高一数学必修2第二章测试题及答案解析

合集下载

高一数学必修2精选习题与答案

高一数学必修2精选习题与答案

(数学2必修)第一章 空间几何体 一、选择题1.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分 的面积之比为( )A. 1:2:3B. 1:3:5C. 1:2:4D. 1:3:92.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去8个三棱锥后 ,剩下的几何体的体积是( ) A. 23 B. 76C. 45D. 563.已知圆柱与圆锥的底面积相等,高也相等,它们的体积 分别为1V 和2V ,则12:V V =( )A. 1:3B. 1:1C. 2:1D. 3:14.如果两个球的体积之比为8:27,那么两个球的表面积之比为( ) A. 8:27 B. 2:3 C. 4:9 D. 2:95.有一个几何体的三视图及其尺寸如下(单位cm ),则该几何体的表面积及体积为:A. 224cm π,212cm πB. 215cm π,212cmπC. 224cm π,236cm πD. 以上都不正确二、填空题1. 若圆锥的表面积是15π,侧面展开图的圆心角是060,则圆锥的体积是_______。

2.一个半球的全面积为Q ,一个圆柱与此半球等底等体积,则这个圆柱的全面积是 . 3.球的半径扩大为原来的2倍,它的体积扩大为原来的 _________ 倍.4.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米.5.已知棱台的上下底面面积分别为4,16,高为3,则该棱台的体积为___________。

三、解答题1. (如图)在底半径为2,母线长为4的圆锥中内接一个高为3的圆柱, 求圆柱的表面积65P ABCVEDF2.如图,在四边形ABCD 中,090DAB ∠=,0135ADC ∠=,5AB =,22CD =,2AD =,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积.(数学2必修)第二章 点、直线、平面之间的位置关系 [基础训练A 组] 一、选择题1.下列四个结论:⑴两条直线都和同一个平面平行,则这两条直线平行。

高一数学必修2第二章测试题及答案解析(同名10275)

高一数学必修2第二章测试题及答案解析(同名10275)

第二章单元测试题、选择题1.若直线 a 和 b 没有公共点,则 a 与 b 的位置关系是 ( )A .相交B .平行C .异面D .平行或异面2 .平行六面体ABCD -A i B i C i D i 中,既与AB 共面也与CC i 共面的棱 的条数为 ( ) A .3 B .4 C .5 D . 64.长方体ABCD — A i B i C i D i 中,异面直线AB,A i D i 所成的角等于()A. 30° B . 45° C . 60° D . 90° 5.对两条不相交的空间直线a 与b ,必存在平面a,使得() A . a? a , b? a B . a? a, b 〃a C.a 丄 a, b 丄 a D . a? a, b 丄 a6. 下面四个命题:① 若直线 a b 异面 b c 异面 则 a c 异面;② 若直线 a b 相交 b c 相交 则 a c 相交;③ 若a // b ,则a , b 与c 所成的角相等;④ 若a 丄b , b 丄c ,则a / c.其中真命题的个数为()A . 4B . 3C . 2D . i 7. 在正方体 ABCD —A i B i C i D i 中EF 分别是线段 A i B i B i C i 上的 不与端点重合的动点,如果 A i E = B i F ,有下面四个结论:① EF 丄 AA i ;® EF // AC ;③ EF 与 AC 异面;④ EF //平面 ABCD. 其中一定正确的有 ( )A. ①② B .②③ C .②④ D .①④B .8设a , b 为两条不重合的直线,a, B 为两个不重合的平面,下列命 题中为真命题的是( )A .若a , b 与a 所成的角相等,贝S a //bB .若 a / a, b / 伏 a// B,则 a / bB. 若 a? a, b? B a / b ,贝U a// [33. 已知平面a 和直线I ,则 A .平行 B .相交 a 内至少有一条直线与1(C .垂直D .异面D .若a丄a, b丄3 a丄3贝y a丄b9.已知平面a丄平面厲aQ B= l,点A€ a, A?l,直线AB II l,直线AC 丄l,直线m// a n//伏则下列四种位置关系中,不一定成立的是( )A . AB//m B. AC 丄m C. AB// B D. AC 丄B二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)14. 正方体ABCD —A i B i C i D i中,二面角G —AB-C的平面角等于15. ______________________________________________________ 设平面a//平面B, A, C€ a, B , D € B,直线AB与CD交于点S,且点S位于平面a B之间,AS= 8 , BS= 6 , CS= 12 ,则SD= _______________16. 将正方形ABCD沿对角线BD折成直二面角A—BD —C,有如下四个结论:①AC丄BD :②厶ACD是等边三角形;③AB与平面BCD成60°的角;④AB与CD所成的角是60°.其中正确结论的序号是_________ .三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17. (10分)如下图,在三棱柱ABC—A1B1C1中,△ ABC与厶A i B i C i 都求证:(1)平面AB i F i //平面C i BF;⑵平面AB i F i丄平面ACC i A i.18. (12分)如图所示,边长为2的等边△ PCD所在的平面垂直于矩形ABCD所在的平面,BC = 2 2 M为BC的中点.(1)证明:AM丄PM;⑵求二面角P-AM —D的大小.详解答案1[答案]D2[答案]C[解析]AB与CC i为异面直线,故棱中不存在同时与两者平行的直线,因此只有两类:第一类与AB平行与CG相交的有:CD、C1D1与CC i平行且与AB相交的有:BB i、AA1,第二类与两者都相交的只有BC,故共有5条.3[答案]C[解析]1°直线I与平面a斜交时,在平面a内不存在与I平行的直线,二A错;2°l? a时,在a内不存在直线与I异面,二D错;3°l // a时,在a内不存在直线与I相交.无论哪种情形在平面a内都有无数条直线与I垂直.4[答案]D[解析]由于AD // A i D i,则/ BAD是异面直线AB, A i D i所成的角,很明显/ BAD = 90°5[答案]B[解析]对于选项A,当a与b是异面直线时,A错误;对于选项B,若a, b不相交,则a与b平行或异面,都存在a,使a? a, b // a, B正确;对于选项C, a丄a, b± a, 一定有a/ b, C错误;对于选项D , a? a, b丄a 一定有a丄b , D错误.6[答案]D[解析]异面、相交关系在空间中不能传递,故①②错;根据等角定理,可知③正确;对于④,在平面内,a / c ,而在空间中,a与c 可以平行,可以相交,也可以异面,故④错误.7[答案]D[解析]如图所示.由于AA i丄平面A i B i C i D i , EF?平面A i B i C i D i,则EF丄AA i,所以①正确;当E, F分别是线段A1B1, B1C1 的中点时,EF// A i C i, 又AC// A i C i,贝S EF II AC,所以③不正确;当E, F分别不是线段A i B i, B i C i的中点时,EF与AC异面,所以②不正确;由于平面A iB iC iD i I平面ABCD, EF?平面A i B i C i D i,所以EF //平面ABCD,所以④正确.8[答案]D[解析]选项A中,a, b还可能相交或异面,所以A是假命题;选项B中,a, b还可能相交或异面,所以B是假命题;选项C中,a, B还可能相交,所以C是假命题;选项D中,由于a丄a a丄则a // B或a? B,贝卩B内存在直线I I a,又b± B,则b±I,所以a丄b.9[答案]Ci3[答案]an片ABi4[答案]45°[解析]如图所示,正方体ABCD — A i B i C i D i 中,由于BC 丄AB , BC i 丄AB ,贝卩/C i BC 是二面角C i — AB — C 的平面角.又△ BCC i 是等 腰直角三角形,则/ C i BC = 45°i5[答案]9T all AC // BD ,则Ah SD ,A 6=SD ,解得 SD = 9i6[答案]①②④[解析]如图所示,①取BD 中点,E 连接AE , CE ,则BD 丄AE , BD 丄CE ,而 AE A CE = E ,「. BD 丄平面 AEC , AC?平面 AEC , 故 AC 丄BD ,故①正确.②设正方形的边长为a,则AE= CE=_2a.由①知/ AEC= 90°是直二面角A-BD —C的平面角,且/ AEC = 90° 二AC= a,•••△ ACD是等边三角形,故②正确.③由题意及①知,AE丄平面BCD,故/ ABE是AB与平面BCD 所成的角,而/ ABE=45°所以③不正确.④分别取BC, AC的中点为M, N,连接ME, NE, MN.1 1贝S MN // AB, 且MN = 2AB= qa,〃厂 1 1ME / CD,且ME = 2CDpa,•••/ EMN是异面直线AB, CD所成的角.在Rt A AEC 中,AE= CE=今a, AC= a,1 1••• NE = 2AC = 2a. MEN 是正三角形,二/ EMN = 60° 故④正确.17[证明](1)在正三棱柱ABC—A1B1C1中,T F、F1分别是AC、A1C1的中点,•B1F1 // BF, AF1 // GF.又••• B1F1 n AF1 = F1, C1F n BF=F,•平面AB1F1 //平面GBF.(2)在三棱柱ABC—A1B1C1 中,AA1 丄平面A1B1C1,「. BF 丄AA「又B1F1 丄A1C1, A1C1 n AA1 = A1,•B1F1X平面ACC1A1,而B1F1?平面ABF,「•平面AB i F i 丄平面ACC i A i .18[解析](1)证明:如图所示,取 CD 的中点E ,连接PE , EM , EA ,•••△ PCD 为正三角形,••• PE 丄CD , PE = PDsin /PDE = 2sin60=^3.•••平面PCD 丄平面ABCD ,• P E 丄平面 ABCD ,而 AM?平面 ABCD ,「. PE 丄AM. T 四边形ABCD 是矩形,• △ ADE , △ECM , △ABM 均为直角三角形,由勾股定理可求得 EM = 3, AM = 6, AE = 3,• EM 2 + AM 2 = AE 2. • AM 丄 EM.又 PEA EM = E ,「. AM 丄平面 PEM ,「. AM 丄PM.(2)解:由(1)可知EM 丄AM , PM 丄AM ,• / PME 是二面角P - AM — D 的平面角.•二面角P — AM — D 的大小为45°• tan/ PME PE = 3= EM = 3=• / PME = 45°。

高一数学必修2第二章测试题及答案解析

高一数学必修2第二章测试题及答案解析

第二章单元测试题一、选择题1.若直线a和b没有公共点,则a与b的位置关系是() A.相交B.平行C.异面D.平行或异面2.平行六面体ABCD-A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为()A.3B.4C.5D.63.已知平面α和直线l,则α内至少有一条直线与l() A.平行B.相交C.垂直D.异面4.长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于()A.30°B.45°C.60°D.90°5.对两条不相交的空间直线a与b,必存在平面α,使得() A.a⊂α,b⊂α B.a⊂α,b∥αC.a⊥α,b⊥α D.a⊂α,b⊥α6.下面四个命题:①若直线a,b异面,b,c异面,则a,c异面;②若直线a,b相交,b,c相交,则a,c相交;③若a∥b,则a,b与c所成的角相等;④若a⊥b,b⊥c,则a∥c.其中真命题的个数为()A.4B.3C.2D.17.在正方体ABCD-A1B1C1D1中,E,F分别是线段A1B1,B1C1上的不与端点重合的动点,如果A1E=B1F,有下面四个结论:①EF⊥AA1;②EF∥AC;③EF与AC异面;④EF∥平面ABCD.其中一定正确的有()A.①②B.②③C.②④D.①④B.8.设a,b为两条不重合的直线,α,β为两个不重合的平面,下列命题中为真命题的是()A.若a,b与α所成的角相等,则a∥b B.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,a∥b,则α∥βD.若a⊥α,b⊥β,α⊥β,则a⊥b9.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,n∥β,则下列四种位置关系中,不一定成立的是()A.AB∥m B.AC⊥m C.AB∥βD.AC⊥β二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)13.下列图形可用符号表示为________.14.正方体ABCD-A1B1C1D1中,二面角C1-AB-C的平面角等于________.15.设平面α∥平面β,A,C∈α,B,D∈β,直线AB与CD交于点S,且点S位于平面α,β之间,AS=8,BS=6,CS=12,则SD=________. 16.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;④AB与CD所成的角是60°.其中正确结论的序号是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)如下图,在三棱柱ABC-A1B1C1中,△ABC与△A1B1C1都为正三角形且AA1⊥面ABC,F、F1分别是AC,A1C1的中点.求证:(1)平面AB1F1∥平面C1BF;(2)平面AB1F1⊥平面ACC1A1.18.(12分)如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=22,M为BC的中点.(1)证明:AM⊥PM;(2)求二面角P-AM-D的大小.详解答案1[答案] D2[答案] C[解析]AB与CC1为异面直线,故棱中不存在同时与两者平行的直线,因此只有两类:第一类与AB平行与CC1相交的有:CD、C1D1与CC1平行且与AB相交的有:BB1、AA1,第二类与两者都相交的只有BC,故共有5条.3[答案] C[解析]1°直线l与平面α斜交时,在平面α内不存在与l平行的直线,∴A错;2°l⊂α时,在α内不存在直线与l异面,∴D错;3°l∥α时,在α内不存在直线与l相交.无论哪种情形在平面α内都有无数条直线与l垂直.4[答案] D[解析]由于AD∥A1D1,则∠BAD是异面直线AB,A1D1所成的角,很明显∠BAD=90°.5[答案] B[解析]对于选项A,当a与b是异面直线时,A错误;对于选项B,若a,b不相交,则a与b平行或异面,都存在α,使a⊂α,b ∥α,B正确;对于选项C,a⊥α,b⊥α,一定有a∥b,C错误;对于选项D,a⊂α,b⊥α,一定有a⊥b,D错误.6[答案] D[解析]异面、相交关系在空间中不能传递,故①②错;根据等角定理,可知③正确;对于④,在平面内,a∥c,而在空间中,a与c 可以平行,可以相交,也可以异面,故④错误.7[答案] D[解析]如图所示.由于AA1⊥平面A1B1C1D1,EF⊂平面A1B1C1D1,则EF⊥AA1,所以①正确;当E,F分别是线段A1B1,B1C1的中点时,EF∥A1C1,又AC∥A1C1,则EF∥AC,所以③不正确;当E,F分别不是线段A1B1,B1C1的中点时,EF与AC异面,所以②不正确;由于平面A1B1C1D1∥平面ABCD,EF⊂平面A1B1C1D1,所以EF∥平面ABCD,所以④正确.8[答案] D[解析]选项A中,a,b还可能相交或异面,所以A是假命题;选项B中,a,b还可能相交或异面,所以B是假命题;选项C中,α,β还可能相交,所以C是假命题;选项D中,由于a⊥α,α⊥β,则a ∥β或a⊂β,则β内存在直线l∥a,又b⊥β,则b⊥l,所以a⊥b.9[答案] C[解析]如图所示:AB∥l∥m;AC⊥l,m∥l⇒AC⊥m;AB∥l⇒AB∥β.13[答案]α∩β=AB14[答案]45°[解析]如图所示,正方体ABCD-A1B1C1D1中,由于BC⊥AB,BC1⊥AB,则∠C1BC是二面角C1-AB-C的平面角.又△BCC1是等腰直角三角形,则∠C1BC=45°.15[答案]9[解析]如下图所示,连接AC,BD,则直线AB,CD确定一个平面ACBD.∵α∥β,∴AC∥BD,则ASSB=CSSD,∴86=12SD,解得SD=9.16[答案]①②④[解析]如图所示,①取BD中点,E连接AE,CE,则BD⊥AE,BD⊥CE,而AE∩CE=E,∴BD⊥平面AEC,AC⊂平面AEC,故AC ⊥BD,故①正确.②设正方形的边长为a,则AE=CE=2 2a.由①知∠AEC=90°是直二面角A-BD-C的平面角,且∠AEC=90°,∴AC=a,∴△ACD是等边三角形,故②正确.③由题意及①知,AE⊥平面BCD,故∠ABE是AB与平面BCD 所成的角,而∠ABE=45°,所以③不正确.④分别取BC,AC的中点为M,N,连接ME,NE,MN.则MN∥AB,且MN=12AB=12a,ME∥CD,且ME=12CD=12a,∴∠EMN是异面直线AB,CD所成的角.在Rt△AEC中,AE=CE=22a,AC=a,∴NE=12AC=12a.∴△MEN是正三角形,∴∠EMN=60°,故④正确.17[证明](1)在正三棱柱ABC-A1B1C1中,∵F、F1分别是AC、A1C1的中点,∴B1F1∥BF,AF1∥C1F.又∵B1F1∩AF1=F1,C1F∩BF=F,∴平面AB1F1∥平面C1BF.(2)在三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,∴B1F1⊥AA1.又B1F1⊥A1C1,A1C1∩AA1=A1,∴B1F1⊥平面ACC1A1,而B1F1⊂平面AB1F1,∴平面AB1F1⊥平面ACC1A1.18[解析](1)证明:如图所示,取CD的中点E,连接PE,EM,EA,∵△PCD为正三角形,∴PE⊥CD,PE=PD sin∠PDE=2sin60°= 3.∵平面PCD⊥平面ABCD,∴PE⊥平面ABCD,而AM⊂平面ABCD,∴PE⊥AM.∵四边形ABCD是矩形,∴△ADE,△ECM,△ABM均为直角三角形,由勾股定理可求得EM=3,AM=6,AE=3,∴EM2+AM2=AE2.∴AM⊥EM.又PE∩EM=E,∴AM⊥平面PEM,∴AM⊥PM.(2)解:由(1)可知EM⊥AM,PM⊥AM,∴∠PME是二面角P-AM-D的平面角.∴tan∠PME=PEEM=33=1,∴∠PME=45°.∴二面角P-AM-D的大小为45°.。

