高一数学必修2第二章教案(完整版)教学文案
高一数学必修2全套教案(共62页)
高中数学新人教版A必修二全部教案第一章:空间几何体1.1.1柱、锥、台、球的结构特征一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪四、教学思路(一)创设情景,揭示课题1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。
教师对学生的活动及时给予评价。
2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。
根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
(二)、研探新知1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。
在此基础上得出棱柱的主要结构特征。
(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。
概括出棱柱的概念。
4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。
5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
高中数学必修2教案(5篇)
高中数学必修2教案(5篇)
高中数学必修2教案1 讲义1:空间几何体
一、教学要求:通过实物模型,观察大量的空间图形,认识柱体、
锥体、台体、球体及简单组合体的构造特征,并
能运用这些特征描绘现实生活中简单物体的结
构.
二、教学重点:让学生感受大量空间实物及模型,概括出柱体、锥体、台体、球体的构造特征.
三、教学难点:柱、锥、台、球的构造特征的概括.
四、教学过程:
〔一〕、新课导入:
1. 导入:进入高中,在必修②的第一、二章中,将继续深化研究一些空间几何图形,即学习立体几何,注意学习方法:直观感知、操作确认、思维辩证、度量计算.
〔二〕、讲授新课:
1. 教学棱柱、棱锥的构造特征:
①、讨论:给一个长方体模型,经过上、下两个底面用刀垂直切,得到的几何体有哪些公共特征?把这些几何体用程度力
推斜后,仍然有哪些公共特征?
②、定义:有两个面互相平行,其余各面都是四边形,且
每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫棱柱. → 列举生活中的棱柱实例〔三棱镜、方砖、六角螺帽〕.
结合图形认识:底面、侧面、侧棱、顶点、高、对角面、对角线.
③、分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等.
表示:棱柱ABCDE-A’B’C’D’E’
④、讨论:埃及金字塔具有什么几何特征?
⑤、定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥.
结合图形认识:底面、侧面、侧棱、顶点、高. → 讨论:棱锥如何分类及表示?
⑥、讨论:棱柱、棱锥分别具有一些什么几何性质?有什么共同的性质?。
高中数学 必修二 第二章完整全部教案及导学案经典练习
第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系2.1.1平面1.理解平面的概念,会画一个平面及会表示平面.2.会用符号语言表示空间点、直线、平面之间的位置关系.(重点)3.掌握三个公理并会简单应用.(难点、易混点)平面阅读教材P40至P41“思考”以上的内容,完成下列问题.1.平面的概念几何里所说的“平面”,是从课桌面、黑板面、海面这样的一些物体中抽象出来的.几何里的平面是无限延展的.2.平面的画法(1)水平放置的平面通常画成一个平行四边形,它的锐角通常画成45°,且横边长等于其邻边长的2倍.如图①.(2)如果一个平面被另一个平面遮挡住,为了增强它的立体感,把被遮挡部分用虚线画出来.如图②.3.平面的表示法图①的平面可表示为平面α、平面ABCD、平面AC或平面BD.【思考】立体几何中的平面与平面几何中的平面图形有何区别?【提示】立体几何中的平面与平面几何中的平面图形的区别:(1)平面图形如三角形、正方形、梯形等,它们有大小之分;(2)立体几何中的平面是无大小、厚薄之分的,是不可度量的,无大小,无面积.它可以无限延展,没有边界.平面的基本性质阅读教材P41“思考”以下至P43“练习”以上的内容,完成下列问题.填表公理内容图形符号公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内A∈l,B∈l,且A∈α,B∈α⇒l⊂α公理2 过不在一条直线上的三点,有且只有一个平面A,B,C三点不共线⇒存在唯一的α使A,B,C∈α公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线P∈α,且P∈β⇒α∩β=l,且P∈l【练习】(1)过三个点的平面的个数是()A.0B.1C.2 D.1或无数(2)如果两个平面有一个公共点,那么这两个平面()A.没有其他公共点B.仅有这一个公共点C.仅有两个公共点D.