初中七年级数学三角形的外角(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.2.2 三角形的外角
基础过关作业
1.若三角形的外角中有一个是锐角,则这个三角形是________三角形.
2.△ABC中,若∠C-∠B=∠A,则△ABC的外角中最小的角是______(填“锐角”、“直角”
或“钝角”).
3.如图1,x=______.
(1) (2) (3)
4.如图2,△ABC中,点D在BC的延长线上,点F是AB边上一点,延长CA到E,连EF,则∠1,∠2,∠3的大小关系是_________.
5.如图3,在△ABC中,AE是角平分线,且∠B=52°,∠C=78°,求∠AEB的度数.6.如图,在△ABC中,∠A=60°,BD、CE分别是AC、AB上的高,H是BD、•CE的交点,求∠BHC的度数.
综合创新作业
7.如图所示,在△ABC中,AB=AC,AD=AE,∠BAD=60°,
则∠EDC=______.
8.一个零件的形状如图7-2-2-6所示,按规定∠A
应等于90°,∠B、∠D应分别是30°和20°,
李叔叔量得∠BCD=142°,就断定这个零件不合
格,你能说出道理吗?
9.(1)如图7-2-2-7(1),求出∠A+∠B+∠C+∠D+∠E+∠F的度数;
(2)如图7-2-2-7(2),求出∠A+∠B+∠C+∠D+∠E+∠F的度数.
10.(易错题)三角形的三个外角中最多有_______个锐角.
培优作业
11.(探究题)(1)如图,BD、CD分别是△ABC的两个外角∠CBE、∠BCF•的平分线,试探索∠BDC与∠A之间的数量关系.
(2)如图,BD为△ABC的角平分线,CD为△ABC的外角∠ACE的平分线,它们相交于点D,试探索∠BDC与∠A之间的数量关系.
12.(趣味题)如图,在绿茵场上,足球队员带球进攻,总是向球门AB冲近,说明这是为什么?
数学世界
七桥问题
18世纪在哥尼斯堡城的普莱格尔河上有七座桥,将河中的两个岛和河岸连接.如图所示.城中的居民经常沿河过桥散步,于是就提出一个问题:•能否一次不重复地把这七座桥走遍?可是,走来走去,这个愿望还是无法实现.该怎样走才好呢?•这就是著名的哥尼斯堡七桥问题.••好奇的人把这个问题拿给当时的大数学家欧拉(1707~1783).欧拉以深邃的洞察力很快证明了这样的走法不存在.
你知道欧拉是根据什么道理证明的吗?
答案:
1.钝角
2.直角点拨:∵∠C-∠B=∠A,∴∠C=∠A+∠B.
又∵(∠A+∠B)+∠C=180°,∴∠C+∠C=180°,∴∠C=90°,∴△ABC的外角中最小的角是直角.
3.60 点拨:由题意知x+80=x+(x+20).解得x=60.
4.∠1>∠2>∠3
点拨:∵∠1是∠2的外角,∠2是∠3的外角,∴∠1>∠2>∠3.5.解:∠BAC=180°-(∠B+∠C)=180°-(52°+78°)=50°.∵AE是∠BAC的平分线,
∴∠BAE=∠CAE=1
2
∠BAC=25°.
∴∠AEB=∠CAE+∠C=25°+78°=103°.
6.解:在△ACE中,∠ACE=90°-∠A=90°-60°=30°.而∠BHC是△HDC的外角,
所以∠BHC=∠HDC+∠ACE=90°+30°=120°.
7.30°点拨:设∠CAD=2a,由AB=AC知∠B=1
2
(180°-60°-2a)=60°-•a,•
∠ADB=180°-∠B-60°=60°+a,由AD=AE知,∠ADE=90°-a,
所以∠EDC=180°-∠ADE-∠ADB=30°.
8.解法1:如答图1,延长BC交AD于点E,
则∠DEB=∠A+∠B=90°+30°=•120°,
从而∠DCB=∠DEB+∠D=120°+20°=140°.
若零件合格,∠DCB应等于140°.
李叔叔量得∠BCD=142°,
因此可以断定该零件不合格.
(1) (2) (3)
点拨:也可以延长DC与AB交于一点,方法与此相同.
解法2:如答图2,连接AC并延长至E,则∠3=∠1+∠D,∠4=∠2+∠B,因此∠DCB=∠1+∠D+∠2+∠B=140°.以下同方法1.
解法3:如答图3,过点C作EF∥AB,交AD于E,
则∠DEC=90°,∠FCB=∠B=•30°,所以∠DCF=∠D+∠DEC=110°,
从而∠DCB=∠DCF+∠FCB=140°.以下同方法1.
说明:也可以过点C作AD的平行线.
点拨:上述三种解法应用了三角形外角的性质:三角形的一个外角等于它不相邻的两个内角的和.
9.解:(1)由图知∠A+∠F=∠OQA,∠B+∠C=∠QPC,∠D+∠E=∠EOP.
而∠OQA、•∠QPC、∠EOP是△OPQ的三个外角.
∴∠OQA+∠QPC+∠EOP=360°.
∴∠A+∠B+∠C+∠D+∠E+∠F=∠OQA+∠QPC+∠EOP=360°.
(2)360°点拨:方法同(1).
10.1 点拨:本题易因混淆内角、外角的概念,而误填为3.
11.解:(1)∠BDC=90°-1
2
∠A.
理由:∠ABC+∠ACB=180°-∠A.
∠EBC+∠FCB=(180°-∠ABC)+(180°-∠ACB)=360°-(∠ABC+∠ACB)=180°+∠A.
∵BD、CD分别为∠EBC、∠FCB的平分线,
∴∠CBD=1
2
∠EBC,∠BCD=
1
2
∠FCB.
∴∠CBD+∠BCD=1
2
(∠EBC+∠FCB)=
1
2
×(180°+∠A)
=90°+1
2
∠A.
在△BDC中,∠BDC=180°-(∠CBD+∠BCD)=180°-(90°+1
2
∠A)=90°-
1
2
∠A.
(2)∠BDC=1
2
∠A.
理由:∵∠ACE是△ABC的外角,
∴∠ACE=∠A+∠ABC,
∵CD是∠ACE的平分线,BD是∠ABC的平分线,
∴∠DCE=1
2
∠ACE=
1
2
∠A+
1
2
∠ABC,∠DBC=
1
2
∠ABC.
∵∠DCE是△BCD的外角,
∴∠BDC=∠DCE-∠DBC=1
2
∠A+
1
2
∠ABC-
1
2
∠ABC=
1
2
∠A.
12.解:如图,设球员接球时位于点C,他尽力向球门冲近到D,
此时不仅距离球门近,射门更有力,而且对球门AB的张角也扩大,球就更容易射中.理由说明如下:
延长CD到E,则∠ADE>∠ACE,∠BDE>∠BCE,
∴∠ADE+∠BDE>∠ACE+∠BCE,即∠ADB>∠ACB.
点拨:解此题关键是将生活中的问题抽象为数学问题.
数学世界答案:
欧拉将七桥布局转化为图所示的简单图形,于是七桥问题就变成一个一笔画的问题.这个图形显然无法一笔画出,也就是说,•要想一次无重复地走遍这七座桥是办不到的.。