人教版高中数学必修二第二章单元测试(二)- Word版含答案

人教版高中数学必修二第二章单元测试(二)- Word版含答案

2018-2019学年必修二第二章训练卷点、直线、平面之间的位置关系(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.下列推理错误的是( ) A .A ∈l ,A ∈α,B ∈l ,B ∈α⇒l ⊂α B .A ∈α,A ∈β,B ∈α,B ∈β⇒α∩β=AB C .l ⊄α,A ∈l ⇒A ∉α D .A ∈l ,l ⊂α⇒A ∈α2.长方体ABCD -A 1B 1C 1D 1中,异面直线AB ,A 1D 1所成的角等于( ) A .30°B .45°C .60°D .90°3.在空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 上的点,当BD ∥平面EFGH 时,下面结论正确的是( ) A .E ,F ,G ,H 一定是各边的中点 B .G ,H 一定是CD ,DA 的中点C .BE ∶EA =BF ∶FC ,且DH ∶HA =DG ∶GCD .AE ∶EB =AH ∶HD ,且BF ∶FC =DG ∶GC4.如图,正方体的底面与正四面体的底面在同一平面α上,且AB ∥CD ,正方体的六个面所在的平面与直线CE ,EF 相交的平面个数分别记为m ,n ,那么m +n 等于( )A .8B .9C .10D .115.如图所示,在正方体ABCD —A 1B 1C 1D 1中,若E 是A 1C 1的中点,则直线CE 垂直于( )A .ACB .BDC .A 1DD .A 1D 16.如图所示,将等腰直角△ABC 沿斜边BC 上的高AD 折成一个二面角,此时∠B ′AC =60°,那么这个二面角大小是( )A .90°B .60°C .45°D .30°7.如图所示,直线P A 垂直于⊙O 所在的平面,△ABC 内接于⊙O ,且AB 为⊙O 的直径,点M 为线段PB 的中点.此卷只装订不密封班级 姓名 准考证号 考场号 座位号现有结论:①BC ⊥PC ;②OM ∥平面APC ;③点B 到平面P AC 的距离等于线段BC 的长,其中正确的是( ) A .①②B .①②③C .①D .②③8.如图,三棱柱111ABC A B C -中,侧棱AA 1⊥底面A 1B 1C 1,底面三角形A 1B 1C 1是正三角形,E 是BC 中点,则下列叙述正确的是( )A .CC 1与B 1E 是异面直线B .AC ⊥平面ABB 1A 1 C .AE ,B 1C 1为异面直线,且AE ⊥B 1C 1D .A 1C 1∥平面AB 1E9.已知平面α⊥平面β,α∩β=l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定成立的是( ) A .AB ∥mB .AC ⊥mC .AB ∥βD .AC ⊥β10.已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94正三角形.若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为( ) A .512πB .3π C .4π D .6π 11.正方体ABCD -A 1B 1C 1D 1中,过点A 作平面A 1BD 的垂线,垂足为点H .以下结论中,错误的是( ) A .点H 是△A 1BD 的垂心 B .AH ⊥平面CB 1D 1C .AH 的延长线经过点C 1D .直线AH 和BB 1所成的角为45°12.已知矩形ABCD ,AB =1,BC ,将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中( )A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.下列四个命题:①若a ∥b ,a ∥α,则b ∥α;②若a ∥α,b ⊂α,则a ∥b ;③若a ∥α,则a 平行于α内所有的直线;④若a ∥α,a ∥b ,b ⊄α,则b ∥α.其中正确命题的序号是________.14.如图所示,在直四棱柱1111ABCD A B C D -中,当底面四边形A 1B 1C 1D 1满足条件_______时,有A 1C ⊥B 1D 1.(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况)15.已知四棱锥P ABCD -的底面ABCD 是矩形,P A ⊥底面ABCD ,点E 、F 分别是棱PC 、PD 的中点,则 ①棱AB 与PD 所在直线垂直; ②平面PBC 与平面ABCD 垂直; ③△PCD 的面积大于PAB △的面积; ④直线AE 与直线BF 是异面直线.以上结论正确的是________.(写出所有正确结论的编号)16.如图所示,已知矩形ABCD 中,AB =3,BC =a ,若P A ⊥平面ABCD ,在BC 边上取点E ,使PE ⊥DE ,则满足条件的E 点有两个时,a 的取值范围是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)如图所示,长方体1111ABCD A B C D -中,M 、N 分别为AB 、A 1D 1的中点,判断MN 与平面A 1BC 1的位置关系,为什么?18.(12分)如图,三棱柱111ABC A B C -的侧棱与底面垂直,AC =9,BC =12,AB =15,AA 1=12,点D 是AB 的中点. (1)求证:AC ⊥B 1C ; (2)求证:AC 1∥平面CDB 1.19.(12分)如图,在三棱锥P —ABC 中,P A ⊥底面ABC ,∠BCA =90°,点D 、E 分别在棱PB 、PC 上,且DE ∥BC . (1)求证:BC ⊥平面P AC .(2)是否存在点E 使得二面角A DE P --为直二面角?并说明理由.20.(12分)如图,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,B 1C 的中点为O ,且AO ⊥平面BB 1C 1C . (1)证明:B 1C ⊥AB ;(2)若AC ⊥AB 1,∠CBB 1=60°,BC =1,求三棱柱111ABC A B C -的高.21.(12分)如图所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为a,E是PC的中点.(1)求证:P A∥面BDE;(2)求证:平面P AC⊥平面BDE;(3)若二面角E BD C--为30°,求四棱锥P ABCD-的体积.22.(12分)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E ABC-的体积.2018-2019学年必修二第二章训练卷点、直线、平面之间的位置关系(二)答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.【答案】C【解析】若直线l∩α=A,显然有l⊄α,A∈l,但A∈α.故选C.2.【答案】D【解析】由于AD∥A1D1,则∠BAD是异面直线AB,A1D1所成的角,很明显∠BAD =90°.故选D.3.【答案】D【解析】由于BD∥平面EFGH,所以有BD∥EH,BD∥FG,则AE∶EB=AH∶HD,且BF∶FC=DG∶GC.故选D.4.【答案】A【解析】如图,取CD的中点H,连接EH,HF.在四面体CDEF中,CD⊥EH,CD⊥FH,所以CD⊥平面EFH,所以AB⊥平面EFH,所以正方体的左、右两个侧面与EFH平行,其余4个平面与EFH相交,即n=4.又因为CE与AB在同一平面内,所以CE与正方体下底面共面,与上底面平行,与其余四个面相交,即m=4,所以m+n=4+4=8.故选A.5.【答案】B【解析】易证BD⊥面CC1E,则BD⊥CE.故选B.6.【答案】A 【解析】连接B′C,则△AB′C为等边三角形,设AD=a,则B′D=DC=a,B C AC'==,所以∠B′DC=90°.故选A.7.【答案】B【解析】对于①,∵P A⊥平面ABC,∴P A⊥BC,∵AB为⊙O的直径,∴BC⊥AC,∴BC⊥平面P AC,又PC⊂平面P AC,∴BC⊥PC;对于②,∵点M为线段PB的中点,∴OM∥P A,∵P A⊂平面P AC,∴OM∥平面P AC;对于③,由①知BC⊥平面P AC,∴线段BC的长即是点B到平面P AC的距离.故①②③都正确.8.【答案】C【解析】由已知AC=AB,E为BC中点,故AE⊥BC,又∵BC∥B1C1,∴AE⊥B1C1,故C正确.故选C.9.【答案】D【解析】∵m∥α,m∥β,α∩β=l,∴m∥l.∵AB∥l,∴AB∥m.故A一定正确.∵AC⊥l,m∥l,∴AC⊥m.故B一定正确.∵A∈α,AB∥l,l⊂α,∴B∈α.∴AB⊄β,l⊂β.∴AB∥β.故C也正确.∵AC⊥l,当点C在平面α内时,AC⊥β成立,当点C不在平面α内时,AC⊥β不成立.故D不一定成立.故选D.10.【答案】B【解析】如图所示,作PO⊥平面ABC,则O为△ABC的中心,连接AP,AO.1sin 602ABC S =︒=11194ABC A B C ABC V S OP OP -∴=⨯==,OP ∴=213OA ==,∴tan OP OAP OA ∠=,又02OAP π<∠<,∴3OAP π∠=.故选B .11.【答案】D【解析】因为AH ⊥平面A 1BD ,BD ⊂平面A 1BD ,所以BD ⊥AH . 又BD ⊥AA 1,且AH ∩AA 1=A .所以BD ⊥平面AA 1H .又A 1H ⊂平面AA 1H .所以A 1H ⊥BD ,同理可证BH ⊥A 1D ,所以点H 是△A 1BD 的垂心,故A 正确. 因为平面A 1BD ∥平面CB 1D 1,所以AH ⊥平面CB 1D 1,B 正确.易证AC 1⊥平面A 1BD .因为过一点有且只有一条直线与已知平面垂直,所以AC 1和AH 重合.故C 正确.因为AA 1∥BB 1,所以∠A 1AH 为直线AH 和BB 1所成的角. 因为∠AA 1H ≠45°,所以∠A 1AH ≠45°,故D 错误.故选D . 12.【答案】B【解析】A 错误.理由如下:过A 作AE ⊥BD ,垂足为E ,连接CE ,若直线AC 与直线BD 垂直,则可得BD ⊥平面ACE ,于是BD ⊥CE ,而由矩形ABCD 边长的关系可知BD 与CE 并不垂直.所以直线AC 与直线BD 不垂直.B 正确.理由:翻折到点A 在平面BCD 内的射影恰好在直线BC 上时,平面ABC ⊥平面BCD ,此时由CD ⊥BC 可证CD ⊥平面ABC ,于是有AB ⊥CD .故B 正确. C 错误.理由如下:若直线AD 与直线BC 垂直,则由BC ⊥CD 可知BC ⊥平面ACD ,于是BC ⊥AC ,但是AB <BC ,在△ABC 中∠ACB 不可能是直角.故直线AD 与直线BC 不垂直.由以上分析显然D 错误.故选B .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【答案】④【解析】①中b 可能在α内;②a 与b 可能异面或者垂直;③a 可能与α内的直线异面或垂直.14.【答案】B 1D 1⊥A 1C 1(答案不唯一)【解析】由直四棱柱可知CC 1⊥面A 1B 1C 1D 1,所以CC 1⊥B 1D 1,要使B 1D 1⊥A 1C ,只要B 1D 1⊥平面A 1CC 1,所以只要B 1D 1⊥A 1C 1,还可以填写四边形A 1B 1C 1D 1是菱形,正方形等条件. 15.【答案】①③【解析】由条件可得AB ⊥平面P AD ,∴AB ⊥PD ,故①正确;若平面PBC ⊥平面ABCD ,由PB ⊥BC ,得PB ⊥平面ABCD ,从而P A ∥PB , 这是不可能的,故②错;1·2PCD S CD PD =△,1·2PAB S AB PA =△,由AB =CD ,PD >P A 知③正确;由E 、F 分别是棱PC 、PD 的中点,可得EF ∥CD ,又AB ∥CD ,∴EF ∥AB , 故AE 与BF 共面,④错. 16.【答案】a >6【解析】由题意知:P A ⊥DE ,又PE ⊥DE ,P A ∩PE =P ,∴DE ⊥面P AE ,∴DE ⊥AE .易证△ABE ∽△ECD .设BE =x ,则A B B EC E C D=,即33xa x =-.∴290x ax +=-, 由0∆>,解得a >6.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】平行,见解析.【解析】直线MN ∥平面A 1BC 1.证明如下:∵M ∉平面A 1BC 1,N ∉平面A 1BC 1.∴MN ∉平面A 1BC 1. 如图,取A 1C 1的中点O 1,连接NO 1、BO 1.∵11112N D O C ∥,1112M D B C ∥,∴1NO MB ∥.∴四边形NO 1BM 为平行四边形.∴MN ∥BO 1.又∵BO 1⊂平面A 1BC 1,∴MN ∥平面A 1BC 1. 18.【答案】(1)见解析;(2)见解析. 【解析】(1)∵C 1C ⊥平面ABC ,∴C 1C ⊥AC .∵AC =9,BC =12,AB =15,∴AC 2+BC 2=AB 2,∴AC ⊥BC .又BC ∩C 1C =C ,∴AC ⊥平面BCC 1B 1,而B 1C ⊂平面BCC 1B 1,∴AC ⊥B 1C . (2)连接BC 1交B 1C 于O 点,连接OD .如图,∵O ,D 分别为BC 1,AB 的中点,∴OD ∥AC 1.又OD ⊂平面CDB 1,AC 1⊄平面CDB 1.∴AC 1∥平面CDB 1. 19.【答案】(1)见解析;(2)存在,见解析.【解析】(1)证明∵P A ⊥底面ABC ,∴P A ⊥BC .又∠BCA =90°,∴AC ⊥BC . 又∵AC ∩P A =A ,∴BC ⊥平面P AC .(2)∵DE ∥BC ,又由(1)知,BC ⊥平面P AC ,∴DE ⊥平面P AC . 又∵AE ⊂平面P AC ,PE ⊂平面P AC ,∴DE ⊥AE ,DE ⊥PE . ∴∠AEP 为二面角A DE P --的平面角. ∵P A ⊥底面ABC ,∴P A ⊥AC ,∴∠P AC =90°.∴在棱PC 上存在一点E ,使得AE ⊥PC .这时∠AEP =90°, 故存在点E ,使得二面角A DE P --为直二面角.20.【答案】(1)见解析;(2. 【解析】(1)证明 连接BC 1,则O 为B 1C 与BC 1的交点.因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1.又AO ⊥平面BB 1C 1C ,所以B 1C ⊥AO ,故B 1C ⊥平面ABO . 由于AB ⊂平面ABO ,故B 1C ⊥AB .(2)解 在平面BB 1C 1C 内作OD ⊥BC ,垂足为D ,连接AD . 在平面AOD 内作OH ⊥AD ,垂足为H .由于BC ⊥AO ,BC ⊥OD ,故BC ⊥平面AOD ,所以OH ⊥BC . 又OH ⊥AD ,所以OH ⊥平面ABC .因为∠CBB 1=60°,所以△CBB 1为等边三角形.又BC =1,可得OD =.由于AC ⊥AB 1,所以11122OA B C ==.由OH ·AD =OD ·OA,且AD =OH .又O 为B 1C 的中点,所以点B 1到平面ABC, 故三棱柱111ABC A B C -. 21.【答案】(1)见解析;(2)见解析;(3)3P ABCD V -=. 【解析】(1)证明 连接OE ,如图所示.∵O 、E 分别为AC 、PC 的中点,∴OE ∥P A . ∵OE ⊂面BDE ,P A ⊄面BDE ,∴P A ∥面BDE . (2)证明 ∵PO ⊥面ABCD ,∴PO ⊥BD .在正方形ABCD 中,BD ⊥AC ,又∵PO ∩AC =O ,∴BD ⊥面P AC . 又∵BD ⊂面BDE ,∴面P AC ⊥面BDE .(3)解 取OC 中点F ,连接EF .∵E 为PC 中点, ∴EF 为POC △的中位线,∴EF ∥PO .又∵PO ⊥面ABCD ,∴EF ⊥面ABCD ,∴EF ⊥BD . ∵OF ⊥BD ,OF ∩EF =F ,∴BD ⊥面EFO ,∴OE ⊥BD . ∴∠EOF 为二面角E BD C --的平面角,∴∠EOF =30°.在Rt △OEF中,1124OF OC AC ===,∴·tan 30EF OF =︒,∴2OP EF ==.∴2313P ABCD V a -=⨯. 22.【答案】(1)见解析;(2)见解析;(3)V =. 【解析】(1)证明在三棱柱111ABC A B C -中,BB 1⊥底面ABC ,所以BB 1⊥AB . 又因为AB ⊥BC ,所以AB ⊥平面B 1BCC 1, 又AB ⊂平面ABE ,所以平面ABE ⊥平面B 1BCC 1. (2)证明 取AB 的中点G ,连接EG ,FG .因为E ,F 分别是A 1C 1,BC 的中点,所以FG ∥AC ,且12FG AC =. 因为AC ∥A 1C 1,且AC =A 1C 1,所以FG ∥EC 1,且FG =EC 1, 所以四边形FGEC 1为平行四边形.所以C 1F ∥EG .又因为EG ⊂平面ABE ,C 1F ⊄平面ABE ,所以C 1F ∥平面ABE .(3)解 因为AA 1=AC =2,BC =1,AB ⊥BC,所以AB == 所以三棱锥E -ABC的体积1111·12332ABC V S AA ==⨯⨯=△.。

成才之路人教A版数学必修2-2.1.2

成才之路人教A版数学必修2-2.1.2

第二章 2.1 2.1.2一、选择题1.异面直线是指()A.空间中两条不相交的直线B.分别位于两个不同平面内的两条直线C.平面内的一条直线与平面外的一条直线D.不同在任何一个平面内的两条直线[答案] D[解析]对于A,空间两条不相交的直线有两种可能,一是平行(共面),另一个是异面.∴A应排除.对于B,分别位于两个平面内的直线,既可能平行也可能相交也可异面,如右图,就是相交的情况,∴B应排除.对于C,如右图的a,b可看作是平面α内的一条直线a与平面α外的一条直线b,显然它们是相交直线,∴C应排除.只有D符合定义.∴应选D.规律总结:解答这类立体几何的命题的真假判定问题,一方面要熟练掌握立体几何中的有关概念和公理、定理;另一方面要善于寻找特例,构造相关特例模型,能快速、有效地排除相关的选择项.2.a,b为异面直线,且a⊂α,b⊂β,若α∩β=l,则直线l必定()A.与a,b都相交B.与a,b都不相交C.至少与a,b之一相交D.至多与a,b之一相交[答案] C[解析]若a,b与l都不相交,则a∥l,b∥l,即a∥b,与a,b是异面直线矛盾.故选C.3.正方体ABCD-A1B1C1D1中,与对角线AC1异面的棱有()A.3条B.4条C.6条D.8条[答案] C[解析]画一个正方体,不难得出有6条.4.空间四边形ABCD中,E、F分别为AC、BD中点,若CD=2AB,EF⊥AB,则EF 与CD所成的角为()A.30°B.45°C.60°D.90°[答案] A[解析] 取AD 的中点H ,连FH 、EH ,在△EFH 中 ∠EFH =90°, HE =2HF ,从而∠FEH =30°, 故选A.5.下列命题中,正确的结论有( )①如果一个角的两边与另一个角的两边分别平行,那么这两个角相等;②如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;③如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补;④如果两条直线同时平行于第三条直线,那么这两条直线互相平行.A .1个B .2个C .3个D .4个[答案] B[解析] ②④是正确的.6.如图所示,设E ,F ,G ,H 依次是空间四边形ABCD 的边AB ,BC ,CD ,DA 上除端点外的点,且AE AB =AH AD =λ,CF CB =CGCD=μ,则下列结论不正确的是( )A .当λ=μ时,四边形EFGH 是平行四边形B .当λ≠μ时,四边形EFGH 是梯形C .当λ=μ=12时,四边形EFGH 是平行四边形D .当λ=μ≠12时,四边形EFGH 是梯形[答案] D[解析] 如图所示,连接BD , ∵AE AB =AHAD=λ, ∴EH ∥BD ,且EH =λBD . 同理,FG ∥BD ,且FG =μBD .∴EH∥FG.∴当λ=μ时,EH=FG.∴此时四边形EFGH是平行四边形.∴选项A,C正确,D错;当λ≠μ时,EH≠FG,则此时四边形EFGH是梯形,∴选项B正确.二、填空题7.若AB∥A′B′,AC∥A′C′,则下列结论:①∠ACB=∠A′C′B′;②∠ABC+∠A′B′C′=180°;③∠BAC=∠B′A′C′或∠BAC+∠B′A′C′=180°.一定成立的是________.[答案]③8.如图所示,六棱柱ABCDEF-A1B1C1D1E1F1中,底面是正六边形.(1)A1F1与BD所成角的度数为________.(2)C1F1与BE所成角的度数为________.[答案]30°60°9.下列各图是正方体或正四面体(四个面都是正三角形的四面体),P,Q,R,S分别是所在棱的中点,则这四点不共面的一个图形是________.[答案]④三、解答题10.如图所示,在长方体ABCD-A1B1C1D1中的面A1C1内有一点P,经过点P作棱BC 的平行线,应该怎样画?并说明理由.[分析]由于BC∥B1C1,所以平行于BC的直线只需要平行于B1C1即可.[解析]如图所示,在面A1C1内过P作直线EF∥B1C1,交A1B1于点E,交C1D1于点F,则直线EF 即为所求.理由:∵EF ∥B 1C 1,BC ∥B 1C 1,∴EF ∥BC .11.如图所示,AB 是圆O 的直径,点C 是弧AB 的中点,D 、E 分别是VB 、VC 的中点,求异面直线DE 与AB 所成的角.[解析] 由已知得BC ⊥AC , 又BC =AC ,∴∠ABC =45°.又在△VBC 中,D 、E 分别为VB 、VC 中点, ∴DE ∥BC ,∴DE 与AB 所成的角为∠ABC =45°.12.如图,等腰直角三角形ABC 中,∠A =90°,BC =2,DA ⊥AC ,DA ⊥AB ,若DA =1,且E 为DA 的中点.求异面直线BE 与CD 所成角的余弦值.[分析] 根据异面直线所成角的定义,我们可以选择适当的点,分别引BE 与DC 的平行线,换句话说,平移BE (或CD ).设想平移CD ,沿着DA 的方向,使D 移向E ,则C 移向AC 的中点F ,这样BE 与CD 所成的角即为∠BEF 或其补角,解△EFB 即可获解.[解析] 取AC 的中点F ,连接BF 、EF ,在△ACD 中,E 、F 分别是AD 、AC 的中点, ∴EF ∥CD ,∴∠BEF 即为所求的异面直线BE 与CD 所成的角(或其补角). 在Rt △EAB 中,AB =1,AE =12AD =12,∴BE =52.在Rt △AEF 中,AF =12AC =12,AE =12,∴EF =22.在Rt △ABF 中,AB =1,AF =12,∴BF =52.在等腰△EBF 中,cos ∠FEB =12EF BE =2452=1010,∴异面直线BE 与CD 所成角的余弦值为1010.。