有无数个公共点【解析】(1)当三点不共线时,根据公理2知,过三点的平面有1个.当三点共线时,过三点的平面有无数个.故选D.(2)由公理3知,两个平面只要有一个公共点,就有一条过该点的公共直线,故选D.【答案】(1)D(2)D[探究问题]1.能否说多个平面重叠在一起比一个平面厚呢?2.为什么自行车后轮旁只安装一只撑脚就能固定自行车?3.两个平面有三个公共点,这两个平面重合吗?【探究提示】1.不能.平面是无厚薄的,无论多少个平面重叠在一起仍然是一个平面.2.撑脚和自行车的两个轮子与地面的接触点共有三个,且不在同一条直线上,根据公理2可知,可确定一个平面.3.不一定.当三点在同一条直线上时,不能判定两个平面重合;当三点不在同一条直线上时,根据不共线的三点确定一个平面,可知两平面重合.[探究成果]1.平面的概念与以前学习的“点”、“线”、“集合”的概念一样,只是一个描述性的不加严格定义的概念.平面是无大小、无厚薄、无所谓面积的.2.公理2可作为确定一个平面的依据,条件是“过不在一条直线上的三点”,结论是“有且只有一个平面”,特别注意“不共线”这一条件易被忽视,公理2又可表述为:不共线的三点确定一个平面.关键词:文字语言、符号语言、图形语言用符号语言表示下列语句,并画出图形.(1)三个平面α、β、γ相交于一点P,且平面α与平面β交于PA,平面α与平面γ交于PB,平面β与平面γ交于PC;(2)平面ABD与平面BCD相交于BD,平面ABC与平面ADC交于AC.【思路点拨】根据条件,适当确定其中的某一个平面,然后根据点、线、面的位置关系,将其附着于固定平面上,注意图形的立体感,要将被遮挡部分用虚线表示.【自主解答】(1)符号语言表示:α∩β∩γ=P,α∩β=PA,α∩γ=PB,β∩γ=PC.用图形表示:(2)符号语言表示:平面ABD∩平面BDC=BD,平面ABC∩平面ADC=AC.图形表示:1.解答本题要正确理解立体几何中表示点、线、面之间位置关系的符号“∈”、“∉”、“⊂”、“⊄”、“∩”的意义.2.解决立体几何问题首先应过好三大语言关,即“文字语言、图形语言、符号语言”,能实现这三种语言的相互转换.文字语言和符号语言在转换的时候,要注意符号语言所代表的含义,由符号语言作出直观图时,要注意实虚线的区别.[变式训练]1.完成下列各题:(1)将下列文字语言转化为符号语言.①点A在平面α内,但不在平面β内.②直线a经过平面α外一点M.③直线l在平面α内,又在平面β内(即平面α和平面β相交于直线l).(2)将下列符号语言转化为图形语言.①a⊂α,b∩α=A,A∉a.②α∩β=c,a⊂α,b⊂β,a∥c,b∩c=P.【解】(1)①A∈α,A∉β.②M∈a,M∉α.③α∩β=l.(2)①②关键词:同一法证明:两两相交且不共点的三条直线在同一平面内.【思路点拨】由两条相交直线确定一个平面,再证第三条直线在确定的平面内,也可利用平面重合法证明.【自主解答】已知:如图所示,l1∩l2=A,l2∩l3=B,l1∩l3=C.求证:直线l1、l2、l3在同一平面内.证法1:(纳入平面法)∵l1∩l2=A,∴l1和l2确定一个平面α.∵l2∩l3=B,∴B∈l2.又∵l2⊂α,∴B∈α.同理可证C∈α.又∵B∈l3,C∈l3,∴l3⊂α.∴直线l1、l2、l3在同一平面内.证法2:(辅助平面法)∵l1∩l2=A,∴l1、l2确定一个平面α.∵l2∩l3=B,∴l2、l3确定一个平面β.∵A∈l2,l2⊂α,∴A∈α.∵A∈l2,l2⊂β,∴A∈β.同理可证B∈α,B∈β,C∈α,C∈β.∴不共线的三个点A、B、C既在平面α内,又在平面β内.∴平面α和β重合,即直线l1、l2、l3在同一平面内.在证明多线共面时,可用下面的两种方法来证明:(1)纳入法:先由部分直线确定一个平面,再证明其他直线在这个平面内;(2)同一法:即先证明一些元素在一个平面内,再证明另一些元素在另一个平面内,然后证明这两个平面重合,即证得所有元素在同一个平面内.[变式训练]2.已知直线a∥b,直线l与a,b都相交,求证:过a,b,l有且只有一个平面.【证明】如图所示.由已知a∥b,所以过a,b有且只有一个平面α.设a∩l=A,b∩l =B,∴A∈α,B∈α,且A∈l,B∈l,∴l⊂α.即过a,b,l有且只有一个平面.点共线、线共点问题关键词:平面的交线公理3如图2-1-1,已知平面α,β,且α∩β=l.设梯形ABCD中,AD∥BC,且AB⊂α,CD⊂β.求证:AB,CD,l共点.图2-1-1【思路点拨】证明AB与CD的交点在α与β的交线l上.【自主解答】因为梯形ABCD中,AD∥BC,所以AB,CD是梯形ABCD的两腰,所以AB,CD必定相交于一点.如图,设AB∩CD=M.又因为AB⊂α,CD⊂β,所以M∈α,且M∈β,所以M∈(α∩β).又因为α∩β=l,所以M∈l,即AB,CD,l共点.线共点与点共线的证明思路:(1)证明三线共点问题可把其中一条作为分别过其余两条直线的两个平面的交线,然后再证两条直线的交点在此直线上,此外还可先将其中一条直线看作某两个平面的交线,证明该交线与另两条直线分别交于两点,再证这点重合,从而得三线共点;(2)证明多点共线通常利用公理3,即两相交平面交线的惟一性,通过证明点分别在两个平面内,证明点在相交平面的交线上,也可选择其中两点确定一条直线,然后证明其他点也在其上.