磁场洛伦兹力基础计算

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁场---洛伦兹力基础计算

1、(12分)下左图中MN表示真空室中垂直于纸面的平板,它的一侧有匀强磁场,磁场方向垂直于纸面向里,磁感应强度大小为B。一带电粒子从平板上的狭缝O处以垂直于平板的初速v射入磁场区域,最后到达平板上的P点。已知B、v以及P到O的距离l,不计重力,求此粒子的电荷q与质量m之比。

2、如图所示,一束电子流以速率v通过一个处于矩形空间的大小为B的匀强磁场,速度方向与磁感线垂直.且

平行于矩形空间的其中一边,矩形空间边长为a和a电子刚好从矩形的相对的两个顶点间通过,求:(1)电子在磁场中的飞行时间?

(2)电子的荷质比q/m.

3、如图所示,一个电子(电量为e)以速度v垂直射入磁感应强度为B、宽度为d的匀强磁场中,穿出磁场时的速度方向与原来入射方向的夹角是30°,试计算:

(1)电子的质量m。(2)电子穿过磁场的时间t。

4、一宽为L的匀强磁场区域,磁感应强度为B,如图所示,一质量为m、电荷量为-q的粒子以某一速度(方向如图所示)射入磁场。若不使粒子从右边界飞出,则其最大速度应为多大?(不计粒子重力)

5、(12分)一个质量为m电荷量为q的带电粒子从x轴上的P(a,0)点以速度v,沿与x正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限,不计重力。

求:(1)粒子做圆周运动的半径

(2)匀强磁场的磁感应强度B

6、如图所示,在xoy平面内有垂直坐标平面的范围足够大的匀强磁场,磁感强度为B,一带正电荷量Q的粒子,质量为m,从O点以某一初速度垂直射入磁场,其轨迹与x、y轴的交点A、B到O点的距离分别为a、b,试求:

(1)初速度方向与x轴夹角θ.

(2)初速度的大小.

7、一电子(e,m)以速度v0与x轴成30°角垂直射入磁感强度为B的匀强磁场中,经一段时间后,打在x轴上的P点,如图所示,则P点到O点的距离为多少?电子由O点运动到P点所用的时间为多少?

8、如图所示,在x轴上方存在着垂直于纸面向里、磁感应强度为B的匀强磁场。一个不计重力的带电粒子从坐标原点O处以速度v进入磁场,粒子进入磁场时的速度方向垂直于磁场且与x轴正方向成120°角,若粒子穿过y轴正半轴后在磁场中到x轴的最大距离为a。求:

(1)该带电粒子的电性;

(2)该带电粒子的比荷。

9、长为l的水平极板间,有垂直纸面向里的匀强磁场,如图3-6-30所示,磁感应强度为B,板间距离也为l,板不带电,现有质量为m、电荷量为q的正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v水平射入磁场,欲使粒子不打在极板上,求速度v的大小应满足的条件.

10、如图所示,边长为L的正方形PQMN(含边界)区域内有垂直纸面向外的匀强磁场,左侧有水平向右的匀强电场,场强大小为E,质量为m,电量为q的带正电粒子(不计重力)从O点由静止释放,O、P、Q三点在同一水平线上,OP=L,带电粒子恰好从M点离开磁场,求:

(1)磁感应强度B的大小。

(2)粒子从O点到M点经历的时间。

11、如图所示,在轴的上方(的空间内)存在着垂直于纸面向里、磁感应强度大小为的匀强磁场。一个不计重力的带正电粒子,从坐标原点O处以速度进入磁场,粒子进入磁场时的速度方向垂直于磁场且与轴正方向的夹角,若粒子的质量为,电荷量为,试求该粒子:

(1)在磁场中作圆周运动的轨道半径;

(2)在磁场中运动的时间。

12、如图所示,一带电微粒质量为m=2.0×10-11kg、电荷量q=+1.0×10-5C,从静止开始经电压为U1=100V的电场加速后,水平进入两平行金属板间的偏转电场中,微粒射出电场时的偏转角θ=30º,并接着进入一个方向垂直纸面向里、宽度为D=34.6cm的匀强磁场区域。已知偏转电场中金属板长L=20cm,两板间距d=17.3cm,重力忽略不计.求:

(1)带电微粒进入偏转电场时的速率v1?

(2)偏转电场中两金属板间的电压U2?

(3)为使带电微粒不会由磁场右边射出,该匀强磁场的磁感应强度B至少多大?

参考答案

一、计算题

1、设半径为R,则由洛伦兹力公式和牛顿第二定律,有

因粒子从平板上的狭缝O处垂直射入磁场,

故OP是圆周直径

2、解:(1)画出运动轨迹,如图所示

由几何关系:R=2a;

1、设圆心角为θ

sinθ=θ=

故时间为:t==

2、洛伦兹力提供向心力,有evB=m

解得:=

答:1、电子在磁场中的飞行时间为.

2、电子的荷质比为.

3、(1)电子在匀强磁场中做匀速圆周运动,轨迹如图所示。

由洛仑兹力提供向心力,则有:

qvB=mv²/R…………2分

由图中几何关系得:

Rsin30°=d………2分

解得电子的质量

m=2edB/v…………2分

(2)电子做匀速圆周运动的周期为

T=2πR/v…………2分

则穿出磁场的时间为

t=T/12=πd/3v…………2分

4、要使粒子不从右边界飞出,则当速度达到最大时运动轨迹应与磁场右边界相切,由几何知识可知半径r满足r+rcosθ=L

解得r=

由于粒子做圆周运动的向心力由洛伦兹力提供,故有

Bqv=

解得v==

5、解:由射入、射出点的半径可找到圆心O/,

(1)据几何关系有--6分

(2)据洛仑兹力提供向心力

--6分

6、解:带电粒子运动的轨迹经过O、A、B三点,由几何关系可知,粒子做圆周运动轨迹的圆心坐标为(-a/2,b/2),初速度方向与x轴夹角

θ=arctg(a/b)

由几何关系可知,轨道半径:R=

又由:QVB=mV2/R,

解得:V=

7、;

【解析】

试题分析:带电粒子在磁场中偏转,其轨迹如图,

根据洛伦兹力提供向心力则有,即 ,从图像可知圆心角为60°,即

相关文档
最新文档