2020人教B版高中数学必修二第二章平面解析几何初步综合测试B含解析

2020人教B版高中数学必修二第二章平面解析几何初步综合测试B含解析

【成才之路】2015-2016学年高中数学第二章平面解析几何初步综合测试B 新人教B版必修2时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.直线x+(m+1)y+3=0与直线mx+2y-1=0平行,则m的值为( )A.1 B.-2C.2或-1 D.-2或1[答案] D[解析]由题意,得1×2-m(m+1)=0,即m2+m-2=0,解得m=-2或1.经检验知当m=-2或1,满足题意.2.(2015·辽宁沈阳二中高一期末测试)在空间直角坐标系中,以点A(4,1,9)、B(10,-1,6)、C(x,4,3)为顶点的△ABC是以BC为底边的等腰三角形,则实数x的值为( ) A.-2 B.2C.6 D.2或6[答案] D[解析]由题意得10-42+-1-12+6-92=x-42+4-12+3-92,解得x=2或6.3.(2015·甘肃天水市泰安县二中月考)直线l:x-y+1=0关于y轴对称的直线方程为( )A.x+y-1=0 B.x-y+1=0C.x+y+1=0 D.x-y-1=0[答案] A[解析]用-x替换方程x-y+1=0的x,得-x-y+1=0,即x+y-1=0,故选A.4.如果方程Ax+By+C=0表示的直线是y轴,则A、B、C满足( )A.B·C=0 B.A≠0C.B·C=0且A≠0 D.A≠0且B=C=0[答案] D[解析]直线是y轴,则斜率不存在且过点(0,0).斜率不存在,得B=0.A、B不同时为0,得A≠0,又过点(0,0),得C=0.5.直线(m+2)x+my+1=0与直线(m-1)x+(m-4)y+2=0互相垂直,则m的值为( )A .12B .-2C .-12或2D .-2或12[答案] C[解析] 由题意,得(m +2)(m -1)+m (m -4)=0, 解得m =-12或2.6.对任意的实数k ,直线y =kx +1与圆x 2+y 2=2的位置关系一定是( ) A .相离 B .相切C .相交但直线不过圆心D .相交且直线过圆心 [答案] C[解析] 本题考查直线与圆的位置关系,点到直线的距离公式. 圆心C (0,0)到直线kx -y +1=0的距离d =11+k2≤1< 2.所以直线与圆相交,故选C .7.(2015·云南曲靖市陆良县二中高一期末测试)若圆的一条直径的两端点分别是(-1,3)和(5,-5),则此圆的方程是( )A .x 2+y 2+4x +2y -20=0 B .x 2+y 2-4x -2y -20=0 C .x 2+y 2-4x +2y +20=0 D .x 2+y 2-4x +2y -20=0 [答案] D[解析] 圆心坐标为(2,-1),半径为2+12+-1-32=5,故所求圆的方程为(x -2)2+(y +1)2=25,即x 2+y 2-4x +2y -20=0.8.方程x 2+y 2+2kx +4y +3k +8=0表示圆,则k 的取值范围是( ) A .k =4或k =-1 B .k >4或k <-1 C .-1<k <4 D .以上都不对[答案] B[解析] 方程x 2+y 2+2kx +4y +3k +8=0,可化为(x +k )2+(y +2)2=k 2-3k -4,由题意,得k 2-3k -4>0,∴k >4或k <-1.9.(2015·广州二中高一期末测试)直线y =kx +1与圆x 2+y 2-2y =0的位置关系是( )A .相交B .相切C .相离D .取决于k 的值[答案] A[解析] 解法一:∵直线y =kx +1过定点(0,1),又点(0,1)在圆x 2+y 2-2y =0的内部, ∴直线与圆相交.解法二:由⎩⎪⎨⎪⎧y =kx +1x 2+y 2-2y =0,得(1+k 2)x 2-1=0,Δ=4(1+k 2)>0,故直线与圆相交.10.已知直线x +3y -7=0,kx -y -2=0与x 轴,y 轴围成的四边形有外接圆,则实数k 的值是( )A .-3B .3C .-6D .6[答案] B[解析] 由题意,知两直线垂直, ∴1·k +3·(-1)=0,∴k =3.11.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -3)2+⎝ ⎛⎭⎪⎫y -732=1B .(x -2)2+(y -1)2=1 C .(x -1)2+(y -3)2=1D.⎝ ⎛⎭⎪⎫x -322+(y -1)2=1 [答案] B[解析] 设圆心坐标为(x ,y ),由题意知x >0,y =1. 由点到直线的距离公式,得|4x -3|42+32=1, ∴4x -3=±5,∵x >0,∴x =2.故所求圆的标准方程是(x -2)2+(y -1)2=1.12.将直线2x -y +λ=0沿x 轴向左平移一个单位,所得直线与圆x 2+y 2+2x -4y =0相切,则实数λ的值为( )A .-3或7B .-2或8C .0或10D .1或11[答案] A[解析] 直线2x -y +λ=0沿x 轴向左平移一个单位后为2(x +1)-y +λ=0,即2x -y +2+λ=0,又直线2x -y +2+λ=0与圆x 2+y 2+2x -4y =0相切,则|-2-2+2+λ|5=5,解得λ=-3或7.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.(2015·广州二中高一期末测试)已知a <0,直线l 1:2x +ay =2,l 2:a 2x +2y =1,若l 1⊥l 2,则a =________.[答案] -1[解析] ∵l 1⊥l 2,∴2a 2+2a =0, ∴a =-1或a =0.∵a <0,∴a =-1.14.经过圆x 2+2x +y 2=0的圆心C ,且与直线x +y =0垂直的直线方程是________. [答案] x -y +1=0[解析] 由x 2+2x +y 2=0得圆心C (-1,0), 所求直线与x +y =0垂直,∴所求直线的斜率为1, ∴所求直线的方程为x -y +1=0.15.已知圆O :x 2+y 2=5和点A (1,2),则过A 且与圆O 相切的直线与两坐标轴围成的三角形的面积等于____________.[答案]254[解析] ∵点A (1,2)在圆x 2+y 2=5上,故过点A 的圆的切线方程为x +2y -5=0,令x =0,得y =52,令y =0,得x =5, ∴S △=12×52×5=254.16.一束光线从点A (-2,2)出发,经x 轴反射到圆C :(x -4)2+(y -6)2=1上的最短路程是______.[答案] 9[解析] A 关于x 轴对称点A 1(-2,-2),⊙C 的圆心C (4,6),|A 1C |=10, ∴最短路程为|A 1C |-1=9.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)(2015·湖南益阳市高一期末测试)已知两直线l 1:(3+m )x +9y =m -1,l 2:2x +(1+2m )y =6.(1)m 为何值时,l 1与l 2垂直; (2)m 为何值时,l 1与l 2平行.[解析] (1)由题意得2(3+m )+9(1+2m )=0, 解得m =1516.(2)由题意得(3+m )(1+2m )-18=0, 解得m =-5或32.当m =-5时,l 1与l 2重合;当m =32时,l 1与l 2平行.18.(本题满分12分)已知直线l 1:x +2y -3=0与l 2:2x -y -1=0的交点是P ,直线l 过点P 及点A (4,3).(1)求l 的方程;(2)求过点P 且与l 垂直的直线l ′的方程.[解析] (1)由⎩⎪⎨⎪⎧x +2y -3=02x -y -1=0,得⎩⎪⎨⎪⎧x =1y =1.∴P (1,1),∴l 的方程为:y -13-1=x -14-1,即l :2x -3y +1=0.(2)∵所求直线l ′与l 垂直, ∴斜率为-32.又∵l ′过点(1,1),∴所求直线l ′的方程为y -1=-32(x -1),即3x +2y -5=0.19.(本题满分12分)(2015·云南曲靖市陆良县二中高一期末测试)△ABC 中,点A (1,1)、B (4,2)、C (-4,6).(1)求BC 边上的中线所在直线的方程; (2)求BC 边上的高及△ABC 的面积.[解析] (1)BC 边的中点D 的坐标为(0,4),∴中线AD 的斜率k =4-10-1=-3,故中线AD 的方程为y -4=-3(x -0), 即3x +y -4=0.(2)BC 边所在直线的斜率为k BC =6-2-4-4=-12,BC 边所在直线的方程为y -2=-12(x -4),即x +2y -8=0.点A 到BC 边的距离d =|1+2-8|12+22=5, ∴BC 边上的高为5, |BC |=-4-42+6-22=4 5.∴S △ABC =12×45×5=10.20.(本题满分12分)如图所示,在Rt △ABC 中,已知A (-2,0),直角顶点B (0,-22),点C 在x 轴上.(1)求Rt △ABC 外接圆的方程;(2)求过点(-4,0)且与Rt △ABC 外接圆相切的直线的方程.[解析] (1)由题意可知点C 在x 轴的正半轴上,可设其坐标为(a,0),又AB ⊥BC ,则k AB ·k BC =-1,即-222·22a=-1,解得a =4. 则所求圆的圆心为(1,0),半径为3,故所求圆的方程为(x -1)2+y 2=9.(2)由题意知直线的斜率存在,故设所求直线方程为y =kx +4,即 kx -y +4k =0. 当圆与直线相切时,有d =|5k |k 2+1=3,解得k =±34,故所求直线方程为y =34(x -4)或y =-34(x -4),即3x -4y -12=0或3x +4y -12=0.21.(本题满分12分)一圆与两平行直线x +3y -5=0和x +3y -3=0都相切,圆心在直线2x +y +1=0上,求圆的方程.[解析] 两平行直线之间的距离为|-5+3|1+9=210,∴圆的半径为110,设圆的方程为(x -a )2+(y -b )2=110,则⎩⎪⎨⎪⎧2a +b +1=0|a +3b -5|10=110|a +3b -3|10=110,解得⎩⎪⎨⎪⎧a =-75b =95.故所求圆的方程为⎝ ⎛⎭⎪⎫x +752+⎝ ⎛⎭⎪⎫y -952=110.22.(本题满分14分)已知P 是直线3x +4y +8=0上的动点,PA 、PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A 、B 是切点,C 是圆心,那么四边形PACB 面积的最小值是多少?[解析] 解法一:将圆的一般方程化为标准方程得(x -1)2+(y -1)2=1,圆心C (1,1),r =1,如图所示,当动点P 沿直线3x +4y +8=0向左上方或向右下方无穷远处运动时,Rt△PAC 的面积S Rt △PAC =12|PA |·|AC |,|PA |越来越大,从而S 四边形PACB =|PA |·|AC |也越来越大.当点P 从左上、右下两个方向向中间运动时,S 四边形PACB 变小,显然,当点P 到达一个特殊的位置,即CP 垂直于直线3x +4y +8=0时,S 四边形PACB 取得最小值.此时|PC |=|3×1+4×1+8|32+42=3,∴|PA |=|PC |2-|AC |2=32-12=22,故(S 四边形PACB )最小值=2·12·|PA |·|AC |=2 2.解法二:设点P 的坐标为(x ,y ), 则|PC |=x -12+y -12,由勾股定理及|AC |=1, 得|PA |=|PC |2-|AC |2=x -12+y -12-1,故S 四边形PACB =2S △PAC =2·12·|PA |·|AC |=|PA |=x -12+y -12-1.欲求S 四边形PACB的最小值,只需求|PA |的最小值,即定点C (1,1)与直线上动点P (x ,y )的距离的平方的最小值,也就是点C (1,1),到直线3x +4y +8=0距离的平方,这个最小值d 2=⎝ ⎛⎭⎪⎫|3×1+4×1+8|32+422=9. 故(S 四边形PACB )最小值=9-1=2 2.。

必修二数学a第二章测试题答案及解析

必修二数学a第二章测试题答案及解析

必修二数学a第二章测试题答案及解析一、选择题1. 已知函数f(x) = 2x^2 + 3x - 5,求f(-1)的值。

A. 1B. -1C. 3D. -3答案:D解析:将x=-1代入函数f(x) = 2x^2 + 3x - 5,得到f(-1) =2*(-1)^2 + 3*(-1) - 5 = 2 - 3 - 5 = -6。

2. 计算下列不等式中x的取值范围:x^2 - 4x + 4 ≤ 0。

A. x ≤ 2B. x ≥ 2C. 0 ≤ x ≤ 4D. -2 ≤ x ≤ 2答案:D解析:将不等式x^2 - 4x + 4 ≤ 0进行因式分解,得到(x-2)^2 ≤ 0,由于平方项非负,所以(x-2)^2 = 0,解得x = 2。

因此,x的取值范围为-2 ≤ x ≤ 2。

二、填空题3. 已知等差数列{a_n}的首项a_1 = 3,公差d = 2,求第5项a_5的值。

答案:13解析:根据等差数列的通项公式a_n = a_1 + (n-1)d,代入n=5,得到a_5 = 3 + (5-1)*2 = 3 + 8 = 11。

4. 计算圆的面积,已知半径r = 4。

答案:50π解析:圆的面积公式为A = πr^2,代入半径r = 4,得到A =π*4^2 = 16π。

三、解答题5. 求函数y = x^3 - 3x^2 + 4在x = 1处的导数。

答案:4解析:首先求函数y = x^3 - 3x^2 + 4的导数,得到y' = 3x^2 - 6x。

然后代入x = 1,得到y'(1) = 3*1^2 - 6*1 = 3 - 6 = -3。

6. 已知抛物线方程为y = ax^2 + bx + c,且抛物线过点(1,2)和(2,5),求a的值。

答案:1解析:将点(1,2)和(2,5)代入抛物线方程,得到两个方程:2 = a*1^2 + b*1 + c5 = a*2^2 + b*2 + c解这个方程组,得到a = 1,b = -2,c = 3。

人教版高中数学必修第二册第二单元《复数》测试题(含答案解析)

人教版高中数学必修第二册第二单元《复数》测试题(含答案解析)
一、选择题
1.设 a R ,则复数 z 1 a2 2ai 所对应点组成的图形为( ) 1 a2
A.单位圆
B.单位圆除去点 1,0
C.单位圆除去点
1, 0
D.单位圆除去点 1,0
2.在下列命题中,正确命题的个数是( ). ①两个复数不能比较大小;
②复数 z i 1对应的点在第四象限;
③若 x2 1 x2 3x 2 i 是纯虚数,则实数 x 1;
【点睛】
本题主要考查复数的乘法运算,考查复数相等的性质,属于基础题.
12.A
解析:A
【分析】
把两个复数都化为 a bi(a,b R) 形式,然后由共轭复数定义求a
i
bi
ia
i2
bi
b
ai
, 1 i2
2i
,又
a
bi 1
与 1 i2
互为共轭复数,所以
b 0 , a 2 .则 a b 2 .
13.如果复数 2 bi 的实部和虚部互为相反数,那么实数 b 的值为__ 1 2i
14.下列命题( i 为虚数单位)中:①已知 a,b R 且 a b ,则 (a b) (a b)i 为纯虚
数;②当 z 是非零实数时, z 1 2 恒成立;③复数 z (1 i)3 的实部和虚部都是- z
②根据基本不等式的性质知 | z 1 | 2 恒成立; z
③化简复数 z ,得 z 的实部和虚部都是 2 ; ④根据模长公式得关于 a 的不等式,求解即可; ⑤根据复数代数运算法则,化简计算即可. 【详解】
解掌握水平.
14.②③④【分析】①当时不是纯虚数;②根据基本不等式的性质知恒成
立;③化简复数得的实部和虚部都是;④根据模长公式得关于的不等式求解

高一数学必修2第二章测试题及答案解析(同名8164)

高一数学必修2第二章测试题及答案解析(同名8164)

第二章综合检测题、选择题1 .若直线a和b没有公共点,则a与b的位置关系是()A .相交B .平行C.异面D .平行或异面2 .平行六面体ABCD —A i B i C i D i中,既与AB共面也与CC i共面的棱的条数为( )A. 3B. 4C. 5D. 63. 已知平面a和直线I,则a内至少有一条直线与1( )A .平行B .相交C.垂直D .异面4. 长方体ABCD —A i B i C i D i中,异面直线AB,A i D i所成的角等于()A. 30°B. 45°C. 60°D. 90°5. 对两条不相交的空间直线a与b,必存在平面a,使得() Aa? a, b? a Ba? a, b II a Ca X a, b X a Da? a b X a6. 下面四个命题:①若直线a b 异面b c 异面则a c 异面;②若直线a b 相交b c 相交则a c 相交;③若a I b 则a b 与c 所成的角相等;④若a X b b X c 则a I c.其中真命题的个数为( )A. 4B. 3C. 2D. i7. 在正方体ABCD —A i B i C i D i中,E , F分别是线段A i B i , B i C i上的不与端点重合的动点,如果A i E= B i F ,有下面四个结论:①EF X AA i;②EF II AC;③EF与AC异面;④EF I平面ABCD. 其中一定正确的有( )A .①②B.②③C.②④ D .①④8. 设a , b为两条不重合的直线,a, B为两个不重合的平面,下列命题中为真命题的是( )A.若a , b与a所成的角相等,则a// bB .若a I a, b I 伏a// B,贝y a I bC. 若a? a, b? B a I b,贝U a I [3D. 若a Xa, b X 3 aXB 贝U a X b9. 已知平面a丄平面3 aQ 3= I,点A € a, A?l ,直线AB I I ,直线AC X I 直线m I a n I3 则下列四种位置关系中不一定成立的是A. AB I m B. AC X m C. AB I3 D. AC X 310已知正方体ABCD — A 1B 1C 1D 1中,E 、F 分别为BB i 、CC 1的中点, 那么直线AE 与D i F 所成角的余弦值为( )4 3 3 3A .— 4 B. .5 C ・3 D . — 311.已知三棱锥D — ABC 的三个侧面与底面全等,且 AB = AC =「3, BC = 2,则以BC 为棱,以面BCD 与面BCA 为面的二面角的余弦值为 (_)A.fB.| C . 0D .— 1 12 .如图所示,点P 在正方形ABCD 所在平面外,PA 丄平面ABCD , FA =AB ,则PB 与AC 所成的角是( ) A . 90° B . 60二、填空题13.14. 正方体ABCD — A 1B 1C 1D 1中,二面角 G — AB — C 的平面角等于 15. 设平面a//平面伏A , C € a, B , D €3直线AB 与CD 交于点 S ,且点S 位于平面a 3之间,AS = 8, BS= 6, CS= 12,则SD= ________ 16. 将正方形ABCD 沿对角线BD 折成直二面角A — BD — C ,有如下 四个结论:① AC 丄BD ;② 厶ACD 是等边三角形;③ AB 与平面BCD 成60°的角;④ AB 与CD 所成的角是60°C .其中正确结论的序号是 __________ .三、解答题17. 如下图,在三棱柱ABC —A1B1C1中,△ ABC与厶A i B i C i都为正三求证:(1)平面AB i F i //平面C i BF;⑵平面AB i F i丄平面ACGA i.18如图所示,在四棱锥F-ABCD中,FA丄平面ABCD, AB= 4, BC E是CD的中点.(1) 证明:CD丄平面PAE;⑵若直线PB与平面FAE所成的角和PB与平面ABCD所成的角相等, 求四棱锥F- ABCD的体积.19如图所示,边长为2的等边△ FCD所在的平面垂直于矩形ABCD 所在的平面,BC= 2 ■',2, M为BC的中点.(1)证明:AM丄FM;⑵求二面角F-AM- D的大小.20如图,棱柱ABC —A 1B 1C 1的侧面BCC i B i 是菱形,B i C 丄A i B.(1)证明:平面AB i C 丄平面A i BC i ;⑵设D 是A i C i 上的点,且A i B //平面B i CD ,求A i D 2i 如图,△ ABC 中,AC = BC = ^AB , ABED 是边长为i 的正方形, 平面ABED 丄底面ABC , 若 G , F 分别是EC , BD 的中点.(i)求证:GF //底面ABC ;⑵求证:AC 丄平面EBC ;⑶求几何体ADEBC 的体积V.DC i 的值.22女口下图所示,在直三棱柱ABC—A1B1C1中,AC= 3, BC = 4, AB = 5, AA i = 4,点D是AB的中点.(1)求证:⑵求证:AC i //平面CDB i;⑶求异面直线AC i与B i C所成角的余弦值.详解答案1[答案]D2[答案]C[解析]AB与CC i为异面直线,故棱中不存在同时与两者平行的直线, 因此只有两类:第一类与AB平行与CC i相交的有:CD、C1D1与CC i平行且与AB相交的有:BB i、AA i,第二类与两者都相交的只有BC,故共有5条.3[答案]C[解析]1°直线I与平面a斜交时,在平面a内不存在与I平行的直线,•••A 错;2°l? a时,在a内不存在直线与I异面,「・D错;3°l //a时,在a内不存在直线与I相交.无论哪种情形在平面a内都有无数条直线与I垂直.4[答案]D[解析]由于AD //A i D i,贝U/BAD是异面直线AB, A i D i所成的角,很明显Z BAD= 90 °5[答案]B[解析]对于选项A,当a与b是异面直线时,A错误;对于选项B, 若a, b不相交,则a与b平行或异面,都存在a,使a? a, b//a, B 正确;对于选项C, a丄a, b丄a, —定有a//b , C错误;对于选项D , a? a, b± a, —定有a丄b , D错误.6[答案]D[解析]异面、相交关系在空间中不能传递,故①②错;根据等角定理,可知③正确;对于④,在平面内,a//c,而在空间中,a与c可以平行,可以相交,也可以异面,故④错误.7[答案]D[解析]如图所示.由于AA i丄平面A i B i C i D i, EF?平面A i B i C i D i, 则EF丄AA i,所以①正确;当E, F分别是线段A i B i, B i C i的中点时,EF//A i C i,又AC//A i C i,贝S EF//AC,所以③不正确;当E, F分别不是线段A i B i, B i C i的中点时,EF与AC异面,所以②不正确;由于平面A i B i C i D i //平面ABCD, EF?平面A i B i C i D i,所以EF //平面ABCD, 所以④正确.5 ------ c8[答案]D[解析]选项A中,a, b还可能相交或异面,所以A是假命题;选项B 中,a, b还可能相交或异面,所以B是假命题;选项C中,a B 还可能相交,所以C是假命题;选项D中,由于a丄a a丄伏则a / B或a? B,贝卩B内存在直线I //a,又b丄B,则b±l,所以a丄b.9[答案]C[解析]如图所示:AB//I //m ; AC 丄 l , m//l?AC 丄 m ; AB//I? AB //B310[答案]3命题意图]本试题考查了正方体中异面直线的所成角 的求解的运用.[解析]首先根据已知条件,连接DF ,然后则角DFD i 即为异面直线所成的角,设边长为2,则可以求解得到'5= DF = D i F , DD i = 2,结合余弦定理得到结论.11[答案]C[解析] 取BC 中点E ,连AE 、DE ,可证BC 丄AE , BC 丄DE ,「.zAED 为二面角 A -BC -D 的平面角又 AE = ED = 2, AD = 2,「・zAED = 90 ° 故选C.12[答案]B[解析]将其还原成正方体 ABCD -PQRS,显见PB//SC,mCS 为正 13[答案]14[答案]45°三角形,/i[解析]如图所示,正方体ABCD —A1B1C1D1中,由于BC丄AB, BG 丄AB,贝卩Z C1BC是二面角C1 —AB—C的平面角.又△ BCC1是等腰直角三角形,则/C i BC = 45°T all B,「.AC //BD ,AS CS 8 12则SB = SD ,A 6= SD ,解得 SD = 9.16[答案]①②④[解析]如图所示,①取BD 中点,E 连接AE , CE ,贝y BD 丄AE , BD 丄CE , 而 AE A CE = E ,「.BD 丄平面 AEC , AC?平面 AEC , 故 AC 丄 BD ,故①正确.② 设正方形的边长为a ,则AE = CE = a.: ” 1 /7^115[答案]9由①知Z AEC= 90是直二面角A—BD —C的平面角,且/ AEC =90 ° .••AC= a,•••/ACD是等边三角形,故②正确.③由题意及①知,AE丄平面BCD,故/ABE是AB与平面BCD所成的角,而Z ABE= 45 °所以③不正确.④分别取BC, AC的中点为M, N,连接ME, NE, MN.1 1贝卩MN //AB,且MN = 2AB = qa,1 1ME//CD,且ME = 2CD = 2a,•••zEMN是异面直线AB, CD所成的角.亠亠x/2在Rt A AEC 中,AE= CE = -^a, AC= a,「•NE = 2AC = 2a. •△MEN 是正三角形,「./EMN = 60° 故④正确. 17[证明](1)在正三棱柱ABC—A1B1C1中,TF、F1分别是AC、A1C1的中点,•••B1F1 //BF, AF1 //C1F.又TB1F1 Q AF1= F1, C〔F n BF= F,•平面AB1F1 //平面GBF.(2) 在三棱柱ABC —A1B1C1 中,AA1 丄平面A1B1C1,「.B1F1 丄AA1. 又B1F1 丄A1C1, A1C1 n AA1 = A1,「•B1F1 丄平面ACC1A1,而B1F1?平面AB1F1,•平面AB1F1丄平面ACC1A1.18[解析](1)如图所示,连接 AC ,由 AB = 4, BC = 3,/ABC = 90° 得 AC = 5. 又AD = 5, E 是CD 的中点,所以CD 丄AE.••PA 丄平面ABCD , CD?平面ABCD ,所以PA 丄CD.而FA , AE 是平面PAE 内的两条相交直线,所以 CD 丄平面PAE. ⑵过点B 作BG //CD ,分别与AE , AD 相交于F , G ,连接PF.由(1)CD 丄平面PAE 知,BG 丄平面PAE.于是Z BPF 为直线PB 与平面 PAE 所成的角,且BG 丄AE.由PA 丄平面ABCD 知,/PBA 为直线PB 与平面ABCD 所成的角. AB = 4, AG = 2, BG 丄AF ,由题意,知/PBA=ZBPF ,因为 sinZPBA = PB , sin/BPF = |B , 由 ZDAB =Z ABC = 90 知,AD //BC ,又BG//CD ,所以四边形 BCDG是平行四边形,故GD = BC = 3.于是AG = 2.在 Rt^BAG 中,AB = 4, AG = 2, BG 丄AF ,所以BG=p B 2+ AG 2 = 2质,BF = AB|=務=皆.于是 PA = BF =皆.1又梯形ABCD 的面积为S =十(5 + 3) X 4= 16,所以四棱锥P -ABCD 的体积为1 c i 1 _ 8 5128 ‘5 V =^x S x PA =T X 16X = . 3 3 5 15所以PA = BF.19[解析](1)证明:如图所示,取CD的中点E,连接PE, EM , EA,H •••△CD 为正三角形,「PE 丄 CD , PE = PDsinZPDE = 2sin60 =°3.••平面PCD 丄平面ABCD ,「PE 丄平面 ABCD ,而AM?平面ABCD ,「・PE 丄AM. •四边形ABCD 是矩形,「•/ADE , △ECM , A ABM 均为直角三角形,由勾股定理可求得 EM =.''3,AM = :6, AE = 3,•••EM 2 + AM 2= AE 2「AM 丄EM.又 PE A EM = E ,「AM 丄平面 PEM ,「・AM 丄 PM.(2)解:由(1)可知EM 丄AM , PM 丄AM ,「•zPME 是二面角P -AM — D 的平面角.「•二面角P — AM — D 的大小为45 :20[解析]「•ta n/PME = EM ,「./PME = 45 :(1) 因为侧面BCC i B i 是菱形,所以B i C 丄BC i , 又已知 B i C 丄A i B ,且 A i B A BC i = B ,所以B i C 丄平面A i BC i ,又B i C?平面AB i C 所以平面AB i C 丄平面A i BC i .(2) 设BC i 交B i C 于点E ,连接DE ,则DE 是平面A i BC i 与平面 B i CD 的交线.因为A i B//平面B i CD,A i B?平面A i BC i ,平面A i BC i A 平面B i CD =DE ,所以 A i B//DE.又E 是BC i 的中点,所以D 为A i C i 的中点.即 A i D DC i = i.2i [解](i)证明:连接AE ,如下图所示.VADEB 为正方形,•••AE A BD = F ,且F 是AE 的中点,又G 是EC 的中点,•••GF //AC ,又 AC?平面 ABC , GF?平面 ABC ,•••GF //平面 ABC.(2)证明:V ADEB 为正方形,• EB 丄AB ,又V 平面ABED 丄平面ABC ,平面ABED A 平面ABC = AB , EB? 平面ABED ,•BE 丄平面 ABC ,「.BE 丄AC.又 */AC = BC ="^AB,•••CA2+ CB2= AB2,•••AC丄BC.又V BC A BE= B,「.AC丄平面BCE.J2 x[2⑶取AB 的中点H,连GH , VBC= AC = pAB = p,1•CH丄AB,且CH =㊁,又平面ABED丄平面ABC1 1 1•GH 丄平面ABCD,:S 1X£=.3 2 622[解析](1)证明:在直三棱柱ABC—A1B1C1中,底面三边长AC =3, BC= 4, AB= 5,「・AC丄BC.又TGC丄AC.「AC丄平面BCC1B1.••BG?平面BCGB,「.AC丄BG.⑵证明:设CB1与GB的交点为E,连接DE,又四边形BCC1B1 为正方形.VD是AB的中点,E是BC1的中点,二DE //AG.VDE?平面CDB1, AG?平面CDB1,•••AC //平面CDB1.(3) 解:TDE //AG ,• zCED为AC1与B1C所成的角.在△CED 中,ED =推1 = 2,1 5 1 厂CD = 2AB= 2,CE = 2CB1 = 2 2,2二异面直线AC1与B1C所成角的余弦值为牛22。