图2-1-2[变式训练]3.已知△ABC在平面α外,其三边所在的直线满足AB∩α=P,BC∩α=Q.AC∩α=R,如图2-1-2所示.求证:P,Q,R三点共线.【证明】∵AB∩α=P,∴P∈AB,P∈平面α.又AB⊂平面ABC,∴P∈平面ABC.∴由公理3可知:点P在平面ABC与平面α的交线上,同理可证Q,R也在平面ABC 与平面α的交线上.∴P,Q,R三点共线.1.三种语言的相互转换是一种基本技能.要注意符号语言的意义.如点与直线的位置关系只能用“∈”或“∉”,直线与平面的位置关系只能用“⊂”或“⊄”.2.证明点线共面的常用方法有:纳入法、同一法.3.点共线与线共点的证明思路(1)点共线的思路:证明这些点都分别在两个相交的平面内,因此在两个平面的交线上.(2)线共点的思路:先由两条直线交于一点,再证明该点在第三条直线上.1.用符号表示“点A在直线l上,l在平面α外”,正确的表示是()A.A∈l,l∉αB.A∈l,l⊄αC.A⊂l,l⊄αD.A⊂l,l∉α【解析】点A在直线l上,应表示为A∈l,直线l不在平面α内,应表示为l⊄α.【答案】B2.(2014·福州高一检测)下列说法正确的是()A.三点可以确定一个平面B.一条直线和一个点可以确定一个平面C.四边形是平面图形D.两条相交直线可以确定一个平面【解析】A错误,不共线的三点可以确定一个平面.B错误,一条直线和直线外一个点可以确定一个平面.C错误,四边形不一定是平面图形.D正确,两条相交直线可以确定一个平面.【答案】D3.下列推理错误的是()A.A∈l,A∈α,B∈l,B∈α⇒l⊂αB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.l⊄α,A∈l⇒A∉αD.A,B,C∈α,A,B,C∈β,且A,B,C不共线⇒α与β重合【解析】当l⊄α,A∈l时,也有可能A∈α,如l∩α=A,故C错.【答案】C图2-1-34.如图2-1-3所示,D,E分别是△ABC的边AC,BC上的点,平面α经过D,E 两点.(1)求作直线AB与平面α的交点P;(2)求证:D,E,P三点共线.【解】(1)直线AB与平面α的交点P,如图所示.(2)证明:∵D∈AC,E∈BC,∴DE⊂平面ABC,又D∈α,E∈α,∴DE⊂α,∴DE为α与△ABC的交线,又P∈AB,AB⊂平面ABC且P∈α.∴P在α与△ABC的交线DE上,∴D,E,P三点共线.教学反思:平面基本性质的三个公理中符号语言掌握的不好,还需要进一步训练,特别是线在面内时,表示错误较多。
新课标人教A版高中数学必修二第二章第一节《空间点、线、面之间的位置关系》教案
《空间点、直线、平面之间的位置关系》教案一、课题2.1.1空间点、直线、平面之间的位置关系二、教学目标1、知识与技能①理解空间平面的概念,掌握平面的基本性质②熟练掌握文字语言、图形语言、符号语言转换③掌握三条公理,并且能运用三条公理证明一些简单空间图形的位置关系2、过程与方法①通过三种语言的学习,培养学生分析问题的能力,作图能力以及空间想象能力②学生亲历两条公理归纳过程,学会利用已有的知识与经验归纳新的知识3、情感态度与价值观通过语言、符号、图形的转换,使学生体会到数学的乐趣,激发其学习数学的兴趣三、课型新授课四、课时第一课时五、教学重难点④重点:文字语言、图形语言、符号语言转换,运用三条公理证明一些简单空间图形的位置关系难点:文字语言、图形语言、符号语言转换六、教学过程1、新课引入师:图示是我们生活中常见的物体,观察图片,你能总结出它们的共同特点吗?(课桌面、黑板面、海平面)生:它们都是平面师:非常好,那么我们应该如何理解平面这一几何概念呢?(设计意图:通过生活中的实际例子出发,提出问题,引发思考,导入新课)2、教授新课生:......师:几何学里所说的“平面”是从这样的一些物体之中抽象出来的,但是应该要注意几何里的平面平面是无限延伸的,无大小,无厚薄之分,不可度量。
师:下面请同学们做一道小练习:①10个平面重叠起来,要比5个平面重叠起来厚;②有一个平面的长是50m,宽是20m;③黑板面是平面;④平面是绝对的平,没有大小,没有厚度,可以无限延展的抽象数学概念。
其中正确的说法是师:那么我们应该如何画平面呢?生:......师:我们常常把水平的平面画成一个平行四边形,并且平行四边形的锐角通常画成45°.且横边长等于其邻边长的2倍,如图所示。
师:如果一个平面被另一个平面遮挡住,为了增强它的立体感,我们常把被遮挡部分用虚线画出来,如图所示。
师:同学们还要注意到,在表示平面时,我们常把希腊字母α,β,γ等写在代表平面的平行四边形的一个角上,如上图所示;当然也可以用代表平行四边形的四个顶点,或者相对的两个顶点的大写英文字母作为这个平面的名称,即:平面α,平面ABCD,平面AC。
高中数学第二章第三节教案
高中数学第二章第三节教案
教学目标:
1. 理解一元一次方程式的概念。
2. 掌握解一元一次方程的基本方法。
3. 能够在实际问题中应用一元一次方程式进行求解。
教学重点与难点:
1. 一元一次方程式的定义与性质。
2. 方程的等价变形及解法。
3. 题目实际问题的翻译与解答。
教学过程:
一、导入 (5分钟)
