验结果(见下图)。
由图可知,GDP序列的ADF检验结果为-3.0949,小于95%置信水平下的临界值-2.889,说明序列是平稳的。
3、白噪声检验4、建立ARIMA模型接下来我们将使用Eviews建立ARIMA模型,对GDP序列进行预测。
首先,在Eviews中进行序列差分,将序列转为平稳序列。
操作如下:差分后的GDP序列如下图所示:我们可以看到,差分后的序列已基本平稳。
接下来,我们可以通过ACF和PACF图查找ARIMA的参数,找到最佳的ARIMA模型进行预测。
操作如下:由图可知,差分后的GDP序列的ACF和PACF图中,第一个序列的ACF和PACF都很显著,因此我们可以考虑建立AR(1) 模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊
分析国内生产总值与最终消费的关系
一、研究的目的要求
由于消费是所有经济行为有效实现的最终环节,唯有消费需求的不断上升才有经济增长的持久拉动力.而居民的消费水平在很大程度上又受整体经济状况的影响.国内生产总值是用于衡量一国总收入的一种整体经济指标,经济扩张时期,居民收入稳定,GDP也高,居民用于消费的支出较多,消费水平较高;反之,经济收缩时,收入下降,GDP也低,用于消费的支出较少,消费水平随之下降.改革开放以来,我国的GDP不断增长的同时,人民的物质生活也在不断提高.研究国内生产总值与最终消费的数量关系,对于探寻最终消费增长的规律性,预测最终消费的发展趋势有重大意义。
二、模型设定
为了分析国内生产总值对消费的推动作用,选择中国国民最终消费为被解释变量(用Y表示),选择中国国内生产总值为解释变量(用X表示)。
搜集到以下数据。
中国国民收入与最终消费(单位:亿元)
年份
国内
生产总
值(亿
元)
最终消
费
年份
国内生产
总值(亿元)
最终消费
X Y X Y
1978 3624.1 2239.1 1995 58478.1 36748.2
1979 4038.2 2633.7 1996 67884.6 43919.5
1980 4517.8 3007.9 1997 74462.6 48140.6
1981 4862.4 3361.5 1998 78345.2 51588.2
1982 5294.7 3714.8 1999 82067.5 55636.9
1983 5934.5 4126.4 2000 89468.1 61516
1984 7171 4846.3 2001 97314.8 66878.3
1985 8964.4 5986.3 2002 104790.6 71691.2
1986 10202.2 6821.8 2003 135822.8 77449.5
1987 11962.5 7804.6 2004 159878.3 87032.9
1988 14928.3 9839.5 2005 183217.4 97822.7
┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊
1989 16909.2 11164.2 2006 211923.5 110595.3
1990 18547.9 12090.5 2007 249529.9
128444.6 1991 21617.8 14091.9 2008 316228.8 149000
1992 26638.1 17203.3 2009 343464.7 176060.3
1993 34634.4 21899.9 2010 397983 148447.7
1994 46759.4 29242.2
为了分析居民最终消费(Y)和国内生产总值(X)的关系,根据上表做如下散点图:
从散点图可以看出最终消费和国内生产总值大体呈现为线性关系,为分析中国居民最终消费水平随国民总收入变动的数量规律性,可建立如下简单回归模型:
三、估计参数
利用EViews做简单线性回归分析的结果如下图所示:
┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊
可用规范的形式将参数估计和检验的结果写为
t
t
X
Y454948
.0
07
.1
7662
ˆ+
=
(2377.470)(0.017318)
t= (3.222798) (26.27036)
33
317
.1
690
957012
.0
2=
=
=n
F
R。
显示回归结果的图形,如下图所示:
┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊
四、模型检验
1. 经济意义检验
所估计的参数07
.1
7662
ˆ
1
=
β,54948
.4
ˆ
2
=
β,说明国内生产总值每增加1元,可导致最终消费水平提高0.454948元。
2.拟合优度和统计检验
拟合优度的度量:由上表可以看出,本例中可决系数为0.957012,说明所建模型整体上对样本数据拟合较好,即解释变量“国内生产总值”对被解释变量“最终消费”的绝大部分差异作出了解释。
对回归系数的t检验:针对和,由上表可以看出,估计的回归系数的标准误差和t值分别为:SE ()=2377.470,t()=3.222798;的标准误差和t值分别为:SE ()=0.017318,t()=26.27036,取=0.05,查t分布表得自由度为n-2=33-2=31的临界值0395
.2
)
28
(
025
.0
=
t,因为t()=3.222798>0395
.2
)
31
(
025
.0
=
t,所以应拒绝;因为t()=26.27036>0395
.2
)
31
(
025
.0
=
t,所以应拒绝,这表明国内生产总值对国民最终消费水平确有显著影响。
┊ ┊ ┊ ┊
┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊
线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊
五、回归预测
如果2011年全年国内生产总值为436985.334亿元,比上年增长9.8%,利用所估计的模型可预测2011年国民的最终消费水平,点预测值的计算方法为
.620646734.3436985454948.007.17662ˆ=⨯+=f Y
(亿元) 为了作区间预测,取=0.05平均值置信度95%的预测区间为
为获得相关数据,在用EViews 做回归分析中,已经得到=206467.6,
0395.2)31(025.0=t ,=10499.04,
利用EViews 得到X 和Y 的描述统计结果见下表
根据上表可计算出:
2.7943675426872)133(.4107171)1()(222
2=-⨯=-=-=∑∑n x x x x
i i
σ
.022596761219289867)2.08780234.3436985()(22=-=-X X f 当
=436985.334时,将相关数据代入计算得到
5.112333.62064672
.794367542687222596.07612192898673314.010*******.2.6206467 =+⨯⨯
┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊
即是说,当2010年=436985.334亿元时,平均值置信度95%的预测区间为(194134.45,218800.75)亿元。