人教A版高一数学必修第二册全册复习测试题卷含答案解析(54)

人教A版高一数学必修第二册全册复习测试题卷含答案解析(54)

高一数学必修第二册全册复习测试题卷(共22题)一、选择题(共10题)1.已知一家便利店从1月份至5月份的营业收入与成本支出的折线图如下:关于该便利店1月份至5月份的下列描述中,正确的是( )A.各月的利润保持不变B.各月的利润随营业收入的增加而增加C.各月的利润随成本支出的增加而增加D.各月的营业收入与成本支出呈正相关关系2.设i是虚数单位,如果复数(a+1)+(−a+7)i(a∈R)的实部与虚部相等,那么实数a的值为( )A.4B.3C.2D.13.关于频率分布直方图中小长方形的高的说法,正确的是( )A.表示该组上的个体在样本中出现的频率B.表示取某数的频率C.表示该组上的个体数与组距的比值D.表示该组上的个体在样本中出现的频率与组距的比值4.观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在(2700,3000)内的频率为( )A.0.001B.0.1C.0.2D.0.35. 如果一组数据“x 1,x 2,x 3,x 4,x 5”的平均数是 2,方差是 13,那么另一组数据“3x 1−2,3x 2−2,3x 3−2,3x 4−2,3x 5−2”的平均数和方差分别为 ( ) A . 2,13B . 2,1C . 4,23D . 4,36. 在 △ABC 中,∠BAC =π2,AB =AC =2,P 为 △ABC 所在平面上任意一点,则 PA⃗⃗⃗⃗⃗ ⋅(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ ) 的最小值为 ( ) A . 1B . −12C . −1D . −27. 已知互相垂直的平面 α,β 交于直线 l ,若直线 m ,n 满足 m ∥α,n ⊥β,则 ( ) A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n8. 复数 i (2−i )= ( ) A . 1+2iB . 1−2iC . −1+2iD . −1−2i9. 若复数 z 满足 z (1+i )=2i ,其中 i 为虚数单位,则 z = ( ) A . 1−iB . 1+iC . −1+iD . −1−i10. 在 △ABC 中,B =30∘,AB =2√3,AC =2,则 △ABC 的面积是 ( )A . √3B . 2√3C . √3 或 2√3D . 2√3 或 4√3二、填空题(共6题) 11. 思考辨析,判断正误.在 △ABC 中,已知两边及夹角时,△ABC 不一定唯一.( )12. 根据党中央关于“精准脱贫”的要求,某市农业经济部门派甲、乙、丙 3 位专家对 A ,B 两个区进行调研,每个区至少派 1 位专家,则甲、乙两位专家均派遣至 A 区的概率为 .13. 已知向量 a =(2,1),b ⃗ =(−1,x ),若 (a +b ⃗ )∥(a −b ⃗ ),则实数 x 的值为 .14. 半径为 3 的球体表面积为 .15. 平面与平面垂直的性质定理:文字语言:两个平面垂直,如果一个平面内有一直线垂直于这两个平面的 ,那么这条直线与另一个平面 .符号语言:α⊥β,α∩β=l,,⇒a⊥β.图形语言:16.若复数z=2+i,其中i为虚数单位,则z在复平面内对应点的坐标为.1−2i三、解答题(共6题)17.已知圆柱的底面直径与高都等于球的直径.求证:(1) 球的表面积等于圆柱的侧面积;.(2) 球的表面积等于圆柱全面积的2318.在静水中划船的速度的大小是每分钟40m,水流速度的大小是每分钟20m,如果一小船从岸边某处出发,沿着垂直于水流的方向到达对岸,则小船的行进方向应指向哪里?19.在△ABC中,内角A,B,C所对的边分别为a,b,c,且满足b2+c2−a2=2bcsin(B+C).(1) 求角A的大小;,求△ABC的面积.(2) 若a=2,B=π320.应用面面平行判断定理应具备哪些条件?21.在北京市“危旧房改造”中,小强一家搬进了回龙观小区.这个小区冬季用家庭燃气炉取暖.为了估算冬季取暖第一个月使用天然气的开支情况,从11月15日起,小强连续八天每天晚上记录了天然气表显示的读数,如下表(注:天然气表上先后两次显示的读数之差就是这段时间内使用天然气的数量):日期15日16日17日18日19日20日21日22日小强的天然气表显示读数(单位:m3)220229241249259270279290妈妈11月15日买了一张面值600元的天然气使用卡,已知每立方米天然气1.70元,请你估算这张卡够小强家用一个月(按30天计算)吗?为什么?22.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示.(1) 结合平均数和方差分析谁更优秀;(2) 结合平均数和中位数分析谁的成绩好些;(3) 结合平均数和命中9环及以上的次数分析谁的成绩好些;(4) 从折线图上两人射击命中环数的走势分析谁更有潜力.答案一、选择题(共10题) 1. 【答案】D【知识点】频率分布直方图2. 【答案】B【解析】由题意得 a +1=−a +7,则 a =3.故选B . 【知识点】复数的乘除运算3. 【答案】D【解析】频率分布直方图中小长方形的高是 频率组距,面积表示频率.【知识点】频率分布直方图4. 【答案】D【知识点】频率分布直方图5. 【答案】D【知识点】样本数据的数字特征6. 【答案】C【解析】如图,以直线 AB ,AC 分别为 x ,y 轴建立平面直角坐标系, 则 A (0,0),B (2,0),C (0,2),设 P (x,y ),则 PA⃗⃗⃗⃗⃗ =(−x,−y ),PB ⃗⃗⃗⃗⃗ =(2−x,−y ),PC ⃗⃗⃗⃗⃗ =(−x,2−y ),PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ =(2−2x,2−2y ), 所以PA⃗⃗⃗⃗⃗ ⋅(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ )=−x (2−2x )−y (2−2y )=2x 2−2x +2y 2−2y =2(x −12)2+2(y −12)2−1,当 x =12,y =12 时,PA ⃗⃗⃗⃗⃗ ⋅(PB ⃗⃗⃗⃗⃗ +PC⃗⃗⃗⃗⃗ ) 取得最小值,为 −1. 故选C .【知识点】平面向量数量积的坐标运算7. 【答案】C【解析】由题意知α∩β=l,所以l⊂β,因为n⊥β,所以n⊥l.【知识点】直线与直线的位置关系、点、线、面的位置关系8. 【答案】A【解析】i(2−i)=1+2i.【知识点】复数的乘除运算9. 【答案】B【解析】因为复数z满足z(1+i)=2i,所以z=2i1+i=1+i.【知识点】复数的乘除运算10. 【答案】C【解析】由AB=2√3,AC=2,B=30∘及正弦定理ACsinB =ABsinC得sinC=ABsinBAC=2√3×122=√32.由C为三角形的内角可知C=60∘或120∘.因此A=90∘或30∘.在△ABC中,由AB=2√3,AC=2,A=90∘或30∘,得面积S=12AC⋅AB⋅sinA=2√3或√3.【知识点】正弦定理二、填空题(共6题)11. 【答案】×【知识点】余弦定理12. 【答案】16【解析】该试验所有的样本点为(甲,乙丙),(乙,甲丙),(丙,甲乙),(甲乙,丙),(甲丙,乙),(乙丙,甲)(其中每个样本点表示的都是“派往A区调研的专家、派往B区调研的专家”),共6个,其中甲、乙两位专家均被派遣至 A 区的样本点有 1 个,因此,所求事件的概率为 16. 【知识点】古典概型13. 【答案】 −12【解析】因为 a =(2,1),b⃗ =(−1,x ), 所以 a +b ⃗ =(1,x +1),a −b ⃗ =(3,1−x ), 又 (a +b ⃗ )∥(a −b⃗ ), 所以 1−x −3(x +1)=0, 解得 x =−12.【知识点】平面向量数乘的坐标运算14. 【答案】 36π【知识点】球的表面积与体积15. 【答案】交线;垂直; a ⊂α ; a ⊥l【知识点】平面与平面垂直关系的性质16. 【答案】 (0,1)【知识点】复数的几何意义、复数的乘除运算三、解答题(共6题) 17. 【答案】(1) 略. (2) 略.【知识点】圆柱的表面积与体积、球的表面积与体积18. 【答案】如图所示,设向量 OA⃗⃗⃗⃗⃗ 的长度和方向表示水流速度的大小和方向,向量 OB ⃗⃗⃗⃗⃗ 的长度和方向表示船在静水中速度的大小和方向,以 OA⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ 为邻边作平行四边形 OACB ,连接 OC . 依题意得 OC ⃗⃗⃗⃗⃗ ⊥OA ⃗⃗⃗⃗⃗ ,∣∣BC ⃗⃗⃗⃗⃗ ∣∣=∣∣OA ⃗⃗⃗⃗⃗ ∣∣=20,∣∣OB ⃗⃗⃗⃗⃗ ∣∣=40,所以 ∠BOC =30∘.故船应向上游且与河岸夹角为 60∘ 的方向行进. 【知识点】平面向量的实际应用问题19. 【答案】(1) 因为 A +B +C =π, 所以 sin (B +C )=sinA , 所以 b 2+c 2−a 2=2bcsinA ,所以b 2+c 2−a 22bc=sinA ,由余弦定理得 cosA =sinA ,可得 tanA =1, 又因为 A ∈(0,π), 所以 A =π4.(2) 根据正弦定理得 b =a sinA ⋅sinB =√6,又 sinC =sin (A +B )=sin (π4+π3)=√6+√24, 所以S △ABC =12absinC =12⋅2⋅√6⋅√6+√24=3+√32.【知识点】余弦定理、正弦定理20. 【答案】①平面 α 内两条相交直线 a ,b ,即 a ⊂α,b ⊂α,a ∩b =P .②两条相交直线 a ,b 都与 β 平行,即 a ∥β,b ∥β. 【知识点】平面与平面平行关系的判定21. 【答案】 300×1.70<600,够用.【知识点】样本数据的数字特征22. 【答案】(1) 根据题意作出统计表:平均数方差中位数命中9环及以上次数甲7 1.271乙75.47.53因为平均数相同,且 s 甲2<s 乙2,所以甲的成绩比乙稳定,甲更优秀.(2) 因为平均数相同,甲的中位数 < 乙的中位数, 所以乙的成绩比甲好.(3) 因为平均数相同,且乙命中 9 环及以上的次数比甲多, 所以乙的成绩比甲好.(4) 因为甲的成绩在平均线附近波动,而乙的成绩整体处于上升趋势,从第 4 次开始射靶的环数没有比甲少的情况发生, 所以乙更有潜力.【知识点】样本数据的数字特征。

高中数学 2.1空间点、直线、平面之间的位置关系 新人教A版必修2

高中数学 2.1空间点、直线、平面之间的位置关系 新人教A版必修2
符号表示:P ∈α ∩β α ∩β = l,且 P ∈l。
公理 3 作用:判定两个平面是否相交的依据。
精品课件
例1、用符号表示下列图形中点、直线、平 面之间的关系。
解 :左边的图中, α∩β=l,a∩α=A,a∩β=B。 右边的图中, α∩β=l,a α,b β, a∩l=P,b∩l=P。
精品课件
新疆 王新敞
奎屯
求证: P 在直线 BD 上新疆 王新敞 奎屯
A
P EH
D
G
B
C
F
精品课件
证明:∵ EH FG P ,∴ PEH , P FG , ∵ E, H 分别属于直线 AB, AD , ∴ EH 平面 ABD,∴ P 平面 ABD, 同理: P 平面 CBD , 又∵平面 ABD 平面 CBD BD ,
集合中“∈”的符号只能用于点与直线,点与平面的关系,“ ”和“∩”的符号只能
用于直线与直线、直线与平面、平面与平面的关系,虽然借用于集合符号,但在读法上仍用
几何语言.(平面α外的直线 a)表示 a (平面α外的直线 a)表示 a 或 a A.
精品课件
问题4:如果直线l与平面α有一个公共点P,直线l是否在平面α内? 直线l不一定在平面α内。
答案:(1)×(2)√(3)×(4)√
精品课件
2.①一条直线与一个平面会有几种位置关系

②如图所示,两个平面、,若相交于一点,则会发生什么现象.
③几位同学的一次野炊活动,带去一张折叠方桌,不小心弄坏了桌脚,
有一生提议可将几根一样长的木棍,在等高处用绳捆扎一下作桌脚(如图
所示),问至少要几根木棍,才可能使桌面稳定?
(5)
直线在平面内

直线与平面相交

人教版高中数学必修2第二章测试题A组及答案解析

人教版高中数学必修2第二章测试题A组及答案解析

人教版高中数学必修2第二章测试题A组及答案解析第二章点、直线、平面之间的位置关系一、选择题1.设 $\alpha$,$\beta$ 为两个不同的平面,$l$,$m$ 为两条不同的直线,且 $l\subset\alpha$,$m\subset\beta$,有如下的两个命题:①若 $\alpha\parallel\beta$,则 $l\parallel m$;②若 $l\perp m$,则 $\alpha\perp\beta$。

那么()。

A。

①是真命题,②是假命题B。

①是假命题,②是真命题C。

①②都是真命题D。

①②都是假命题2.如图,ABCD为正方体,下面结论错误的是()。

A。

BD $\parallel$ 平面CBB。

AC $\perp$ BDC。

AC $\perp$ 平面CBD。

异面直线AD与CB角为60°3.关于直线 $m$,$n$ 与平面 $\alpha$,$\beta$,有下列四个命题:① $m\parallel\alpha$,$n\parallel\beta$ 且$\alpha\parallel\beta$,则 $m\parallel n$;② $m\perp\alpha$,$n\perp\beta$ 且 $\alpha\perp\beta$,则$m\perp n$;其中真命题的序号是()。

A。

①②B。

③④C。

①④D。

②③4.给出下列四个命题:①垂直于同一直线的两条直线互相平行②垂直于同一平面的两个平面互相平行③若直线 $l_1$,$l_2$ 与同一平面所成的角相等,则$l_1$,$l_2$ 互相平行④若直线 $l_1$,$l_2$ 是异面直线,则与 $l_1$,$l_2$ 都相交的两条直线是异面直线其中假命题的个数是()。

A。

1B。

2C。

3D。

45.下列命题中正确的个数是()。

①若直线 $l$ 上有无数个点不在平面 $\alpha$ 内,则$l\parallel\alpha$②若直线 $l$ 与平面 $\alpha$ 平行,则 $l$ 与平面$\alpha$ 内的任意一条直线都平行③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行④若直线 $l$ 与平面 $\alpha$ 平行,则 $l$ 与平面$\alpha$ 内的任意一条直线都没有公共点A。

高中数学必修2(人教B版)第二章平面解析几何初步2.2知识点总结含同步练习题及答案

高中数学必修2(人教B版)第二章平面解析几何初步2.2知识点总结含同步练习题及答案

|a| = |b|
⋯⋯②
由 ①② 解得 a = b = 5 或 a = −1 ,b = 1 ,所以直线方程为 x + y − 5 = 0 或 x − y + 1 = 0. (ii)当 a = b = 0 时,直线过原点和 P (2, 3) ,所以直线方程为 3x − 2y = 0 . 综上可知,所求直线方程为 x + y − 5 = 0 或 x − y + 1 = 0 或 3x − 2y = 0 . 已知三角形的顶点是 A(−5, 0) ,B(3, −3) ,C (0, 2) ,求 AC 边所在直线的方程,以及该边上的 中线所在直线的方程. 解:过点 A(−5, 0) ,C (0, 2) 的两点式方程为
直线的基本量与方程 直线与直线的位置关系 直线的相关计算
三、知识讲解
1.直线的基本量与方程 描述: 直线的倾斜角 当直线l 与x 轴相交时,我们取 x 轴作为基准,x 轴正向与直线 l 向上方向之间所成的角α叫做直 线l 的倾斜角(angle of inclination).直线倾斜角α 的取值范围为0 ∘ ≤ α < 180 ∘ .
2 y − (−3) x−3 由两点式得直线 BD 的方程为 ,整理可得 8x + 11y + 9 = 0 ,这就是 = 1 − (−3) −5 − 3 2 AC 边上的中线所在直线的方程.
⎪ ⎩
2.直线与直线的位置关系 描述: 直线 l 1 :y = k1 x + b 1 ,l 2 :y = k2 x + b 2 . 当 l 1 与 l 2 平行时,则 k1 = k2 且 b 1 ≠ b 2 ; 当 l 1 与 l 2 重合时,则 k1 = k2 且 b 1 = b 2 ; 当 l 1 与 l 2 相交时,则 k1 ≠ k2 ,特别地,若两直线垂直,则 k1 ⋅ k2 =#43; B 1 y + C1 = 0, A 2 1 + B 1 ≠ 0 ,l 2 :A 2 x + B 2 y + C2 = 0, A 2 + B 2 ≠ 0 . 当 l 1 与 l 2 平行时,则 A 1 B 2 = A 2 B 1 且 B 1 C2 ≠ B 2 C1 ; 当 l 1 与 l 2 重合时,则 A 1 B 2 = A 2 B 1 且 B 1 C2 = B 2 C1 ; 当 l 1 与 l 2 相交时,则 A 1 B 2 ≠ A 2 B 1 ,特别地,若两直线垂直,则 A 1 A 2 + B 1 B 2 = 0 . 例题: 直线 3x − 2y + m = 0 和 (m 2 + 1)x + 3y − 3m = 0 的位置关系是( A.平行 B.重合 C.相交 D.不确定 解:两直线的斜率分别为 交. )