老师通过一个生活中的例子引入一元一次方程式的概念,让学生感受方程式在实际问题中的运用。
二、讲解与示范 (15分钟)
1. 介绍一元一次方程式的定义,并通过例题讲解如何解一元一次方程。
2. 指导学生如何进行等式方程的变形运算,引导掌握解题方法。
三、练习与引导 (20分钟)
1. 给予学生一些简单的练习题,让他们巩固知识点。
2. 引导学生分析实际问题,将问题转化为一元一次方程进行解答。
四、达标检测 (10分钟)
出一些难度较高的应用题让学生在规定时间内完成,并及时纠正错误。
五、课堂小结 (5分钟)
总结本节课的重点知识,强调解题方法和注意事项。
六、作业布置 (5分钟)
布置相关练习题作为课后作业,巩固学生对一元一次方程的掌握程度。
教学反思:
本节课通过理论讲解与实例演练相结合的方式,能够帮助学生更快地掌握一元一次方程的解题方法并应用到实际问题中。
同时,鼓励学生多进行思考、多动手操作,提高问题解决能力和数学思维。
人教A版高一数学必修二第二章 2.2.3-2.2.4【教案设计】
2.2.3 直线与平面平行的性质2.2.4 平面与平面平行的性质[学习目标] 1.能应用文字语言、符号语言、图形语言准确描述直线与平面平行,两平面平行的性质定理.2.能用两个性质定理,证明一些空间线面平行关系的简单问题.[知识链接]1.直线与平面平行的判定定理:平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行.2.平面与平面平行的判定定理:平面内的两条相交直线与另一个平面平行,则这两个平面平行.[预习导引]线面平行的性质定理面面平行的性质定理文字一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行如果两个平行平面同时和第三个平面相交,那么它们的交线平行符号Error!⇒a∥b Error!⇒a ∥b图形作用线面平行⇒线线平行面面平行⇒线线平行要点一 线面平行性质定理的应用例1 求证:如果一条直线和两个相交平面都平行,那么这条直线和它们的交线平行.解 已知直线a ,l ,平面α,β满足α∩β=l ,a ∥α,a ∥β.求证:a ∥l .证明:如图所示,过a 作平面γ交平面α于b ,∵a ∥α,∴a ∥b .同样过a 作平面δ交平面β于c ,∵a ∥β,∴a ∥c .则b ∥c .又∵b ⊄β,c ⊂β,∴b ∥β.又∵b ⊂α,α∩β=l ,∴b ∥l .又∵a ∥b ,∴a ∥l .规律方法 线∥面 线面平行的性质线面平行的判定线∥线.在空间平行关系中,交替使用线线平行、线面平行的判定定理与性质定理是解决此类问题的关键.跟踪演练1 若两个相交平面分别过两条平行直线,则它们的交线和这两条平行直线平行.解 已知:a ∥b ,a ⊂α,b ⊂β,α∩β=l .求证:a ∥b ∥l .证明:如图所示,∵a ∥b ,b ⊂β,a ⊄β,∴a ∥β,又a ⊂α,α∩β=l ,∴a ∥l ,又a ∥b ,∴a ∥b ∥l .要点二 面面平行性质定理的应用例2 已知AB 、CD 是夹在两个平行平面α、β之间的线段,M 、N 分别为AB 、CD 的中点,求证:MN ∥平面α.证明 (1)若AB 、CD 在同一平面内,则平面ABDC 与α、β的交线为BD 、AC .∵α∥β,∴AC ∥BD .又M 、N 为AB 、CD 的中点,∴MN ∥BD .又BD ⊂平面α,MN ⊄平面α,∴MN ∥平面α.(2)若AB、CD异面,如图,过A作AE∥CD交α于E,取AE中点P,连接MP、PN、BE、ED.∵AE∥CD.∴AE、CD确定平面AEDC.则平面AEDC与α、β的交线分别为ED、AC,∵α∥β,∴ED∥AC.又P、N分别为AE、CD的中点,∴PN∥ED,又ED⊂平面α,PN⊄平面α,∴PN∥平面α.同理可证MP∥BE,∴MP∥平面α,∵AB、CD异面,∴MP、NP相交.∴平面MPN∥平面α.又MN⊂平面MPN,∴MN∥平面α.规律方法 1.利用面面平行的性质定理证明线线平行的关键是把要证明的直线看作是平面的交线,往往需要有三个平面,即有两平面平行,再构造第三个面与两平行平面都相交.2.面面平行⇒线线平行,体现了转化思想与判定定理的交替使用,可实现线线、线面及面面平行的相互转化.跟踪演练2 如图,已知α∥β,点P是平面α、β外的一点(不在α与β之间),直线PB、PD 分别与α、β相交于点A、B和C、D.(1)求证:AC∥BD;(2)已知PA=4 cm,AB=5 cm,PC=3 cm,求PD的长.(1)证明 ∵PB∩PD=P,∴直线PB和PD确定一个平面γ,则α∩γ=AC,β∩γ=BD.又α∥β,∴AC∥BD.(2)解 由(1)得AC ∥BD ,∴PA AB =PC CD ,∴45=3CD ,∴CD =154(cm),∴PD =PC +CD =274(cm).要点三 平行关系的综合应用例3 如图所示,四边形ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH ,求证:GH ∥平面PAD .证明 如图所示,连接AC 交BD 于点O ,连接MO .∵ABCD 是平行四边形,∴O 是AC 的中点,又M 是PC 的中点,∴PA ∥MO ,而AP ⊄平面BDM ,OM ⊂平面BDM ,∴PA ∥平面BMD ,又∵PA ⊂平面PAHG ,平面PAHG ∩平面BMD =GH ,∴PA ∥GH .又PA ⊂平面PAD ,GH ⊄平面PAD ,∴GH ∥平面PAD .规律方法 1.本题证明线面平行,利用了线面平行的性质定理和判定定理进行转化,即线线平行⇒线面平行⇒线线平行⇒线面平行.2.在将线面平行转化为线线平行时,注意观察图形中是不是性质定理中符合条件的平面.跟踪演练3 如图,三棱锥ABCD 被一平面所截,截面为平行四边形EFGH .求证:CD ∥平面EFGH .证明 ∵四边形EFGH是平行四边形,∴EF∥GH.∵EF⊄平面BCD,GH⊂平面BCD,∴EF∥平面BCD.又∵EF⊂平面ACD,平面ACD∩平面BCD=CD,∴EF∥CD.又∵EF⊂平面EFGH,CD⊄平面EFGH,∴CD∥平面EFGH.1.已知:α∩β=b,a∥α,a∥β,则a与b的位置关系是( )A.a∥b B.a⊥bC.a,b相交但不垂直D.a,b异面答案 A解析 利用结论:若一直线与两个相交平面平行则此直线与交线平行.2.已知a,b表示直线,α、β、γ表示平面,下列推理正确的是( )A.α∩β=a,b⊂α⇒a∥bB.α∩β=a,a∥b⇒b∥α且b∥βC.a∥β,b∥β,a⊂α,b⊂α⇒α∥βD.α∥β,α∩γ=a,β∩γ=b⇒a∥b答案 D解析 由面面平行的性质定理知D正确.3.若平面α∥平面β,直线a⊂α,点B∈β,则在β内过点B的所有直线中( ) A.不一定存在与a平行的直线B.只有两条与a平行C.存在无数多条直线与a平行D.存在唯一一条直线与a平行答案 D解析 设点B 与直线a 确定一平面为γ,γ∩β=b ,∴a ∥b .4.已知直线l ∥平面α,l ⊂平面β,α∩β=m ,则直线l ,m 的位置关系是________.答案 平行解析 由直线与平面平行的性质定理知l ∥m .5.过两平行平面α,β外的点P 的两条直线AB 与CD ,它们分别交α于A ,C 两点,交β于B ,D 两点,若PA =6,AC =9,PB =8,则BD 的长为________.答案 12解析 两条直线AB 与CD 相交于P 点,所以可以确定一个平面,此平面与两平行平面α,β的交线AC ∥BD ,所以PA PB =AC BD,又PA =6,AC =9,PB =8,故BD =12.1.三种平行关系可以任意转化,其相互转化关系如图所示:2.证明线与线、线与面的平行关系的一般规律是:“由已知想性质,由求证想判定”,是分析和解决问题的一般思维方法,而作辅助线和辅助面往往是沟通已知和未知的有效手段.一、基础达标1.a ∥α,b ∥β,α∥β,则a 与b 位置关系是( )A .平行B .异面C .相交D .平行或异面或相交答案 D解析 如图(1),(2),(3)所示,a 与b 的关系分别是平行、异面或相交.2.已知直线l ∥平面α,P ∈α,那么过点P 且平行于l 的直线( )A.只有一条,不在平面α内B.只有一条,在平面α内C.有两条,不一定都在平面α内D.有无数条,不一定都在平面α内答案 B解析 如图所示,∵l∥平面α,P∈α,∴直线l与点P确定一个平面β,α∩β=m,∴P∈m,∴l∥m且m是唯一的.3.三棱锥SABC中,E、F分别是SB、SC上的点,且EF∥平面ABC,则( )A.EF与BC相交B.EF与BC平行C.EF与BC异面D.以上均有可能答案 B解析 由线面平行的性质定理可知EF∥BC.4. 如图,四棱锥PABCD中,M,N分别为AC,PC上的点,且MN∥平面PAD,则( )A.MN∥PDB.MN∥PAC.MN∥ADD.以上均有可能答案 B解析 ∵MN∥平面PAD,MN⊂平面PAC,平面PAD∩平面PAC=PA,∴MN∥PA.5.下列说法正确的是( )A.平行于同一条直线的两个平面平行B.平行于同一个平面的两个平面平行C.一个平面内有三个不共线的点到另一个平面的距离相等,则这两个平面平行D.若三直线a,b,c两两平行,则在过直线a的平面中,有且只有一个平面与b,c均平行答案 B解析 平行于同一条直线的两个平面可以平行也可以相交,所以A不正确;B正确;C不正确,因为没有指明这三个点在平面的同侧还是异侧;D不正确,因为过直线a的平面中,只要b,c不在其平面内,则与b,c均平行.6.过正方体ABCDA1B1C1D1的三个顶点A1、C1、B的平面与底面ABCD所在平面的交线为l,则l与A1C1的位置关系是________.答案 平行解析 由面面平行的性质定理可知第三平面与两平行平面的交线是平行的.7. 如图所示,在三棱柱ABCA1B1C1中,过A1,B,C1的平面与平面ABC的交线为l,试判断l与直线A1C1的位置关系,并给以证明.解 l∥A1C1.证明如下:在三棱柱ABCA1B1C1中,A1C1∥AC,A1C1⊄平面ABC,AC⊂平面ABC,∴A1C1∥平面ABC.又∵A1C1⊂平面A1BC1,且平面A1BC1∩平面ABC=l,∴A1C1∥l.二、能力提升8.过平面α外的直线l,作一组平面与α相交,如果所得的交线为a,b,c,…,则这些交线的位置关系为( )A.都平行B.都相交且一定交于同一点C.都相交但不一定交于同一点D.