2020版人教A数学必修2:第二章 检测试题

2020版人教A数学必修2:第二章 检测试题

第二章检测试题(时间:120分钟满分:150分)选题明细表一、选择题(本大题共12小题,每小题5分,共60分)1.直线l与平面α不平行,则( C )(A)l与α相交(B)l⊂α(C)l与α相交或l⊂α(D)以上结论都不对解析:直线与平面的位置关系有:直线在平面内、直线与平面平行、直线与平面相交.因为直线l与平面α不平行,所以l与α相交或l⊂α.2.下列推理不正确的是( C )(A)A∈b,A∈β,B∈b,B∈β⇒b⊂β(B)M∈α,M∈β,N∈α,N∈β⇒α∩β=直线MN(C)直线m不在α内,A∈m⇒A∉α(D)A,B,C∈α,A,B,C∈β,且A,B,C不共线⇒α与β重合解析:由空间中点线面的位置关系知选C.3.已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是( D )(A)若α,β垂直于同一平面,则α与β平行(B)若m,n平行于同一平面,则m与n平行(C)若α,β不平行,则在α内不存在与β平行的直线(D)若m,n不平行,则m与n不可能垂直于同一平面解析:A项,α,β可能相交,故错误;B项,直线m,n的位置关系不确定,可能相交,平行或异面,故错误; C项,若m⊂α,α∩β=n,m∥n,则m∥β,故错误;D项,假设m,n垂直于同一平面,则必有m∥n,所以原命题正确,故D项正确.4.α,β是两个不重合的平面,在下列条件中,可判定α∥β的是( D )(A)α,β都与平面γ垂直(B)α内不共线的三点到β的距离相等(C)l,m是α内的两条直线,且l∥β,m∥β(D)l,m是两条异面直线,且l∥α,m∥α,l∥β,m∥β解析:对于D,设过l和α内的一点的平面与平面α的交线为l′,因为l∥α,所以l′∥l.又因为l∥β,l′⊄β,所以l′∥β.设过m和α内的一点的平面与α的交线为m′,同理可证m′∥β.因为m与l是异面直线,所以m′与l′相交,所以α∥β.5.如图,四棱锥P ABCD中,M,N分别为AC,PC上的点,且MN∥平面PAD,则( B )(A)MN∥PD(B)MN∥PA(C)MN∥AD(D)以上均有可能解析:四棱锥P ABCD中,M,N分别为AC,PC上的点,且MN∥平面PAD, MN⊂平面PAC,平面PAC∩平面PAD=PA,由直线与平面平行的性质定理可得:MN∥PA.故选B.6.在正方体ABCD A1B1C1D1中,E为棱CC1的中点,则( B )(A)AE⊥CC1(B)AE⊥B1D1(C)AE⊥BC (D)AE⊥CD解析:如图所示:连接AC,BD,因为ABCD A1B1C1D1是正方体,所以四边形ABCD是正方形,AC⊥BD,CE⊥平面ABCD,所以BD⊥AC,BD⊥CE,而AC∩CE=C,故BD⊥平面ACE,因为BD∥B1D1,且B1D1⊄平面ACE,故B1D1⊥平面ACE,故B1D1⊥AE,故选B.7.在正方体ABCD A1B1C1D1中,异面直线A1C1与B1C所成角的余弦值为( B )(A)0 (B)(C)(D)解析:连接A1D,C1D,如图所示,A1D∥B1C,所以∠DA1C1是异面直线A1C1与B1C所成角(或所成角的补角),因为A1D=A1C1=DC1,所以∠C1A1D=60°,所以异面直线A1C1与B1C所成角的余弦值为cos 60°=.故选B.8.如图,在直三棱柱ABC A1B1C1中,D为A1B1的中点,AB=BC=BB1=2,AC= 2,则异面直线BD与AC所成的角为( C )(A)30°(B)45°(C)60°(D)90°解析:如图,取B1C1的中点E,连接BE,DE,则AC∥A1C1∥DE,则∠BDE即为异面直线BD与AC所成的角.由条件可知BD=DE=EB=,所以∠BDE=60°,故选C.9.如图所示,ABCD A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是( A )(A)A,M,O三点共线(B)A,M,O,A1不共面(C)A,M,C,O不共面(D)B,B1,O,M共面解析:连接A1C1,AC,则A1C1∥AC,所以A,C,C1,A1四点共面,所以A1C⊂平面ACC1A1.因为M∈A1C,所以M∈平面ACC1A1,又M∈平面AB1D1,所以M在平面ACC1A1与平面AB1D1的交线上,同理O在平面ACC1A1与平面AB1D1的交线上,所以A,M,O三点共线,故选A.10.如图,在下列四个正方体ABCD A1B1C1D1中,E,F,G均为所在棱的中点,过E,F,G作正方体的截面,则在各个正方体中,直线BD1与平面EFG 不垂直的是( D )解析:如图在正方体中,E,F,G,M,N,Q均为所在棱的中点,是一个平面图形,直线BD1与平面EFMNQG垂直,并且选项A,B,C中的平面与这个平面重合,满足题意,只有选项D直线BD1与平面EFG不垂直.故选D.11.如图所示,在四棱锥P ABCD中,PA⊥底面ABCD,且底面ABCD为菱形,M是PC上的一个动点,若要使得平面MBD⊥平面PCD,则应补充的一个条件可以是( B )(A)MD⊥MB(B)MD⊥PC(C)AB⊥AD(D)M是棱PC的中点解析:因为在四棱锥P ABCD中,PA⊥底面ABCD,且底面各边都相等, M是PC上的一动点,所以BD⊥PA,BD⊥AC,因为PA∩AC=A,所以BD⊥平面PAC,所以BD⊥PC.所以当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD.而PC⊂平面PCD,所以平面MBD⊥平面PCD.故选B.12.如图,已知四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E为MC的中点,则下列结论不正确的是( C )(A)平面BCE⊥平面ABN(B)MC⊥AN(C)平面CMN⊥平面AMN(D)平面BDE∥平面AMN解析:分别过A,C作平面ABCD的垂线AP,CQ,使得AP=CQ=1,连接PM, PN,QM,QN,将几何体补成棱长为1的正方体.因为BC⊥平面ABN,BC⊂平面BCE,所以平面BCE⊥平面ABN,故A正确;连接PB,则PB∥MC,显然PB⊥AN,所以MC⊥AN,故B正确;取MN的中点F,连接AF,CF,AC.因为△AMN和△CMN都是边长为的等边三角形,所以AF⊥MN,CF⊥MN,所以∠AFC为二面角A MN C的平面角,因为AF=CF=,AC=,所以AF2+CF2≠AC2,即∠AFC≠,所以平面CMN与平面AMN不垂直,故C错误;因为DE∥AN,MN∥BD,所以平面BDE∥平面AMN,故D正确.故选C.二、填空题(本大题共4小题,每小题5分,共20分)13.设α,β为两个不重合的平面,l,m,n为两两不重合的直线,给出下列四个命题:①若m⊂β,n⊂β,m∥α,n∥α,则α∥β;②若α∥β,l⊂β,则l∥α;③若l⊥m,l⊥n,则m∥n;④若l⊥α,l∥β,则α⊥β.其中真命题的序号是.解析:由α,β为两个不重合的平面,l,m,n为两两不重合的直线,知: 在①中,若m⊂β,n⊂β,m∥α,n∥α,则α与β相交或平行,故①错误;在②中,若α∥β,l⊂β,则由面面平行的性质定理得l∥α,故②正确;在③中,若l⊥m,l⊥n,则m与n相交、平行或异面,故③错误;在④中,若l⊥α,l∥β,则由面面垂直的判定定理得α⊥β,故④正确.答案:②④14.如图,圆锥SO中,AB,CD为底面圆的两条直径,AB∩CD=O,且AB⊥CD,SO=OB=2,P为SB的中点.则异面直线SA与PD所成角的正切值为.解析:连接PO,则PO∥SA,PO==,所以∠OPD即为异面直线SA与PD所成的角,且△OPD为直角三角形,∠POD为直角,所以tan ∠OPD===.答案:15.在空间四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点,对角线AC=BD=2,且AC⊥BD,则四边形EFGH的面积为.解析:因为点E,H分别为四边形ABCD的边AB,AD的中点,所以EH∥BD,且EH=BD=1.同理求得FG∥BD,且FG=1,所以EH∥FG,EH=FG,又因为AC⊥BD,AC=BD=2,所以EF⊥EH,EF=EH.所以四边形EFGH是正方形.所以四边形EFGH的面积为EF·EH=1.答案:116.在正方体ABCD A1B1C1D1中,下列结论中正确的序号有.①AC∥平面A1BC1;②AC⊥BD1;③AC1⊥平面CB1D1;④异面直线A1D与B1C1所成的角为45°.解析:①AC∥A1C1,AC⊄平面A1BC1,A1C1⊂平面A1BC1;所以AC∥平面A1BC1.①正确;②因为AC⊥BD,AC⊥DD1,所以AC⊥平面BDD1B1,所以AC⊥BD1,②正确;③在正方体ABCD A1B1C1D1中,A1C1⊥B1D1,B1D1⊥AA1,又A1C1∩AA1=A1,则B1D1⊥平面A1AC1,又AC1⊂平面A1AC1,所以B1D1⊥AC1,同理得B1C⊥AC1,又B1D∩B1C=B,所以AC1⊥平面CB1D1,所以③正确.④如图,∠CB1C1等于异面直线A1D与B1C1所成的角,由正方形中BB1C1C 中可得∠CB1C1为45°,因此④正确.答案:①②③④三、解答题(共70分)17.(本小题满分10分)如图,空间四边形ABCD中,E,F分别是AD,AB 的中点,G,H分别在BC,CD上,且BG∶GC=DH∶HC=1∶2.(1)求证:E,F,G,H四点共面;(2)设FG与HE交于点P,求证:P,A,C三点共线.证明:(1)△ABD中,因为E,F分别为AD,AB中点,所以EF∥BD.△CBD中,BG∶GC=DH∶HC=1∶2,所以GH∥BD,所以EF∥GH(平行线公理),所以E,F,G,H四点共面.(2)因为FG∩HE=P,P∈FG,P∈HE,所以P∈平面ABC,P∈平面ADC,又平面ABC∩平面ADC=AC,所以P∈直线AC.所以P,A,C三点共线.18.(本小题满分12分)如图,在三棱柱ABC A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC,AB=BC,O为AC中点.(1)证明:A1O⊥BC;(2)若E为BC1的中点,求证:OE∥平面A1ABB1.证明:(1)因为在三棱柱ABC A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC,O为AC中点.所以A1O⊥AC,又平面AA1C1C∩底面ABC=AC,所以A1O⊥底面ABC,因为BC⊂底面ABC,所以A1O⊥BC.(2)连接AB1,连接CB1交BC1于点E,连接OE,则E为CB1的中点,所以OE∥AB1,因为AB1⊂平面A1ABB1,OE⊄平面A1ABB1,所以OE∥平面A1ABB1.19.(本小题满分12分)如图所示的多面体中,底面ABCD为正方形, △GAD为等边三角形,BF⊥平面ABCD,∠GDC=90°,点E是线段GC上除两端点外的一点,若点P为线段GD的中点.(1)求证:AP⊥平面GCD;(2)求证:平面ADG∥平面FBC.证明:(1)因为△GAD是等边三角形,点P为线段GD的中点,故AP⊥GD.因为AD⊥CD,GD⊥CD,且AD∩GD=D,AD,GD⊂平面GAD,故CD⊥平面GAD,又AP⊂平面GAD,故CD⊥AP,又CD∩GD=D,CD,GD⊂平面GCD,故AP⊥平面GCD.(2)因为BF⊥平面ABCD,所以BF⊥CD,因为BC⊥CD,BF∩BC=B,BF,BC⊂平面FBC,所以CD⊥平面FBC,由(1)知CD⊥平面GAD,所以平面ADG∥平面FBC.20.(本小题满分12分)如图,在四棱锥A BCDE中,平面ADC⊥平面BCDE,∠CDE=∠BED=∠ACD=90°,AB=CD=2,DE=BE=1,(1)证明:平面ABD⊥平面ABC;(2)求直线AD与平面ACE所成的角的正弦值.(1)证明:取CD的中点M,连接BM,可得四边形BMDE是正方形.BC2=BM2+MC2=2.因为BD2+BC2=DE2+BE2+BC2=DC2,所以∠CBD=90°,所以BD⊥BC.又AC⊥平面BCDE,BD⊂平面BCDE,所以BD⊥AC,故BD⊥平面ABC.因为BD⊂平面ABD,所以平面ABD⊥平面ABC.(2)解:过点D作DH⊥CE.因为AC⊥DH,所以DH⊥平面ACE.所以∠DAH即为AD与平面ACE所成的角.AB=DC=2.在Rt△DCE中,DE=1,CD=2,所以CE=,所以DH===.因为AC==,所以AD==,在Rt△AHD中,sin ∠DAH==.21.(本小题满分12分)如图所示,在长方体ABCD A1B1C1D1中,AB= 2,BB1=BC=1,E为D1C1的中点,连接ED,EC,EB和DB.(1)求证:平面EDB⊥平面EBC;(2)求二面角E DB C的正切值.(1)证明:在长方体ABCD A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点.所以△DD1E为等腰直角三角形,∠D1ED=45°.同理∠C1EC=45°.所以∠DEC=90°,即DE⊥EC.在长方体ABCD A1B1C1D1中,BC⊥平面D1DCC1,又DE⊂平面D1DCC1,所以BC⊥DE.又EC∩BC=C,所以DE⊥平面EBC.因为DE⊂平面DEB,所以平面DEB⊥平面EBC.(2)解:如图所示,过E在平面D1DCC1中作EO⊥DC于O.在长方体ABCD A1B1C1D1中,因为平面ABCD⊥平面D1DCC1,所以EO⊥平面ABCD.过O在平面DBC中作OF⊥DB于F,连接EF,所以EF⊥BD.∠EFO为二面角E DB C的平面角.利用平面几何知识可得OF=,又OE=1,所以tan ∠EFO=.22.(本小题满分12分)如图,在直四棱柱ABCD A1B1C1D1中,底面ABCD 是边长为2的正方形,E,F分别为线段DD1,BD的中点.(1)求证:EF∥平面ABC1D1;(2)四棱柱ABCD A1B1C1D1的外接球的表面积为16π,求异面直线EF与BC所成的角的大小.(1)证明:连接BD1,在△DD1B中,E,F分别为线段DD1,BD的中点,所以EF为中位线,所以EF∥D1B,因为D1B⊂平面ABC1D1,EF⊄平面ABC1D1,所以EF∥平面ABC1D1.(2)解:连接CD1,由(1)知EF∥D1B,故∠D1BC即为异面直线EF与BC所成的角,因为四棱柱ABCD A1B1C1D1的外接球的表面积为16π,所以四棱柱ABCD A1B1C1D1的外接球的半径R=2,设AA 1=a,则=2,解得a=2,在直四棱柱ABCD A1B1C1D1中,因为BC⊥平面CDD1C1,CD1⊂平面CDD1C1,所以BC⊥CD1,在Rt△BCD1中,BC=2,CD 1=2,D1C⊥BC,所以tan ∠D 1BC==,则∠D1BC=60°,所以异面直线EF与BC所成的角为60°.。

大连市必修二第二章《解析几何初步》测试题(答案解析)

大连市必修二第二章《解析几何初步》测试题(答案解析)