都平行或交于同一点答案 D解析 ∵l⊄α,∴l∥α或l与α相交.(1)若l ∥α,则由线面平行的性质定理可知l ∥a ,l ∥b ,l ∥c ,…,∴a ,b ,c ,…这些交线都平行.(2)若l 与α相交,不妨设l ∩α=A ,则A ∈l ,又由题意可知A ∈a ,A ∈b ,A ∈c ,…,∴这些交线交于同一点A .综上可知D 正确.9. 如图所示,直线a ∥平面α,A ∉α,并且a 和A 位于平面α两侧,点B ,C ∈a ,AB 、AC 分别交平面α于点E 、F ,若BC =4,CF =5,AF =3,则EF =________.答案 32解析 EF 可看成为直线a 与点A 确定的平面与平面α的交线,∵a ∥α,由线面平行的性质定理知,BC ∥EF ,由条件知AC =AF +CF =3+5=8.又EF BC =AF AC ,∴EF =AF ×BC AC =3×48=32.10. 如图,P 是△ABC 所在平面外一点,平面α∥平面ABC ,α分别交线段PA 、PB 、PC 于A ′、B ′、C ′,若PA ′∶AA ′=2∶3,则S △A ′B ′C ′S △ABC=________.答案 425解析 由平面α∥平面ABC ,得AB ∥A ′B ′,BC ∥B ′C ′,AC ∥A ′C ′,由等角定理得∠ABC =∠A ′B ′C ′,∠BCA =∠B ′C ′A ′,∠CAB =∠C ′A ′B ′,从而△ABC ∽△A ′B ′C ′,△PAB ∽△PA ′B ′,S △A ′B ′C ′S △ABC =(A ′B ′AB )2=(PA ′PA )2=425.11.如图,在正方体ABCD -A 1B 1C 1D 1中,点N 在BD 上,点M 在B 1C 上,且CM =DN .求证:MN ∥平面AA 1B 1B .证明 如图,作MP ∥BB 1交BC 于点P ,连接NP ,∵MP ∥BB 1,∴CM MB 1=CP PB.∵BD =B 1C ,DN =CM ,∴B 1M =BN ,∴CM MB 1=DN NB ,∴CP PB =DN NB,∴NP ∥CD ∥AB .∵NP ⊄平面AA 1B 1B ,AB ⊂平面AA 1B 1B ,∴NP ∥平面AA 1B 1B .∵MP ∥BB 1,MP ⊄平面AA 1B 1B ,BB 1⊂平面AA 1B 1B ,∴MP ∥平面AA 1B 1B .又∵MP ⊂平面MNP ,NP ⊂平面MNP ,MP ∩NP =P ,∴平面MNP ∥平面AA 1B 1B .∵MN ⊂平面MNP ,∴MN ∥平面AA 1B 1B .三、探究与创新12. 如图所示,在棱长为2的正方体ABCDA 1B 1C 1D 1中,A 1B 1的中点是P ,过点A 1作与截面PBC 1平行的截面,能否确定截面的形状?如果能,求出截面的面积.解 能.取AB ,C 1D 1的中点M ,N ,连接A 1M ,MC ,CN ,NA 1,∵A1N∥PC1且A1N=PC1,PC1∥MC,PC1=MC.∴四边形A1MCN是平行四边形,又∵A1N∥PC1,A1M∥BP,A1N∩A1M=A1,C1P∩PB=P,∴平面A1MCN∥平面PBC1,∴过点A1与截面PBC1平行的截面是平行四边形.连接MN,作A1H⊥MN于点H,∵A1M=A1N=5,MN=22,∴A1H=3.∴S△A1MN=12×22×3=6.故S▱A1MCN=2S△A1MN=26.13.如图所示,已知P是▱ABCD所在平面外一点,M、N分别是AB、PC的中点,平面PAD∩平面PBC=l.(1)求证:l∥BC;(2)MN与平面PAD是否平行?试证明你的结论.方法一 (1)证明 因为BC∥AD,BC⊄平面PAD,AD⊂平面PAD,所以BC∥平面PAD.又因为平面PBC∩平面PAD=l,所以BC∥l.(2)解 平行.取PD的中点E,连接AE,NE,可以证得NE∥AM且NE=AM.可知四边形AMNE为平行四边形.所以MN∥AE,又因为MN⊄平面APD,AE⊂平面APD,所以MN∥平面APD.方法二 (1)证明 由于AD∥BC,AD⊄平面PBC,BC⊂平面PBC,所以AD∥平面PBC.又因为平面PBC∩平面PAD=l,所以l∥AD,l∥BC.(2)解 平行.设Q是CD的中点,连接NQ,MQ,则MQ∥AD,NQ∥PD,而MQ∩NQ=Q,所以平面MNQ∥平面PAD.MN⊂平面MNQ,所以MN∥平面PAD.。
北师大版高中数学必修2第二章《解析几何初步》2.1《直线与直线的方程(5)》教案
第五课时 直线的一般式方程一、教学目标1、知识与技能:(1)明确直线方程一般式的形式特征;(2)会把直线方程的一般式化为斜截式,进而求斜率和截距;(3)会把直线方程的点斜式、两点式化为一般式。
2、过程与方法:学会用分类讨论的思想方法解决问题。
3、情态与价值观:(1)认识事物之间的普遍联系与相互转化;(2)用联系的观点看问题。
二、教学重点、难点1、重点:直线方程的一般式。
2、难点:对直线方程一般式的理解与应用。
三、教学方法:探析交流法 四、教学过程问 题设计意图 师生活动1、(1)平面直角坐标系中的每一条直线都可以用一个关于yx ,的二元一次方程表示吗?(2)每一个关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0)都表示一条直线吗?使学生理解直线和二元一次方程的关系。
教师引导学生用分类讨论的方法思考探究问题(1),即直线存在斜率和直线不存在斜率时求出的直线方程是否都为二元一次方程。
对于问题(2),教师引导学生理解要判断某一个方程是否表示一条直线,只需看这个方程是否可以转化为直线方程的某种形式。
为此要对B 分类讨论,即当0≠B 时和当B=0时两种情形进行变形。
然后由学生去变形判断,得出结论:关于y x ,的二元一次方程,它都表示一条直线。
教师概括指出:由于任何一条直线都可以用一个关于y x ,的二元一次方程表示;同时,任何一个关于y x ,的二元一次方程都表示一条直线。
我们把关于关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0)叫做直线的一般式方程,简称一般式(general form ).2、直线方程的一般式与其他几种形式的直线方程相比,它有什么优点?使学生理解直线方程的一般式的与其他形 学生通过对比、讨论,发现直线方程的一般式与其他形式的直线方程的一个不同点是:问 题设计意图 师生活动式的不同点。
直线的一般式方程能够表示平面上的所有直线,而点斜式、斜截式、两点式方程,都不能表示与x 轴垂直的直线。
高一数学必修二教案(优秀3篇)
高一数学必修二教案(优秀3篇)作为一名无私奉献的老师,时常需要用到教案,教案是教学活动的总的组织纲领和行动方案。
那么问题来了,教案应该怎么写?以下是人见人爱的小编分享的高一数学必修二教案(优秀3篇),希望大家可以喜欢并分享出去。
高一必修二数学教案篇一一、教材分析函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。
函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。
在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。
这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。
本节《函数的概念》是函数这一章的起始课。
概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。
本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。
也为进一步学习函数这一章的其它内容提供了方法和依据。
二、重难点分析根据对上述对教材的分析及新课程标准的要求,确定函数的概念既是本节课的重点,也应该是本章的难点。
三、学情分析1、有利因素:一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。
2、不利因素:函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度。
四、目标分析1、理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。
2、通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。
3、通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。
数学:第二章《点、直线、平面之间的位置关系》教案(新人教A版必修2)
点、直线、平面之间的位置关系复习(一)课型:复习课一、教学目标1、知识与技能(1)使学生掌握知识结构与联系,进一步巩固、深化所学知识;(2)通过对知识的梳理,提高学生的归纳知识和综合运用知识的能力。
2、过程与方法利用框图对本章知识进行系统的小结,直观、简明再现所学知识,化抽象学习为直观学习,易于识记;同时凸现数学知识的发展和联系。
3情态与价值学生通过知识的整合、梳理,理会空间点、线面间的位置关系及其互相联系,进一步培养学生的空间想象能力和解决问题能力。
二、教学重点、难点重点:各知识点间的网络关系;难点:在空间如何实现平行关系、垂直关系、垂直与平行关系之间的转化。
三、教学设计(一)知识回顾,整体认识1、本章知识回顾(1)空间点、线、面间的位置关系;(2)直线、平面平行的判定及性质;(3)直线、平面垂直的判定及性质。
2、本章知识结构框图(二)整合知识,发展思维1、刻画平面的三个公理是立体几何公理体系的基石,是研究空间图形问题,进行逻辑推理的基础。
公理1——判定直线是否在平面内的依据;公理2——提供确定平面最基本的依据;公理3——判定两个平面交线位置的依据;公理4——判定空间直线之间平行的依据。
2、空间问题解决的重要思想方法:化空间问题为平面问题;3、空间平行、垂直之间的转化与联系:4、观察和推理是认识世界的两种重要手段,两者相辅相成,缺一不可。