一、选择题1.由直线1y x =+上的点向圆()2231x y -+=作切线,则切线长的最小值为( ) A .1B .7C .22D .32.在空间直角坐标系中,点P(-2,1,4)关于xOy 平面的对称点的坐标是A .(-2,1,-4)B .(-2,-1,-4)C .(2,-1,4)D .(2,1,-4)3.在坐标平面内,与点()1,2A 距离为1,且与点()3,1B 距离为2的直线共有( ) A .1条B .2条C .3条D .4条4.已知点()()2,0,2,0M N -,若圆()2226900x y x r r +-+-=>上存在点P (不同于,M N ),使得PM PN ⊥,则实数r 的取值范围是( )A .()1,5B .[]1,5C .()1,3D .[]1,35.已知圆22:(2)(2)10+++=C x y ,若直线:2l y kx =-与圆交于,P Q 两点,则弦长PQ 的最小值是( ) A .5B .4C .25D .266.已知圆1C :22(1)(6)25x y ++-=,圆2C :222(17)(30)x y r -+-=.若圆2C 存在一点P ,使得过点P 可作一条射线与圆1C 依次交于A 、B 两点,且满足||2||PA AB =,则半径r 的取值范围是( ) A .[5,55]B .[5,50]C .[10,50]D .[10,55]7.已知正三棱柱111ABC A B C -中,1AB AA =,M 是1CC 的中点,则异面直线AM 与1A B 所成角的大小为( )A .π6B .π4C .π3D .π28.在正方体1111ABCD A BC D -,中,M ,N ,P ,Q 分别为1A B ,1B D ,1A D ,1CD 的中点,则异面直线MN 与PQ 所成角的大小是( ) A .6πB .4π C .3πD .2π 9.如图,在正方体1111ABCD A BC D -中,点F 是线段1BC 上的动点,则下列说法错误的是( )A .无论点F 在上1BC 怎么移动,都有11A FB D ⊥B .当点F 移动至1BC 中点时,才有1A F 与1BD 相交于一点,记为点E ,且12A EEF= C .当点F 移动至1BC 中点时,直线1A F 与平面1BDC 所成角最大且为60° D .无论点F 在1BC 上怎么移动,异面直线1A F 与CD 所成角都不可能是30°10.如图,正方体1111ABCD A BC D -中,P 为线段1A B 上的动点,则下列结论错误的是( )A .1DC PC ⊥B .异面直线AD 与PC 不可能垂直 C .1D PC ∠不可能是直角或者钝角 D .1APD ∠的取值范围是,62ππ⎛⎫ ⎪⎝⎭ 11.αβ是两个不重合的平面,在下列条件中,可判定平面α与β平行的是( )A .m 、n 是α内的两条直线,且//m β,βn//B .α、β都垂直于平面γC .α内不共线三点到β的距离相D .m 、n 是两条异面直线,m α⊂,n β⊂,且//m β,//n α12.设m 、n 是两条不同的直线,α是平面,m 、n 不在α内,下列结论中错误的是( )A .m α⊥,//n α,则m n ⊥B .m α⊥,n α⊥,则//m nC .m α⊥,m n ⊥,则//n αD .m n ⊥,//n α,则m α⊥二、填空题13.已知圆()()22:1225C x y -+-=,直线()():211740l m x m y m +++--=,m R ∈,则直线l 截圆C 所得弦长AB 的最小值为__________.14.已知圆22:1O x y +=,直线:30l mx y m -=与圆O 交于A 、B 两点,1AB =,分别过A 、B 两点作直线l 的垂线交x 轴于C 、D 两点,则CD =__________.15.已知(3,1)P 为圆224x y +=上的一点,,E F 为y 轴上的两点,PEF 是以P 为顶点的等腰三角形,直线,PE PF 分别交圆于点,D C ,直线CD 交y 轴于点A ,则CAO ∠=_______.16.直线y x b =+与曲线21x y =-有且仅有一个公共点,则b 的取值范围是______. 17.已知两定点()2,0A -和()2,0B ,动点(),P x y 在直线:3l y x =+上移动,椭圆C 以,A B 为焦点且经过点P ,则椭圆C 的离心率的最大值为______.18.已知A 是直角坐标平面内一定点,点(0,0)O ,若圆22()(–12)3x y -+=上任意一点M 到定点A 与点(0,0)O 的距离之比是一个定值λ,则这个定值λ的大小是________. 19.已知正四棱锥的体积为18,侧棱与底面所成的角为45,则该正四棱锥外接球的表面积为___________.20.如图在菱形ABCD 中,2AB =,60A ∠=,E 为AB 中点,将AED 沿DE 折起使二面角A ED C '--的大小为90,则空间A '、C 两点的距离为________;21.在直三棱柱111ABC A B C -中,90ABC ∠=︒,13AA O ,已知三棱锥O ABC -3O 表面积的最小值为______.22.已知A ,B ,C 三点都在球O 的表面上,球心O 到平面ABC 的距离是球半径的13,且22AB =AC BC ⊥,则球O 的表面积是______.23.在三棱锥P ABC -中,PA ⊥平面ABC ,60BAC ∠=︒,23AB AC ==,2PA =,则三棱锥P ABC -外接球的半径为____________.24.正四棱台的上、下两底面边长分别是方程x 2-9x +18=0的两根,其侧面积等于两底面面积之和,则其侧面梯形的高为________.三、解答题25.如图,在直三棱柱111ABC A B C -中,1,2AC BC AC BC CC ⊥===.(1)求三棱柱111ABC A B C -的体积; (2)求异面直线1CB 与1AC 所成角的大小; (3)求二面角1B AC C --的平面角的余弦值.26.在棱长为2的正方体1111ABCD A BC D -中,O 是底面ABCD 的中心.(1)求证:1BO//平面11DA C ; (2)求点O 到平面11DA C 的距离.27.如图,已知三棱锥P ABC -﹐PC AB ⊥,ABC 是边长为23的正三角形,43PB =﹐60PBC ∠=,点F 为线段AP 的中点.(1)证明:PC ⊥平面ABC ;(2)求直线BF 与平面PAC 所成角的大小.28.如图,在三棱柱111ABC A B C -中,平面11A ACC ⊥平面ABC ,2,AB BC ==30ACB ∠=,13AA =,11BC AC ,E 为AC 的中点.(1)求证:1//AB 平面1C EB ;(2)求证:1AC ⊥平面1C EB .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先求圆心到直线的距离,此时切线长最小,由勾股定理不难求解切线长的最小值. 【详解】切线长的最小值是当直线1y x =+上的点与圆心距离最小时取得, 圆心(3,0)到直线的距离为222d =圆的半径为1,22817d r -=- 故选:B . 【点睛】本题考查圆的切线方程,点到直线的距离,是基础题.2.A解析:A 【解析】过点P 向xOy 平面作垂线,垂足为N ,则N 就是点P 与它关于xOy 平面的对称点P′连线的中点,又N (-2,1,0),所以对称点为P′(-2,1,-4),故选A.3.B解析:B 【详解】根据题意可知,所求直线斜率存在,可设直线方程为y =kx +b , 即kx -y +b =0,所以11d ==,22d ==,解之得k =0或43k =-, 所以所求直线方程为y =3或4x +3y -5=0, 所以符合题意的直线有两条,选B.4.A解析:A 【分析】由题意可得两圆相交,而以MN 为直径的圆的方程为x 2+y 2=4,圆心距为3,由两圆相交的性质可得|r ﹣2|<3<|r+2|,由此求得r 的范围. 【详解】根据直径对的圆周角为90°,结合题意可得以MN 为直径的圆和圆 (x ﹣3)2+y 2=r 2有交点,显然两圆相切时不满足条件,故两圆相交.而以AB 为直径的圆的方程为x 2+y 2=4,两个圆的圆心距为3, 故|r ﹣2|<3<|r+2|,求得1<r <5, 故选A . 【点睛】本题主要考查直线和圆的位置关系,两圆相交的性质,体现了转化的数学思想,属于中档题.5.D解析:D 【分析】由题意,求解圆的圆心坐标和半径,再利用圆的弦长公式,即可求解. 【详解】由题意,直线2y kx =-过定点(0,2)A -,又由圆22:(2)(2)10+++=C x y 的圆心坐标(2,2)--,半径r =,则A 点到圆心的距离可得2d ==,由圆的弦长公式,可得l ===即弦长PQ 的最小值为 D. 【点睛】本题主要考查了圆的弦长公式,圆的标准方程的应用,其中解答中求得圆的圆心坐标和半径,再利用圆的弦长公式求解是解答的关键,着重考查了推理与计算能力,属于基础题.6.A解析:A 【分析】求出两个圆的圆心距,画出示意图,利用已知条件判断半径r 的取值范围即可. 【详解】解:圆1C :22(1)(6)25x y ++-=的圆心为()1,6-,半径为5. 圆2C :222(17)(30)x y r -+-=的圆心为()17,30,半径为r . 两个圆的圆心距为()()2217130630++-=.如图:因为||2||PA AB =,可得||AB 的最大值为直径,此时220C A =,0r >. 当半径扩大到55时,此时圆2C 上只有一点到1C 的距离为25,而且是最小值,半径再扩大,就不会满足||2||PA AB =. 故选:A. 【点睛】本题主要考查两个圆的位置关系,直线与圆的综合应用,属于中档题.7.D解析:D 【分析】取AC 中点E ,连接1,A E BE ,先通过BE⊥平面11ACC A 可得BE AM⊥,再由1ACM A AE ≅可得1AM A E ⊥,即可得出AM ⊥平面1A BE ,即1AM A B ⊥.【详解】取AC 中点E ,连接1,A E BE ,ABC 为正三角形,BE AC ∴⊥,正三棱柱111ABC A B C -中,1CC ⊥平面ABC ,BE ⊂平面ABC ,1CC BE ∴⊥,1AC CC C =,BE ∴⊥平面11ACC A ,AM ⊂平面11ACC A ,BE AM ∴⊥,在直角三角形ACM 和直角三角形1A AE 中,1,AC A A CM AE ==,1ACM A AE ∴≅, 1CAM AA E ∴∠=∠,12CAM A EA π∴∴∠+∠=,则1AM A E ⊥,1BE A E E ⋂=,AM ∴⊥平面1A BE ,1A B ⊂平面1A BE ,1AM A B ∴⊥,故异面直线AM 与1A B 所成角的大小为2π.【点睛】本题考查异面直线所成角的求解,解题的关键是通过证明AM ⊥平面1A BE 判断出1AM A B ⊥. 8.B解析:B 【分析】由M 也是1A B 的中点,P 也是1AD 中点,得平行线,从而找到异面直线MN 与PQ 所成角,在三角形中可得其大小. 【详解】如图,连接1AD ,1AB ,显然M 也是1A B 的中点,P 也是1AD 中点, 又N 是1B D 中点,Q 是1CD 中点,所以//MN AD ,//PQ AC , 所以CAD ∠是异面直线MN 与PQ 所成角(或补角),大小为4π. 故选:B .【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.9.C解析:C 【分析】A.通过证明线面垂直,证得线线垂直;B.利用相似三角形,求1A EEF的值;C.首先构造直线1A F 与平面1BDC 所成角,再通过数形结合分析最大角,以及最大角的余弦值,判选项;D.将异面直线所成角转化为相交直线所成角,求解判断. 【详解】A.AC BD ⊥,1AC BB ⊥,AC ∴⊥平面1BB D ,1AC B D ∴⊥,11//AC AC ,111B D AC ∴⊥,同理11B D BC ⊥,1111AC BC C ,1B D ∴⊥平面11A BC ,1A F ⊂平面11A BC ,11B D A F ∴⊥,故A 正确;B.连结1A D ,1BC 交1BC 于点F ,11//A B DC ,且11A B DC =,∴四边形11A DCB 是平行四边形,所以11//A D B C ,∴11A DEFB E ,得1112A E A DEF B F==,故B 正确;C.1AO ⊥平面1BDC ,1111A B AC A D ==,∴点O1BDC 是等边三角形的中心,11A BC 是等边三角形,111A BC BDC ≅ 当点F 是1BC 的中点时,11A F BC ⊥,此时1A F 是点1A 和1BC 上的点连线的最短距离,设直线1A F 与平面1BDC 所成角为θ,此时11sinAOA Fθ=最大,所以此时θ最大,所以111cos32OFA Fθ==<,最大角大于60,故C 不正确;D.11//A B CD,CD∴与1A F所成的角,转化为11B A F∠的大小,11B A F∠的最小角是11B A与平面11A BC所成的角,即11B A F∠,此时1111123tan2FBB A FA B∠==>,所以11B A F∠的最小角大于30,故D正确.故选:C【点睛】关键点点睛:本题考查利用几何的综合应用,包含线线,线面角,垂直关系,首先会作图,关键选项是C和D,C选项的关键是1AO⊥平面1BDC,点O1BDC是等边三角形的中心,D选项的关键是知道先与平面中线所成角中,其中线面角是其中的最小角.10.D解析:D【分析】在正方体中根据线面垂直可判断A,根据异面直线所成角可判断B,由余弦定理可判断CD.【详解】如图,设正方体棱长为2,在正方体中易知1DC ⊥平面11A BCD ,P 为线段1A B 上的动点,则PC ⊂平面11ABCD ,所以 1DC PC ⊥,故A 正确;因为异面直线AD 与PC 所成的角即为BC 与PC 所成的角,在Rt PBC 中不可能BC 与PC 垂直,所以异面直线AD 与PC 不可能垂直,故B 正确;由正方体棱长为2,则222222211114480D P PC DC A P BP A P BP +-=+++-=+>, 所以由余弦定理知1cos 0D PC ∠>,即1D PC ∠不可能是直角或者钝角,故C 正确;设1(0A P x x =≤≤,则2214D P x =+,222422cos44AP x x x π=+-⨯=+-,由余弦定理,22211111cos 2AP D P AD AP D P D AP ∠=+-⋅,当x <1cos 0APD ∠<,所以1APD ∠为钝角,故D 错误.故选:D 【点睛】关键点点睛:判断正方体中的角的范围时,可选择合适三角形,利用正方体中数量关系,位置关系,使用余弦定理,即可判断三角形形状或角的范围,属于中档题.11.D解析:D 【分析】取a αβ⋂=,且//m a ,//n a ,利用线面平行的判定定理可判断A 选项;根据αγ⊥,βγ⊥判断平面α与β的位置关系,可判断B 选项;设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,判断出A 、B 、C 三点到平面β的距离相等,可判断C选项;过直线n 作平面γ,使得a αγ⋂=,利用线面平行、面面平行的判定定理可判断D 选项. 【详解】对于A 选项,若a αβ⋂=,且//m a ,//n a ,m β⊄,n β⊄,则//m β,βn//,但α与β相交;对于B 选项,若αγ⊥,βγ⊥,则α与β平行或相交;对于C 选项,设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,如下图所示:D 、E 分别为AB 、AC 的中点,则//DE BC ,DE β⊂,BC β⊄,//BC β∴,所以,点B 、C 到平面β的距离相等,由于D 为AB 的中点,则点A 、B 到平面β的距离相等,所以,点A 、B 、C 三点到平面β的距离相等,但平面α与平面β相交; 对于D 选项,如下图所示:由于//n α,过直线n 作平面γ,使得a αγ⋂=,则//a n ,//n a ,a β⊄,n β⊂,//a β∴,//m β,m a A =,m α⊂,a α⊂,//αβ∴.故选:D. 【点睛】方法点睛:证明或判断两个平面平行的方法有: ①用定义,此类题目常用反证法来完成证明;②用判定定理或推论(即“线线平行”⇒“面面平行”),通过线面平行来完成证明; ③根据“垂直于同一条直线的两个平面平行”这一性质进行证明; ④借助“传递性”来完成.12.D解析:D 【分析】利用线面平行的性质定理和线面垂直的定义可判断A 选项的正误;由线面垂直的性质定理可判断B 选项的正误;根据已知条件判断直线n 与平面α的位置关系,可判断C 选项的正误;根据已知条件判断直线m 与平面α的位置关系,可判断D 选项的正误. 【详解】 对于A ,//n α,由线面平行的性质定理可知,过直线n 的平面β与平面α的交线l 平行于n ,m α⊥,l α⊂,m l ∴⊥,m n ∴⊥,故A 正确;对于B ,若m α⊥,n α⊥,由直线与平面垂直的性质,可得//m n ,故B 正确; 对于C ,若m α⊥,m n ⊥,则//n α或n ⊂α,又n α⊄,//n α∴,故C 正确; 对于D ,若m n ⊥,//n α,则//m α或m 与α相交或m α⊂, 而m α⊄,则//m α或m 与α相交,故D 错误. 故选:D . 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.二、填空题13.【分析】求出直线所过定点判断定点在圆内数形结合知直线截圆所得弦长最小时弦心距最大此时利用斜率求出参数m 即可由勾股定理求出此时的弦长【详解】直线l 可化为令所以直线l 恒过定点易知点A 在圆C 内所以直线截圆解析:【分析】求出直线所过定点,判断定点在圆内,数形结合知直线l 截圆C 所得弦长最小时,弦心距最大,此时CA l ⊥,利用斜率求出参数m ,即可由勾股定理求出此时的弦长. 【详解】直线l 可化为(27)(4)0+-++-=m x y x y ,令2703401x y x x y y +-==⎧⎧⇒⎨⎨+-==⎩⎩,所以直线l 恒过定点()3,1A ,易知点A 在圆C 内,所以直线l 截圆C 所得弦长最小时,弦心距最大,此时CA l ⊥,圆()()22:1225C x y -+-=,圆心()1,2,半径为5,∴12CA k =-,又CA l ⊥,则2121l m k m +=-=+,解得34m =-,||4CA ==∴ 直线l 截圆C所得弦长的最小值为5=故答案为:【点睛】本题考查直线过定点问题、求直线截圆所得弦长,属于中档题.14.【分析】利用垂径定理可求得的值设则联立方程利用韦达定理可求【详解】由可得圆心半径设圆心到直线距离为则由垂径定理可得解得设联立直线与圆方程得∴∴∴故答案为:【点睛】本题考查利用垂径定理解决圆的弦长问题 解析:2【分析】1AB =,利用垂径定理可求得m 的值,设()11A x y ,,()22B x y ,,则12CD x x =-=CD .【详解】由22:1O x y +=,可得圆心O ()00,,半径1R =, 设圆心到直线:0l mx y -=距离为d,则d ==,由垂径定理可得2222AB R d ⎛⎫=+ ⎪⎝⎭,222112⎛⎫=+⎝⎪⎭, 解得213m =, 设()11A x y ,,()22B x y ,,联立直线l与圆O 方程得221x y y mx ⎧+=⎪⎨=⎪⎩,∴()2222123310 m x m x m+++-=,∴21212323331113mx xm-⨯-+===-++,21221313131113mx xm⨯--===++,∴()22121212334402CD x x x x x x⎛⎫=-=+-=--⨯=⎪⎪⎝⎭.故答案为:3.【点睛】本题考查利用垂径定理解决圆的弦长问题,联立方程利用韦达定理求线段长度,考查运算求解能力,是中档题.15.或【分析】根据题意作出图形过点作x轴的平行线交圆于点是的角平分线所以为弧的中点再根据中垂线结合平面几何知识求解【详解】过点作x轴的平行线交圆于点是的角平分线所以为弧的中点所以所以如图1:所以如图2:解析:30︒或150︒【分析】根据题意,作出图形,过点(3,1)P作x轴的平行线,交圆于点()3,1G-PG是DPC∠的角平分线,所以G为弧CD的中点,再根据中垂线OG CD⊥,结合平面几何知识求解.【详解】过点(3,1)P作x轴的平行线,交圆于点()3,1G-PG是DPC∠的角平分线,所以G为弧CD的中点,所以OG CD⊥,tan3GOE∠=60GOE∠=,如图1:090GOA CA ∠+∠= , 所以030CA ∠=, 如图2:0150CA ∠= 故答案为:30︒或150︒ 【点睛】本题主要考查直线与圆的位置关系以及平面几何的知识,还考查了数形结合的思想和推理论证的能力,属于中档题.16.或【分析】把曲线方程整理后可知其图象为半圆进而画出图象来要使直线与曲线有且只有一个交点那么很容易从图上看出其三个极端情况分别是:直线在第四象限与曲线相切交曲线与和另一个点以及与曲线交于点分别求出则的解析:11b -<≤或2b =- 【分析】把曲线方程整理后可知其图象为半圆,进而画出图象来,要使直线与曲线有且只有一个交点,那么很容易从图上看出其三个极端情况,分别是:直线在第四象限与曲线相切,交曲线与()0,1-和另一个点,以及与曲线交于点()0,1,分别求出b ,则b 的范围可得. 【详解】解:由曲线21x y =-,可得()2210x y x +=≥,表示一个半圆.如下图可知,()0,1A ,()10B ,,()0,1C -, 当直线y x b =+经过点A 时,10b =+,求得1b =; 当直线y x b =+经过点B ,点C 时,01b =+,求得1b =-; 当直线y x b =+和半圆相切时,由圆心到直线的距离等于半径,可得12b =,求得2b =-或2b =(舍),故b 的取值范围为11b -<≤或2b =-.故答案为:11b -<≤或2b =-. 【点睛】本题主要考查了直线与圆相交的性质,点到直线的距离公式,体现了数形结合的思想方法,属于中档题.17.【分析】根据图示结合椭圆定义利用对称的性质可求解出的最小值即可求解出离心率的最大值【详解】如图所示设关于直线的对称点是所以所以所以所以根据椭圆定义可知:所以又所以取等号时此时所以所以离心率最大值为故解析:226【分析】根据图示结合椭圆定义利用对称的性质可求解出2a的最小值,即可求解出离心率的最大值.【详解】如图所示,设B关于直线l的对称点是()1,B a b,所以1202322bab a-⎧=-⎪⎪-⎨++⎪=+⎪⎩,所以35ab=-⎧⎨=⎩,所以()13,5B-,所以()()()()2211min min32526 PA PB PA PB AB+=+==---+=,根据椭圆定义可知:226PA PB a+=≥262a≥,又1:5100ABl x y++=,所以取等号时5103y xy x=--⎧⎨=+⎩,此时135,66P⎛⎫-⎪⎝⎭,所以2261326cea=≤=226.226.【点睛】本题考查椭圆的定义、椭圆离心率范围的求解,其中涉及到点关于直线的对称点的知识,难度一般.求解直线上一点到直线外两点的距离之和的最小值,可利用点关于直线的对称点解决问题.18.【分析】设按距离之比为定值求出点的轨迹方程它就是方程比较后可得【详解】设则整理得:易知方程化为已知圆的一般式方程为所以解得故答案为:【点睛】本题考查平面轨迹方程解题时由点到两点距离之比为常数求出的轨【分析】设(,)A m n ,(,)M x y ,按距离之比为定值求出M 点的轨迹方程,它就是方程22()(–12)3x y -+=,比较后可得λ.【详解】设(,)A m n ,(,)M x y,则MA MOλ==,整理得:222222(1)(1)220x y mx ny m n λλ-+---++=,易知210λ-≠,方程化为2222222220111m n m n x y x y λλλ++--+=---,已知圆22()(–12)3x y -+=的一般式方程为222420x y x y +--+=,所以2222222124121mn m n λλλ⎧=⎪-⎪⎪=⎨-⎪⎪+=⎪-⎩,解得25455m n λ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩.【点睛】本题考查平面轨迹方程,解题时由M 点到,A O 两点距离之比为常数λ,求出M 的轨迹方程,它就是已知圆,比较系数可得结论.19.【分析】作出图形计算出正四棱锥的高与底面边长设底面的中心为计算得出为正四棱锥的外接球球心可求得该正四棱锥的外接球半径即可得解【详解】如下图所示设正四棱锥的底面的中心为连接设正四棱锥的底面边长为则由于 解析:36π【分析】作出图形,计算出正四棱锥P ABCD -的高与底面边长,设底面ABCD 的中心为E ,计算得出E 为正四棱锥P ABCD -的外接球球心,可求得该正四棱锥的外接球半径,即可得解. 【详解】如下图所示,设正四棱锥P ABCD -的底面ABCD 的中心为E ,连接PE 、AC 、BD ,设正四棱锥P ABCD -的底面边长为a ,则2AC BD a ==,由于E 为正四棱锥P ABCD -的底面ABCD 的中心,则PE ⊥平面ABCD , 由于正四棱锥P ABCD -的侧棱与底面所成的角为45,则45PAC PCA ∠=∠=, 所以,PAC △是以APC ∠为直角的等腰直角三角形, 同理可知,PBD △是以BPD ∠为直角的等腰直角三角形,E 为AC 的中点,1222PE AC a ==,2ABCD S a =正方形, 231122183326P ABCD ABCD V S PE a a a -=⋅=⨯⨯==正方形,解得32a =23PE ==,由直角三角形的性质可得1122PE AC BD ==,即PE AE BE CE DE ====,所以,E 为正四棱锥P ABCD -外接球的球心,球E 的半径为3r PE ==,该球的表面积为2436r ππ=. 故答案为:36π. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.20.【分析】由二面角的大小为可得平面平面得到平面由勾股定理可得答案【详解】连接所以是等边三角形所以因为为中点所以所以即所以因为平面平面平面平面所以平面平面所以所以故答案为:【点睛】对于翻折问题解题时要认解析:22 【分析】由二面角A ED C '--的大小为90,可得平面A ED '⊥平面EDCB ,得到A E '⊥平面EDCB ,由勾股定理可得答案.【详解】连接DB CE 、,2AB AD ==,60A ∠=,所以ABD △、CBD 是等边三角形, 所以2AD BD CD ===,因为E 为AB 中点,1AE A E '==, 所以DE AB ⊥,DE A E ⊥',3DE =,30EDB ∠=,所以90EDC ∠=,即DE CD ⊥,所以222347EC ED CD =+=+=,因为平面A ED '⊥平面EDCB ,DE A E ⊥',平面A ED'平面EDCB DE =,所以A E '⊥平面EDCB ,EC ⊂平面EDCB ,所以A E EC '⊥, 所以221722A C A E EC ''=+=+=.故答案为:22.【点睛】对于翻折问题,解题时要认真分析图形,确定有关元素间的关系及翻折前后哪些量变了,哪些量没有变,根据线线、线面、面面关系正确作出判断,考查了学生的空间想象力..21.【分析】设球的半径为连接交于点取中点连接即为三棱柱外接球球心根据三棱锥体积可得间关系表示出根据基本不等式可求得的最小值从而得到球的表面积的最小值【详解】如图因为三棱柱是且设球的半径为连接交于点取中点 解析:27π【分析】 设ABa ,BCb =,球的半径为r ,连接1AC ,1AC 交于点O ,取AC 中点D ,连接BD ,即O 为三棱柱外接球球心,根据三棱锥体积可得a b ,间关系,表示出r ,根据基本不等式可求得r 的最小值,从而得到球的表面积的最小值.【详解】如图,因为三棱柱111ABC A B C -是 ,且90ABC ∠=︒,设AB a ,BC b =,球的半径为r ,连接1AC ,1AC 交于点O ,取AC 中点D ,连接BD ,则O 到三棱柱六个定点的距离相等,即O 为三棱柱外接球球心,1132OD AA ==, 又因为三棱锥O ABC -3 即1133322ab ⨯⨯=12ab =, 所以222222313332224a b r AD OD ab ⎛⎫⎛⎫+=+=+≥+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 当且仅当a b =时等号成立, 所以球O 的表面积最小值为2427S r ππ==,故答案为:27π.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.22.【分析】先在直角三角形中列关系求得再求球的表面积即可【详解】是直角三角形外接圆圆心为的中点因为三点都在球的表面上球心到平面的距离为是球半径的所以中即故解得所以球的表面积故答案为:【点睛】本题考查了球 解析:9π【分析】先在直角三角形中列关系,求得R ,再求球的表面积即可.【详解】AB =AC BC ⊥,ABC ∆是直角三角形,外接圆圆心为AB 的中点M ,因为A ,B ,C 三点都在球O 的表面上,球心O 到平面ABC 的距离为OM ,是球半径的13, 所以OMB ∆中()()222OA OM MA =+,即2221132R R AB ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭故2221132R R ⎛⎫⎛=+⨯ ⎪ ⎝⎭⎝,解得29=4R ,所以球O 的表面积29=4494S R πππ=⋅=. 故答案为:9π.【点睛】本题考查了球的表面积,属于中档题.23.【分析】先在等边三角形中求出外接圆半径从而可求该三棱锥的外接球的半径【详解】详解:因为所以为等边三角形所以等边外接圆的半径为如图三棱锥外接球球心为半径为设球心到平面的距离为外接圆圆心为连接则平面取中【分析】先在等边三角形ABC中求出BC =2r,从而可求该三棱锥的外接球的半径.【详解】详解:因为060AB AC BAC ==∠=,所以ABC 为等边三角形,所以BC =ABC 外接圆的半径为23r ,如图,三棱锥P ABC -外接球球心为O ,半径为R ,设球心O 到平面ABC 的距离为d ,ABC 外接圆圆心为'O ,连接,','AO AO OO ,则'OO ⊥平面ABC ,取PA 中点,D OP OA =,所以OD PA ⊥,又PA ⊥平面ABC ,所以//PA OO ',则四边形'ADOO 是矩形,所以在PDO △和'OAO △中,由勾股定理可得()222222222R d R d ⎧=+⎪⎨=+-⎪⎩,解得:1,d R ==.【点睛】本题主要考查了三棱锥外接球的表面积,其中根据几何体的结构特征和球的性质,求得三棱锥的外接球的半径是解答的关键,着重考查了空间想象能力,以及推理与运算能力. 24.【分析】】解方程得出棱台的上下底面边长根据面积关系和比例关系求出棱台的高和小棱锥的高【详解】解方程x2-9x +18=0得x=3或x=6∴棱台的上下底面边长分别为36设棱台的斜高为h 则∴h=即答案为【 解析:52【分析】】解方程得出棱台的上下底面边长,根据面积关系和比例关系求出棱台的高和小棱锥的高.【详解】解方程x 2-9x +18=0得x=3或x=6,∴棱台的上下底面边长分别为3,6.设棱台的斜高为h ,, 则22143636452h ⨯⨯+=+=() , ∴h=52. 即答案为52. 【点睛】本题考查了棱台的结构特征,画出草图帮助观察各线段的关系比较重要.三、解答题25.(1)4;(2)60︒;(3)33. 【分析】 (1)根据棱锥的体积公式求解即可;(2)作辅助线,利用平行得出异面直线1CB 与1AC 所成角就是COE ∠,再结合等边三角形的性质得出夹角;(3)过C 作1CF AC ⊥于点F ,连接,CF BF ,由11,CF AC BF AC ⊥⊥结合定义得出二面角1B AC C --的平面角,再由直角三角形的边角关系得出平面角的余弦值.【详解】(1)三棱柱111ABC A B C -的体积1122242ABC V S CC ⎛⎫=⋅=⨯⨯⨯= ⎪⎝⎭(2)记1BC 与1BC 的交点为O ,作AB 的中点E ,连接,OE CE ,异面直线1CB 与1AC 所成角就是COE ∠2CO OE CE ===60COE ︒∴∠=(3)过C 作1CF AC ⊥于点F ,连接,CF BF11,CF AC BF AC BFC ⊥⊥⇒∠为所求角3tan 2,cos 2BC BFC BFC FC ∠===∠=【点睛】关键点睛:在求异面直线的夹角时,关键是利用中位线定理得出平行,从而得出异面直线的夹角.26.(1)证明见解析;(2)23. 【分析】(1)连接11B D ,设11111B D AC O ⋂=,连接1DO ,证明11BO DO 是平行四边形,再利用线面平行的判定定理即可证明.(2)由题意可得平面11DAC ⊥平面11B D DB ,过点O 作1OH DO ⊥于H ,在矩形11B D DB 中,连接1OO ,可得1OOD OHD ∽△△,由三角形相似,对应边成比例即可求解.【详解】(1)证明:连接11B D ,设11111B D AC O ⋂=,连接1DO .11//O B DO 且11O B DO =,11B O DO ∴是平行四边形.11//BO DO ∴.又1DO ⊂平面11DA C ,1B O ⊂/平面11DA C ,1//B O ∴平面11DA C . (2)1111AC B D ⊥,111AC BB ⊥,且1111BB B D B ⋂=, 11AC ∴⊥平面11BD DB . ∴平面11DAC ⊥平面11B D DB ,且交线为1DO .在平面11B D DB 内,过点O 作1OH DO ⊥于H ,则OH ⊥平面11DA C ,即OH 的长就是点O 到平面11DA C 的距离.在矩形11B D DB 中,连接1OO ,1OOD OHD ∽△△,则11O D OD O O OH=,22236OH ⨯∴==. 即点O 到平面11DA C 的距离为233. 【点睛】关键点点睛:本题考查了线面平行的判定定理,点到面的距离,解题的关键是过点O 作1OH DO ⊥于H ,得出OH 的长就是点O 到平面11DA C 的距离,考查了计算能力. 27.(1)证明见解析;(2)45.【分析】(1)利用余弦定理求出PC ,利用勾股定理可证得PC BC ⊥,再由PC AB ⊥结合线面垂直的判定定理可证得PC ⊥平面ABC ;(2)取AC 的中点H ,连接BH 、FH ,推导出直线BF 与平面PAC 所成的角为BFH ∠,求出BH 、FH ,即可求得BFH ∠,即为所求.【详解】(1)在PBC 中,43PB =,23BC =,60PBC ∠=,由余弦定理可得2222cos 36PC PB BC PB BC PBC =+-⋅∠=,222PC BC PB ∴+=, PC BC ∴⊥,PC AB ⊥,AB BC B ⋂=,PC ∴⊥平面ABC ;(2)取AC 的中点H ,连接BH 、FH ,如下图所示:ABC 是边长为23H 为AC 的中点,BH AC ∴⊥且sin 603BH AB ==,PC ⊥平面ABC ,BH ⊂平面ABC ,BH PC ∴⊥,AC PC C ⋂=,BH ∴⊥平面PAC ,所以,BFH ∠就是直线BF 与平面PAC 所成角.HF ⊂平面PAC ,BH FH ∴⊥,F 、H 分别为PA 、AC 的中点,132FH PC ∴==,BH FH ∴=,。

2014届北师大版高中数学必修二(高一)章节测试题:第二章§2.3第二课时知能演练轻松闯关

2014届北师大版高中数学必修二(高一)章节测试题:第二章§2.3第二课时知能演练轻松闯关

1.(2012·高考山东卷)圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( )A .内切B .相交C .外切D .相离解析:选B.两圆的圆心距离为17,两圆的半径之差为1、半径之和为5,而1<17<5,所以两圆相交.2.两圆x 2+y 2-4x +2y +1=0与x 2+y 2+4x -4y -1=0的公切线有( )A .1条B .2条C .3条D .4条解析:选C.∵两圆标准方程为(x -2)2+(y +1)2=4,(x +2)2+(y -2)2=9,∴圆心距d =(2+2)2+(-1-2)2=5,r 1=2,r 2=3.∴d =r 1+r 2,∴两圆外切,∴公切线有3条.3.过圆x 2+y 2+6x +4y =0与圆x 2+y 2+4x +2y -4=0的交点的直线方程是( )A .x +y +2=0B .x +y -2=0C .5x +3y -2=0D .不存在解析:选A.两圆方程相减即得.4.两圆交于A (1,3)及B (m ,-1),两圆的圆心均在直线x -y +n =0上,则m +n 的值为( )A .1B .3C .-3D .-1解析:选 B.由题意可知,k AB =-1且AB 的中点在直线x -y +n =0上,则⎩⎪⎨⎪⎧ -1-3m -1=-1,1+m 2-3-12+n =0,解得⎩⎪⎨⎪⎧m =5,n =-2, ∴m +n =3.5.点P 在圆x 2+y 2-8x -4y +11=0上,点Q 在圆:x 2+y 2+4x +2y +1=0上,则|PQ |的最小值是( )A .5B .0C .35-5D .5-3 5解析:选C.∵(x -4)2+(y -2)2=9的圆心为C 1(4,2),半径r 1=3,(x +2)2+(y +1)2=4的圆心为C 2(-2,-1),半径r 2=2,∴|C 1C 2|=35>r 1+r 2=5,∴两圆相离,∴|PQ |min =|C 1C 2|-r 1-r 2=35-5,故选C.6.已知圆(x -2)2+(y +3)2=13和圆(x -3)2+y 2=9交于A ,B 两点,则弦AB 的垂直平分线的方程是________.解析:弦AB 的垂直平分线也就是两圆连心线,因为两圆圆心分别是(2,-3)和(3,0).由两点式得y -3=x -32-3,即3x -y -9=0. 答案:3x -y -9=07.过两圆C 1:x 2+y 2-4x +2y +1=0与C 2:x 2+y 2-6x =0的交点,且过点(2,-2)的圆的方程为________.解析:设圆的方程为:x 2+y 2-4x +2y +1+λ(x 2+y 2-6x )=0,(λ≠-1)由于圆过(2,-2),可得22+(-2)2-4×2+2×(-2)+1+λ[22+(-2)2-6×2]=0,得λ=-34, 所以,所求圆的方程为x 2+y 2+2x +8y +4=0.答案:x 2+y 2+2x +8y +4=08.若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是________.解析:如图所示,在Rt △OO 1A 中,|OA |=5,|O 1A |=25,∴|OO 1|=5,∴|AC |=5×255=2, ∴|AB |=4.答案:49.求圆心在直线x +y =0上,且过圆x 2+y 2-2x +10y -24=0与圆x 2+y 2+2x +2y -8=0的交点的圆的方程.解:设圆的方程为x 2+y 2-2x +10y -24+λ(x 2+y 2+2x +2y -8)=0(λ≠-1),即x 2+y 2+2(λ-1)λ+1x +2(5+λ)λ+1y -8(λ+3)λ+1=0(λ≠-1). 圆心(1-λλ+1,-5+λλ+1),∴1-λλ+1-5+λλ+1=0, 解得λ=-2.故所求圆的方程为x 2+y 2-2x +10y -24-2(x 2+y 2+2x +2y -8)=0,即x 2+y 2+6x -6y +8=0.10.如图所示,在单位圆O 上任取C 点为圆心,作一圆与圆O 的直径AB 相切于点D ,圆C 与圆O 交于点E ,F ,求证:EF 平分CD .证明:取圆O 的直径AB 所在的直线为x 轴,圆心O 为坐标原点,建立平面直角坐标系,如图所示,则圆O 的方程为x 2+y 2=1.①设EF 与CD 相交于H ,令C (x 1,y 1),则可得圆C 的方程(x -x 1)2+(y -y 1)2=y 21,即x 2+y 2-2x 1x -2y 1y +x 21=0.②①-②得2x 1x +2y 1y -1-x 21=0,③③式就是直线EF 的方程.设CD 的中点为H ′,其坐标为(x 1,y 12),将H ′的坐标代入③式,得2x 21+2y 1·y 12-1-x 21=x 21+y 21-1=0,即H ′在EF 上,∴EF 平分CD .1.两圆x 2+y 2=16及(x -4)2+(y +3)2=R 2(R >0)在交点处的切线互相垂直,则R 等于( )A .3B .4C .5D .6解析:选A.由题意知两圆交点与两圆圆心构成直角三角形,可知(42+32)2=52=R 2+16,∴R =3.2.若实数x ,y 满足x 2+y 2=1,则y -2x -1的最小值等于________. 解析:y -2x -1表示圆上的点与定点(1,2)连线的斜率,令k =y -2x -1,画出图形,可知定点(1,2)与圆上的点的连线的倾斜角均小于90°,则当直线与圆在圆的上方相切时,斜率最小,直线方程可设为y -2=k (x -1),即kx -y -k +2=0.∴d =|-k +2|k 2+1=1,解得k =34. 答案:343.如图,圆C 与圆C 1:x 2+y 2-2x =0相外切,并且与直线l :x +3y =0相切于点P (3,-3),求此圆C 的方程.解:设所求圆的圆心为C (a ,b ),半径长为r .因为C (a ,b )在过点P 且与l 垂直的直线上, 所以b +3a -3= 3.① 又因为圆C 与l 相切于点P , 所以r =|a +3b |2.② 因为圆C 与C 1相外切,所以(a -1)2+b 2=|a +3b |2+1.③ 由①得3a -b -43=0,将其代入③得4a 2-26a +49=|2a -6|+1,解得⎩⎪⎨⎪⎧ a =4b =0或⎩⎨⎧a =0b =-43,此时r =2或r =6,所以所求圆C的方程为(x-4)2+y2=4或x2+(y+43)2=36.4.已知圆M:x2+y2-2mx-2ny+m2-1=0与圆N:x2+y2+2x+2y-2=0交于A、B 两点,且这两点平分圆N的圆周,求圆M的圆心的轨迹方程,并求其半径最小时,圆M的方程.解:两圆方程相减得公共弦AB所在直线的方程为2(m+1)x+2(n+1)y-m2-1=0.由于A、B两点平分圆N的圆周,∴AB为圆N的直径,即直线AB经过圆N的圆心.而N(-1,-1),∴-2(m+1)-2(n+1)-m2-1=0,即m2+2m+2n+5=0,即(m+1)2=-2(n+2)(n≤-2).由于圆M的圆心坐标为(m,n),从而可知圆M的圆心轨迹方程为(x+1)2=-2(y+2).又圆M的半径r=n2+1≥5(n≤-2).当且仅当n=-2,m=-1时取等号.故半径的最小值为5,此时圆M的方程为x2+y2+2x+4y=0.。

【高中数学检测卷及答案解析】人教A版必修2第二章《点线面的位置关系》B卷

【高中数学检测卷及答案解析】人教A版必修2第二章《点线面的位置关系》B卷

数学必修2第二章《点线面的位置关系》同步检测试卷B 卷一.单项选择题:本大题共6小题,每小题4分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.在三棱锥A BCD -中,3AB AC BD CD ====,2AD BC ==,点,M N 分别为,B AD C 的中点,则异面直线AN ,CM 所成角的余弦值是( ) A 78 B 38 C 67 D 142.如图所示,已知平面α截三棱锥所得截面为平行四边形,则该三棱锥与平面α平行的棱有( )条.A . 1B . 2C . 3D . 03.《九章算术》中,将如图所示的几何体称为刍甍,底面ABCD 为矩形,且//EF 面ABCD .EF 到面ABCD 的距离为h ,BC a =,AB b =,EF c =,则2B CDEF E ABD V V --=时,b c = ( ) A 23 B 12C 2D 14.已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点).设SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则( )A.123θθθ≤≤B.321θθθ≤≤C.132θθθ≤≤D.231θθθ≤≤5.如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH 在原正方体中互为异面的对数为________对.A 1B 2C 3D 46.在棱长为2的正方体1111ABCD A B C D -中,点M 是AD 的中点,动点P 在底面ABCD 内(不包括边界),若1//B P 面1A BM ,则1C P 的最小值是( )A 55. D.10二.多项选择题:本大题共2小题,每小题4分,共8分,在每小题给出的四个选项中,有多个选项符 合题目要求,全部选对的得4分,选对但不全的得2分,有选错的得0分.7.正方体1111ABCD A B C D -的棱长为1,P 为BC 中点,Q 为线段1C C 上的动点,过点,,A P Q 的平面截该正方体所得的截面记为S .则下列命题正确的是( )A.(1),(2)B.(2),(4),(5)C.(2),(3),(4)D.(3),(5)(1)当102CQ <<时,S 为四边形;(2)当1=2CQ 时,S 为等腰梯形;(3)当3=4CQ 时,S 与11C D 交点R 满足113C R =.(4)当3<14CQ <时,S 为六边形;(5)当=1CQ 时,S8.已知三棱锥A-BCD 中,AB=CD,且直线AB 与CD 所成的角为60°,点M,N 分别是BC,AD 的中点,则直线AB 和MN 所成的角为( )A 60B 120C 90D 30三、填空题:本大题共4题,每小题4分,共16分.9.正方体1111ABCD A B C D -的棱长为a ,点P 是棱AD 上一点,且3a AP =,过1B ,1D ,P 的平面交底面ABCD 于PQ ,点Q 在直线CD 上,则PQ 的长为_________10.已知直线l 1∥平面α,直线l 2⊂平面α,且l 1∥l 2,点A∈l 1,点B∈l 2.记A 到平面α的距离为a,A 到l 2的距离为b,A,B 两点间的距离为c,则a,b,c 的大小关系为_________11.如图所示,棱柱ABC-A 1B 1C 1的侧面BCC 1B 1是菱形,设D 是A 1C 1上的点,且A 1B∥平面B 1CD,则A 1D∶DC 1的值为________12.在长方体1111ABCD A B C D -中,2AB =,3AD =,12AA =,E 是1AA 的中点,F 是棱AD 上一点,1AF =,动点P 在底面1111A B C D 内,且三棱锥P BEF -与三棱锥1B D EF -的体积相等,则1C P 的最小值为_______,直线CP 与1BB 所成角的正切值的最小值为________四、解答题:本大题共3小题,共52分,解答应写出文字说明,证明过程或演算步骤.13.(本小题满分16分)如图,已知正方形ABCD 的边长为6,点E,F 分别在边AB,AD 上,AE=AF=4,现将△AEF 沿线段EF 折起到△A'EF 的位置,使得A'C=2.(1)求五棱锥A'-BCDFE 的体积;(2)在线段A'C 上是否存在一点M,使得BM∥平面A'EF?若存在,求出A'M;若不存在,请说明理由.14.(本小题满分18分)如图,在四棱锥P-ABCD 中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E 是PC 的中点.求证:(1)CD⊥AE;(2)PD⊥平面ABE.15.(本小题满分18分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P-ABCD 中,侧棱PD ⊥底面ABCD ,且PD=CD ,点E 是PC 的中点,连接DE ,BD ,BE.(1)证明:DE⊥平面PBC.试判断四面体EBCD 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;(2)记阳马P-ABCD 的体积为V 1,四面体EBCD 的体积为V 2,求12V V 错误!未找到引用源。

数学试题 人教a版必修2 同步练习第二章检测测试题(两套)

数学试题 人教a版必修2 同步练习第二章检测测试题(两套)

第二章检测(A)(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列命题正确的是( )A.没有公共点的两条直线是平行直线B.互相垂直的两条直线是相交直线C.既不平行又不相交的两条直线是异面直线D.不在同一平面内的两条直线是异面直线解析:没有公共点的两条直线还可能异面,所以A选项不正确;互相垂直的直线还可能是异面直线,所以B选项不正确;D选项中,缺少任一平面内,所以D选项不正确;很明显C选项正确.答案:C2.如图,已知在正方体ABCD-A1B1C1D1中,l⊂平面A1B1C1D1,且l与B1C1不平行,则下列结论一定不成立的是( )A.l与AD平行B.l与AB异面C.l与CD所成的角为30°D.l与BD垂直答案:A3.对两条不相交的空间直线a与b,必存在平面α,使得( )A.a⊂α,b⊂αB.a⊂α,b∥αC.a⊥α,b⊥αD.a⊂α,b⊥α解析:对于选项A,当a与b是异面直线时,A错误;对于选项B,若a,b不相交,则a与b平行或异面,都存在α,使a⊂α,b∥α,B正确;对于选项C,a⊥α,b⊥α,一定有a∥b,但当a与b异面时,不存在平面α,使结论成立,C错误;对于选项D,a⊂α,b⊥α,一定有a⊥b,但当a与b平行时,不存在平面α,使结论成立,D错误.答案:B4.给出下列四个命题:①垂直于同一条直线的两条直线互相平行;②垂直于同一个平面的两个平面互相平行;③若直线l1,l2与同一平面所成的角相等,则l1,l2互相平行.其中不正确的个数是( )A.1B.2C.3D.0解析:利用特殊的几何体正方体进行验证,我们不难发现①②③均不正确.故选C.答案:C5.若l为直线,α,β是两个不同的平面,则下列命题正确的是( )A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β解析:对于A,若l∥α,l∥β,则α和β可能平行也可能相交,故A错误;对于B,由线面垂直的性质可得,B 正确;对于C,若l⊥α,l∥β,应推出α⊥β,故C错误;对于D,l与β的位置关系不确定,l∥β,l⊂β,l 与β相交,都有可能,故D错误.答案:B6.如图,在正方体ABCD-A1B1C1D1中,若E是A1C1的中点,则直线CE垂直于( )A.BDB.ACC.ADD.A1D1解析:由BD⊥AC,BD⊥CC1,AC∩CC1=C,则BD⊥平面ACC1A1.又CE⊂平面ACC1A1,所以BD⊥CE.答案:A7.如图,点S在平面ABC外,SB⊥AC,SB=AC=2,E,F分别是SC和AB的中点,则EF的长是( )A.1 BC解析:如图,取CB的中点D,连接ED,DF,则∠EDF(或其补角)为异面直线SB与AC所成的角,即∠EDF=90°.在△EDF中,ED EF答案:B8.已知四棱锥的侧棱长与底面边长都是1,底面为正方形,则侧棱与底面所成的角为( )A.75°B.60°C.45°D.30°解析:如图,O为底面ABCD的中心,连接AC,BD,SO,易得SO⊥平面ABCD.所以∠OCS为侧棱SC与底面ABCD所成的角.又由已知可求得OC因为SC=1,所以∠OCS=45°.答案:C9.在正方体ABCD-A1B1C1D1中,E,F分别是线段A1B1,B1C1上与端点不重合的动点,A1E=B1F,有下面四个结论:①EF⊥AA1; ②EF∥AC;③EF与AC异面; ④EF∥平面ABCD.其中一定正确的是( )A.①②B.②③C.②④D.①④解析:如图,由于AA1⊥平面A1B1C1D1,EF⊂平面A1B1C1D1,则EF⊥AA1,所以①正确;当E,F分别是线段A1B1,B1C1的中点时,EF∥A1C1,又AC∥A1C1,则EF∥AC,所以③不正确;当E,F不是线段A1B1,B1C1的中点时,EF与AC异面,所以②不正确;由于平面A1B1C1D1∥平面ABCD,EF⊂平面A1B1C1D1,所以EF∥平面ABCD,所以④正确.答案:D10.已知平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n 所成角的正弦值为( )A解析:(方法一)∵α∥平面CB1D1,平面ABCD∥平面A1B1C1D1,α∩平面ABCD=m,平面CB1D1∩平面A1B1C1D1=B1D1,∴m∥B1D1.∵α∥平面CB1D1,平面ABB1A1∥平面DCC1D1,α∩平面ABB1A1=n,平面CB1D1∩平面DCC1D1=CD1,∴n∥CD1.∴B1D1,CD1所成的角等于m,n所成的角,即∠B1D1C等于m,n所成的角.∵△B1D1C为正三角形,∴∠B1D1C=60°,∴m,n所成角的正弦值(方法二)由题意画出图形如图,将正方体ABCD-A1B1C1D1平移,补形为两个全等的正方体.易证平面AEF∥平面CB1D1,所以平面AEF即为平面α,m即为AE,n即为AF,所以AE与AF所成的角即为m与n所成的角.因为△AEF是正三角形,所以∠EAF=60°,故m,n所成角的正弦值答案:A二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11.直线l1∥l2,在l1上取2个点,l2上取2个点,由这4个点能确定平面的个数是.解析:因为l1∥l2,所以经过l1,l2有且只有一个平面.答案:112.如图,在△ABC中,∠ACB=90°,直线l过点A且垂直于平面ABC,动点P∈l,当点P逐渐远离点A时,∠PCB 的大小会.(填“变大”“变小”或“不变”)解析:∵l⊥平面ABC,∴l⊥BC.∵∠ACB=90°,∴BC⊥AC.又PA∩AC=A,PA,AC⊂平面PAC,∴BC⊥平面PAC.∴BC⊥PC.∴∠PCB=90°.故当点P逐渐远离点A时,∠PCB的大小不变.答案:不变13.已知长方体ABCD-A1B1C1D1的底面ABCD为正方形,它的体积解析:由已知可求得长方体ABCD-A1B1C1D1的底面边长为1,侧棱长过点A1作A1E⊥AB1于点E,如图.因为B1C1⊥平面ABB1A1,所以B1C1⊥A1E.因为AB1∩B1C1=B1,所以A1E⊥平面AB1C1.所以∠A1B1E即为A1B1与平面AB1C1所成的角.因为AA1所以AB1=2,A1E因为sin∠A1B1E所以∠A1B1E=60°.答案:60°14.已知三棱锥S -ABC的所有顶点都在球O的球面上,SC是球O的直径,若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S -ABC的体积为9,则球O的表面积为.解析:取SC的中点O,连接OA,OB.因为SA=AC,SB=BC,所以OA⊥SC,OB⊥SC.因为平面SAC⊥平面SBC,且OA⊂平面SAC,所以OA⊥平面SBC.设OA=r,则V A-SBC△SBC×OA所r=3.所以球O的表面积为4πr2=36π.答案:36π15.如图,在直四棱柱ABCD-A1B1C1D1中,当底面四边形A1B1C1D1满足条件时,有A1C⊥B1D1(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况).解析:由直四棱柱可知CC1⊥平面A1B1C1D1,所以CC1⊥B1D1.要使得B1D1⊥A1C,只要B1D1⊥平面A1C1C,即只要B1D1⊥A1C1.此题还可以填写四边形A1B1C1D1是菱形、正方形等条件.答案:B1D1⊥A1C1(答案不唯一)三、解答题(本大题共5小题,共45分.解答时应写出文字说明、证明过程或演算步骤)16.(8分)如图,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.证明:(1)如图,连接EF,CD1,BA1.因为E,F分别是AB,AA1的中点,所以EF∥BA1.又BA1∥CD1,所以EF∥CD1.所以E,C,D1,F四点共面.(2)因为EF∥CD1,EF<CD1,所以CE与D1F必相交,设交点为P.由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理,得P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,所以P∈直线DA.所以CE,D1F,DA三线共点.17.(8分) 如图,PA⊥正方形ABCD所在的平面,经过点A且垂直于PC的平面分别交PB,PC,PD于E,F,G,求证:AE⊥PB.证明:因为PA⊥平面ABCD,所以PA⊥BC.又ABCD是正方形,所以AB⊥BC.而PA∩AB=A,所以BC⊥平面PAB.因为AE⊂平面PAB,所以BC⊥AE.由PC⊥平面AEFG,得PC⊥AE.因为PC∩BC=C,所以AE⊥平面PBC.所以AE⊥PB.18.(9分)如图,在四棱锥P-ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.(1)求证:DC⊥平面PAC.(2)求证:平面PAB⊥平面PAC.(3)设点E为AB的中点,在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.(1)证明:因为PC⊥平面ABCD,所以PC⊥DC.又因为DC⊥AC,所以DC⊥平面PAC.(2)证明:因为AB∥DC,DC⊥AC,所以AB⊥AC.因为PC⊥平面ABCD,所以PC⊥AB.所以AB⊥平面PAC.所以平面PAB⊥平面PAC.(3)解:棱PB上存在点F,使得PA∥平面CEF.理由如下:取PB中点F,连接EF,CE,CF,如图. 因为E为AB的中点,所以EF∥PA.又因为PA⊄平面CEF,所以PA∥平面CEF.19.(10分)如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P-ABCD的体积(1)证明:由已知∠BAP=∠CDP=90°,得AB⊥AP,CD⊥PD.由于AB∥CD,故AB⊥PD,从而AB⊥平面PAD.又AB⊂平面PAB,所以平面PAB⊥平面PAD.(2)解:在平面PAD内作PE⊥AD,垂足为E.由(1)知,AB⊥平面PAD,故AB⊥PE,可得PE⊥平面ABCD.设AB=x,则由已知可得AD故四棱锥P-ABCD的体积V P-ABCD·AD·PE由题设x=2.从而PA=PD=2,AD=BC=可得四棱锥P-ABCD的侧面积·PD·AB·DC60°=6+20.(10分)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E-ABC的体积.(1)证明:在三棱柱ABC-A1B1C1中,BB1⊥底面ABC.所以BB1⊥AB. 又因为AB⊥BC,所以AB⊥平面B1BCC1.所以平面ABE⊥平面B1BCC1.(2)证明:取AB的中点G,连接EG,FG,如图.因为E,F分别是A1C1,BC的中点,所以FG∥AC,且FG因为AC∥A1C1,且AC=A1C1,所以FG∥EC1,且FG=EC1.所以四边形FGEC1为平行四边形.所以C1F∥EG.又因为EG⊂平面ABE,C1F⊄平面ABE,所以C1F∥平面ABE.(3)解:因为AA1=AC=2,BC=1,AB⊥BC,所以AB所以三棱锥E-ABC的体积V△ABC·AA1第二章检测(B)(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面给出了四个条件:①空间三个点;②一条直线和一个点;③和直线a都相交的两条直线;④两两相交的三条直线.其中,能确定一个平面的条件有( )A.3个B.2个C.1个D.0个解析:①当空间三点共线时不能确定一个平面;②点在直线上时不能确定一个平面;③两直线若不平行也不相交时不能确定一个平面;④三条直线交于一点且不共面时不能确定一个平面.故4个条件都不能确定一个平面.答案:D2.对于直线m,n和平面α,下列结论正确的是( )A.如果m⊂α,n⊄α,m,n是异面直线,那么n∥αB.如果m⊂α,n⊄α,m,n是异面直线,那么n与α相交C.如果m⊂α,n∥α,m,n共面,那么m∥nD.如果m∥α,n∥α,m,n共面,那么m∥n解析:当m⊂α,n⊄α,m,n是异面直线时,n与α可以平行,也可以相交,故A,B错误;对于C,由线面平行的性质定理可知C正确;对于D,m与n还可以相交,故D错误.答案:C3.如图是长方体被一平面所截得到的几何体,四边形EFGH为截面,长方形ABCD为底面,则四边形EFGH的形状为( )A.梯形B.平行四边形C.可能是梯形也可能是平行四边形D.不确定解析:因为平面ABFE∥平面CDHG,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面CDHG=HG,所以EF∥HG.同理EH∥FG,所以四边形EFGH的形状是平行四边形.答案:B4.已知a,b,c是直线,则下面四个命题:①若直线a,b异面,b,c异面,则a,c异面;②若直线a,b相交,b,c相交,则a,c相交;③若a∥b,则a,b与c所成的角相等.其中真命题的个数为( )A.0B.3C.2D.1解析:异面、相交关系在空间中不能传递,故①②错;根据等角定理,可知③正确.答案:D5.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )解析:选项B,C中,易知AB∥MQ,且MQ⊂平面MNQ,AB⊄平面MNQ,则AB∥平面MNQ;选项D中,AB∥NQ,且NQ⊂平面MNQ,AB⊄平面MNQ,则AB∥平面MNQ,故排除选项B,C,D.故选A.答案:A6.把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,直线BD和平面ABC所成的角的大小为( )A.30°B.45°C.60°D.90°解析:当三棱锥D-ABC的体积最大时,平面DAC⊥ABC,取AC的中点O,连接OD,OB(图略),则△DBO是等腰直角三角形,即∠DBO=45°.答案:B7.如图,在长方体ABCD-A1B1C1D1中,侧面AA1D1D为正方形,E为棱CD上任意一点,则( )A.AD1⊥B1EB.AD1∥B1EC.AD1与B1E共面D.以上都不对解析:连接A1D(图略),则由正方形的性质,知AD1⊥A1D.又B1A1⊥平面AA1D1D,所以B1A1⊥AD1,所以AD1⊥平面A1B1ED.又B1E⊂平面A1B1ED,所以AD1⊥B1E,故选A.答案:A8.已知一个正方体的展开图如图所示,其中A,B为所在棱的中点,C,D为原正方体的顶点,则在原来的正方体中AB与CD所成角的大小是( )A.30°B.45°C.60°D.90°解析:展开图还原为正方体(如图),其中EF,FG,EG分别为所在面的对角线.因为A,B分别为相应棱的中点,所以EF∥AB.易知CD∥EG,所以∠FEG为AB与CD所成的角(或其补角).又因为EG=EF=FG,所以∠FEG=60°,即AB与CD所成角的大小为60°.答案:C9.在三棱锥P-ABC中,∠ABC=90°,PA=PB=PC.则下列说法正确的是( )A.平面PAC⊥平面ABCB.平面PAB⊥平面PBCC.PB⊥平面ABCD.BC⊥平面PAB解析:如图,因为PA=PB=PC,所以点P在底面的射影是底面△ABC的外心.又因为∠ABC=90°,所以射影O为AC的中点.则PO⊥平面ABC,所以平面PAC⊥平面ABC.答案:A10.如图,在多面体ACBDE中,BD∥AE,且BD=2,AE=1,F在CD上,要使AC∥平面EFB,A.3B.2C.1 D解析:连接AD交BE于点O,连接OF.因为AC∥平面EFB,平面ACD∩平面EFB=OF,所以AC∥OF.所又因为BD∥AE,所以△EOA∽△BOD,所答案:B二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11.已知a,b,c是空间中的三条相互不重合的直线,给出下列说法:①若a∥b,b∥c,则a∥c;②若a与b相交,b与c相交,则a与c相交;③若a⊂平面α,b⊂平面β,则a,b一定是异面直线;④若a,b与c成等角,则a∥b.其中正确的是.(只填序号)解析:由公理4知①正确;当a与b相交,b与c相交时,a与c可能相交、平行,也可能异面,故②不正确;当a⊂平面α,b⊂平面β时,a与b可能平行、相交或异面,故③不正确;当a,b与c成等角时,a与b可能相交、平行,也可能异面,故④不正确.答案:①12.在矩形ABCD中,若AB=3,BC=4,PA⊥平面ABCD,且PA=1,则点P到对角线BD的距离为.解析:如图,过点A作AE⊥BD于点E.因为PA⊥平面ABCD,所以PA⊥BD.又PA∩AE=A,所以BD⊥平面PAE,所以BD⊥PE.又因为ABCD为矩形,且AB=3,BC=4,所以AE所以PE答案:13.如图,正方形ABEF和正方形ABCD有公共边AB,∠EBC=60°,AB=CB=BE=a,则DE=.解析:由已知∠EBC=60°,连接EC(图略).因为BE=BC=a,所以EC=a,又可证CD⊥平面EBC,所以CD⊥EC.因为CD=a,所以DE答案:14.如图,PA⊥平面ABC,∠ACB=90°,且PA=AC=BC=a,则异面直线PB与AC所成角的正切值等于.解析:不妨将几何体放在如图所示的正方体中,则PB与AC所成的角等于PB与PQ所成的角.设正方体的棱长为a,连接BQ,则在△BPQ中,PQ=a,BQ所以tan∠BPQ答案:15.如图,在棱长均相等的四棱锥P-ABCD中,O为底面正方形的中心,M,N分别为侧棱PA,PB的中点,有下列结论:①PC∥平面OMN;②平面PCD∥平面OMN;③OM⊥PA;④直线PD与直线MN所成角的大小为90°.其中正确结论的序号是.解析:连接AC(图略),易得PC∥OM,所以PC∥平面OMN,结论①正确.同理PD∥ON,所以平面PCD∥平面OMN,结论②正确.由于四棱锥的棱长均相等,所以AB2+BC2=PA2+PC2=AC2,所以PC⊥PA.又PC∥OM,所以OM⊥PA,结论③正确.由于M,N分别为侧棱PA,PB的中点,所以MN∥AB.又四边形ABCD为正方形,所以AB∥CD,所以直线PD与直线MN所成的角即为直线PD与直线CD所成的角,即为∠PDC.又三角形PDC为等边三角形,所以∠PDC=60°,故④错误.答案:①②③三、解答题(本大题共5小题,共45分.解答时应写出文字说明、证明过程或演算步骤)16.(8分)如图,在三棱锥P-ABC中,平面PAC⊥平面ABC,∠ABC=90°,点D,E在线段AC上,且DE=EC,PD=PC,点F在线段AB上,且EF∥BC.证明:AB⊥平面PFE.证明:由DE=EC,PD=PC知,E为等腰三角形PDC中DC边上的中点,故PE⊥AC.又平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PE⊂平面PAC,所以PE⊥平面ABC.因为AB⊂平面ABC,所以PE⊥AB.因为∠ABC=90°,EF∥BC,故AB⊥EF.从而AB与平面PFE内的两条相交直线PE,EF都垂直,所以AB⊥平面PFE.17.(8分)如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.证明:(1)在直三棱柱ABC-A1B1C1中,A1C1∥AC.在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,于是DE∥A1C1.又因为DE⊄平面A1C1F,A1C1⊂平面A1C1F,所以直线DE∥平面A1C1F.(2)在直三棱柱ABC-A1B1C1中,A1A⊥平面A1B1C1.因为A1C1⊂平面A1B1C1,所以A1A⊥A1C1.又因为A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.因为B1D⊂平面ABB1A1,所以A1C1⊥B1D.又因为B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,所以B1D⊥平面A1C1F.因为直线B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F.18.(9分) 如图,四棱锥P-ABCD的底面ABCD是梯形,AB∥CD,且AB∥平面PAD?若能,请确定点E的位置,并给出证明;若不能,请说明理由.解:在PC上能找到点E,且满BE∥平面PAD.证明如下:延长DA和CB交于点F,连接PF,如图.在梯形ABCD中,AB∥CD,AB所所所以在△PFC所以BE∥PF.而BE⊄平面PAD,PF⊂平面PAD,所以BE∥平面PAD.19.(10分)如图,在四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD的面积为(1)证明:在平面ABCD内,因为∠BAD=∠ABC=90°,所以BC∥AD.又BC⊄平面PAD,AD⊂平面PAD,故BC∥平面PAD.(2)解:如图,取AD的中点M,连接PM,CM.由AB=BCBC∥AD,∠ABC=90°,得四边形ABCM为正方形,则CM⊥AD.因为侧面PAD垂直底面ABCD,平面PAD∩平面ABCD=AD,所以CM⊥侧面PAD, 所以CM⊥PM.设BC=x,则CM=x,CD取CD的中点N,连接PN,则PN⊥CD,所以PN因为△PCD的面积所解得x=-2(舍去),x=2.于是AB=BC=2,AD=4,PM=所以四棱锥P-ABCD的体积V20.(10分)如图,在Rt△AOB中,∠OAB=30°,斜边AB=4,Rt△AOC可以通过Rt△AOB以直线AO为轴旋转得到,且平面AOB⊥平面AOC.动点D在斜边AB上.(1)求证:平面COD⊥平面AOB;(2)当D为AB的中点时,求异面直线AO与CD所成角的正切值.(1)证明:由题意知,CO⊥AO,平面AOB⊥平面AOC,所以CO⊥平面AOB.又CO⊂平面COD,所以平面COD⊥平面AOB.(2)解:作DE⊥OB,垂足为E,连接CE(如图),则DE∥AO.所以∠CDE是异面直线AO与CD所成的角.由(1)知CO⊥BO,在Rt△OCB中,CO=BO=2,OE第21 页共22 页所以CE又DE所以在Rt△CDE中,tan∠CDE故异面直线AO与CD 所成的角的正切值第22 页共22 页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章单元测试题
一、选择题
1.若直线a和b没有公共点,则a与b的位置关系是() A.相交B.平行C.异面D.平行或异面
2.平行六面体ABCD-A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为()
A.3B.4C.5D.6
3.已知平面α和直线l,则α内至少有一条直线与l() A.平行B.相交C.垂直D.异面
4.长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于() A.30°B.45°C.60°D.90°
5.对两条不相交的空间直线a与b,必存在平面α,使得() A.a⊂α,b⊂α B.a⊂α,b∥α C.a⊥α,b⊥α D.a⊂α,b⊥α6.下面四个命题:
①若直线a,b异面,b,c异面,则a,c异面;
②若直线a,b相交,b,c相交,则a,c相交;
③若a∥b,则a,b与c所成的角相等;
④若a⊥b,b⊥c,则a∥c.其中真命题的个数为()
A.4B.3C.2D.1
7.在正方体ABCD-A1B1C1D1中,E,F分别是线段A1B1,B1C1上的不与端点重合的动点,如果A1E=B1F,有下面四个结论:
①EF⊥AA1;②EF∥AC;③EF与AC异面;④EF∥平面ABCD.
其中一定正确的有()
A.①②B.②③C.②④D.①④
B.
8.设a,b为两条不重合的直线,α,β为两个不重合的平面,下列命题中为真命题的是()A.若a,b与α所成的角相等,则a∥b B.若a∥α,b∥β,α∥β,则a∥b
C.若a⊂α,b⊂β,a∥b,则α∥β
D.若a⊥α,b⊥β,α⊥β,则a⊥b
9.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,n∥β,则下列四种位置关系中,不一定成立的是()A.AB∥m B.AC⊥m C.AB∥βD.AC⊥β
二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)
13.下列图形可用符号表示为________.
14.正方体ABCD-A1B1C1D1中,二面角C1-AB-C的平面角等于________.
15.设平面α∥平面β,A,C∈α,B,D∈β,直线AB与CD交于点S,且点S位于平面α,β之间,AS=8,BS=6,CS=12,则SD=________. 16.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:
①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;
④AB与CD所成的角是60°.其中正确结论的序号是________.
三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)
17.(10分)如下图,在三棱柱ABC-A1B1C1中,△ABC与△A1B1C1都为正三角形且AA1⊥面ABC,F、F1分别是AC,A1C1的中点.求证:(1)平面AB1F1∥平面C1BF;
(2)平面AB1F1⊥平面ACC1A1.
18.(12分)如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=22,M为BC的中点.
(1)证明:AM⊥PM;
(2)求二面角P-AM-D的大小.
详解答案
1[答案] D
2[答案] C
[解析]AB与CC1为异面直线,故棱中不存在同时与两者平行的直线,因此只有两类:
第一类与AB平行与CC1相交的有:CD、C1D1
与CC1平行且与AB相交的有:BB1、AA1,
第二类与两者都相交的只有BC,故共有5条.
3[答案] C
[解析]1°直线l与平面α斜交时,在平面α内不存在与l平行的直线,∴A错;
2°l⊂α时,在α内不存在直线与l异面,∴D错;
3°l∥α时,在α内不存在直线与l相交.
无论哪种情形在平面α内都有无数条直线与l垂直.
4[答案] D
[解析]由于AD∥A1D1,则∠BAD是异面直线AB,A1D1所成的角,很明显∠BAD=90°.
5[答案] B
[解析]对于选项A,当a与b是异面直线时,A错误;对于选项B,若a,b不相交,则a与b平行或异面,都存在α,使a⊂α,b ∥α,B正确;对于选项C,a⊥α,b⊥α,一定有a∥b,C错误;对于选项D,a⊂α,b⊥α,一定有a⊥b,D错误.
6[答案] D
[解析]异面、相交关系在空间中不能传递,故①②错;根据等角定理,可知③正确;对于④,在平面内,a∥c,而在空间中,a与c 可以平行,可以相交,也可以异面,故④错误.
7[答案] D
[解析]如图所示.由于AA1⊥平面A1B1C1D1,EF⊂平面A1B1C1D1,则EF⊥AA1,所以①正确;当E,F分别是线段A1B1,B1C1的中点时,EF∥A1C1,又AC∥A1C1,则EF∥AC,所以③不正确;当E,F分别不是线段A1B1,B1C1的中点时,EF与AC异面,所以②不正确;由于平面A1B1C1D1∥平面ABCD,EF⊂平面A1B1C1D1,所以EF∥平面ABCD,所以④正确.
8[答案] D
[解析]选项A中,a,b还可能相交或异面,所以A是假命题;选项B中,a,b还可能相交或异面,所以B是假命题;选项C中,α,β还可能相交,所以C是假命题;选项D中,由于a⊥α,α⊥β,则a ∥β或a⊂β,则β内存在直线l∥a,又b⊥β,则b⊥l,所以a⊥b.
9[答案] C
[解析]如图所示:
AB∥l∥m;AC⊥l,m∥l⇒AC⊥m;AB∥l⇒AB∥β.
13[答案]α∩β=AB
14[答案]45°
[解析]如图所示,正方体ABCD-A1B1C1D1中,由于BC⊥AB,BC1⊥AB,则∠C1BC是二面角C1-AB-C的平面角.又△BCC1是等腰直角三角形,则∠C1BC=45°.
15[答案]9
[解析]如下图所示,连接AC,BD,
则直线AB,CD确定一个平面ACBD.
∵α∥β,∴AC∥BD,
则AS
SB=
CS
SD,∴
8
6=
12
SD,解得SD=9.
16[答案]①②④
[解析]如图所示,①取BD中点,E连接AE,CE,则BD⊥AE,BD⊥CE,而AE∩CE=E,∴BD⊥平面AEC,AC⊂平面AEC,故AC ⊥BD,故①正确.
②设正方形的边长为a,则AE=CE=
2 2a.
由①知∠AEC=90°是直二面角A-BD-C的平面角,且∠AEC=90°,∴AC=a,
∴△ACD是等边三角形,故②正确.
③由题意及①知,AE⊥平面BCD,故∠ABE是AB与平面BCD 所成的角,而∠ABE=45°,所以③不正确.
④分别取BC,AC的中点为M,N,
连接ME,NE,MN.
则MN∥AB,且MN=1
2AB=1
2a,
ME∥CD,且ME=1
2CD=
1
2a,
∴∠EMN是异面直线AB,CD所成的角.
在Rt△AEC中,AE=CE=
2
2a,AC=a,
∴NE=1
2AC=
1
2a.∴△MEN是正三角形,∴∠EMN=60°,故④正
确.
17[证明](1)在正三棱柱ABC-A1B1C1中,
∵F、F1分别是AC、A1C1的中点,
∴B1F1∥BF,AF1∥C1F.
又∵B1F1∩AF1=F1,C1F∩BF=F,
∴平面AB1F1∥平面C1BF.
(2)在三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,∴B1F1⊥AA1.
又B1F1⊥A1C1,A1C1∩AA1=A1,
∴B1F1⊥平面ACC1A1,而B1F1⊂平面AB1F1,
∴平面AB1F1⊥平面ACC1A1.
18[解析](1)证明:如图所示,取CD的中点E,连接PE,EM,EA,
∵△PCD为正三角形,
∴PE⊥CD,PE=PD sin∠PDE=2sin60°= 3.
∵平面PCD⊥平面ABCD,
∴PE⊥平面ABCD,而AM⊂平面ABCD,∴PE⊥AM.
∵四边形ABCD是矩形,
∴△ADE,△ECM,△ABM均为直角三角形,由勾股定理可求得EM=3,AM=6,AE=3,
∴EM2+AM2=AE2.∴AM⊥EM.
又PE∩EM=E,∴AM⊥平面PEM,∴AM⊥PM.
(2)解:由(1)可知EM⊥AM,PM⊥AM,
∴∠PME是二面角P-AM-D的平面角.
∴tan∠PME=PE
EM=
3
3
=1,∴∠PME=45°.
∴二面角P-AM-D的大小为45°.。

相关文档
最新文档