(三)应用举例,深化巩固1、P.73 A 组第1题2、P.74 A 组第6、8题(四)、课堂练习:1.选择题 (1)如图BC 是R t ⊿ABC 的斜边,过A 作⊿ABC 所在平面α垂线AP ,连PB 、PC ,过A 作AD ⊥BC 于D ,连PD ,那么图中直角三角形的个数是( ) (A )4个 (B )6个 (C )7个 (D )8个(2)直线a 与平面α斜交,则在平面α内与直线a 垂直的直线( ) (A )没有 (B )有一条 (C )有无数条 (D )α内所有直线 答案:(1)D (2) C2.填空题(1)边长为a 的正六边形ABCDEF 在平面α内,PA ⊥α,PA =a ,则P 到CD 的距离为 ,P 到BC 的距离为 .(2)AC 是平面α的斜线,且AO =a ,AO 与α成60º角,OC ⊂α,AA '⊥α于A ',∠A 'OC =45º,则A 到直线OC 的距离是 , ∠AOC 的余弦值是 . 答案:(1)a a27,2; (2)42,414a 3.在正方体ABCD -A 1B 1C 1D 1中,求证:A 1C ⊥平面BC 1D .分析:A 1C 在上底面ABCD 的射影AC ⊥BD, A 1C 在右侧面的射影D 1C ⊥C 1D,所以A 1C ⊥BD, A 1C ⊥C 1D,从而有A 1C ⊥平面BC 1D .A A ′ CαOC1课后作业1、阅读本章知识内容,从中体会知识的发展过程,理会问题解决的思想方法;2、P.76 B组第2题。
高中必修二数学第二章教案
高中必修二数学第二章教案1. 熟练掌握直角三角形的定义和性质;2. 能够运用三角函数计算直角三角形中的各种角度和边长;3. 能够应用三角函数解决实际问题。
教学重点:1. 直角三角形的定义;2. 三角函数的定义及性质;3. 三角函数的应用问题。
教学内容:第二章直角三角形和三角函数一、直角三角形的定义和性质1. 直角三角形的定义2. 直角三角形的性质及性质应用二、三角函数的定义及性质1. 正弦函数、余弦函数、正切函数的定义2. 三角函数的性质及性质应用三、三角函数的应用问题1. 利用三角函数求角度和边长2. 利用三角函数解决实际问题教学过程:一、直角三角形的定义和性质1. 学生通过图片、实物等形式了解直角三角形的定义;2. 带领学生探讨直角三角形的性质,如勾股定理等;3. 练习解决与直角三角形相关的题目。
二、三角函数的定义及性质1. 讲解正弦函数、余弦函数、正切函数的定义及作用;2. 带领学生学习三角函数的性质,如奇偶性、周期性等;3. 练习解决与三角函数相关的题目。
三、三角函数的应用问题1. 进一步学习如何利用三角函数求解角度和边长;2. 带领学生解决实际问题,如测量高楼高度、航行船只的方向等;3. 总结本章内容,巩固知识点。
教学反思:本节课是高中必修二数学第二章的教学内容,涉及直角三角形和三角函数的相关知识。
通过讲解、练习和实际应用问题的解决,帮助学生掌握直角三角形的性质和三角函数的定义及应用。
在教学中要注重引导学生发现问题、思考问题,培养他们的数学思维和解决问题的能力。
同时要及时总结和反思,帮助学生加深对知识的理解和运用。
高中必修二数学教案(最新8篇)
高中必修二数学教案(最新8篇)高中数学必修2优秀教案篇一一、教材分析在上一节认识空间几何体结构特征的基础上,本节来学习空间几何体的表示形式,以进一步提高对空间几何体结构特征的认识。
主要内容是:画出空间几何体的三视图。
比较准确地画出几何图形,是学好立体几何的一个前提。
因此,本节内容是立体几何的基础之一,教学中应当给以充分的重视。
画三视图是立体几何中的基本技能,同时,通过三视图的学习,可以丰富学生的空间想象力。
“视图”是将物体按正投影法向投影面投射时所得到的投影图。
光线自物体的前面向后投影所得的投影图称为“正视图”,自左向右投影所得的投影图称为“侧视图”,自上向下投影所得的投影图称为“俯视图”。
用这三种视图即可刻画空间物体的几何结构,这种图称之为“三视图”。
教科书从复习初中学过的正方体、长方体……的三视图出发,要求学生自己画出球、长方体的三视图;接着,通过“思考”提出了“由三视图想象几何体”的学习任务。
进行几何体与其三视图之间的相互转化是高中阶段的新任务,这是提高学生空间想象力的需要,应当作为教学的一个重点。
三视图的教学,主要应当通过学生自己的亲身实践,动手作图来完成。
因此,教科书主要通过提出问题,引导学生自己动手作图来展示教学内容。
教学中,教师可以通过提出问题,让学生在动手实践的过程中学会三视图的作法,体会三视图的作用。
对于简单几何体的组合体,在作三视图之前应当提醒学生细心观察,认识了它的基本结构特征后,再动手作图。
教材中的“探究”可以作为作业,让学生在课外完成后,再把自己的作品带到课堂上来展示交流。
值得注意的问题是三视图的教学,主要应当通过学生自己的亲身实践、动手作图来完成。
另外,教学中还可以借助于信息技术向学生多展示一些图片,让学生辨析它们是平行投影下的图形还是中心投影下的图形。
二、教学目标1、知识与技能(1)掌握画三视图的基本技能(2)丰富学生的空间想象力2、过程与方法主要通过学生自己的亲身实践,动手作图,体会三视图的作用。
高中数学第二章平面解析几何初步教案新人教B版必修2
第二章平面解析几何初步示范教案整体设计教学分析本节课是对第二章根本知识与方法总结与归纳,从整体上来把握本章,使学生根本知识系统化与网络化,根本方法条理化.通过小结与复习,对全章知识内容进展一次梳理,突出知识间内在联系,在综合运用知识解决问题能力上提高一步.采用分单元小结方式,让学生自己回忆与小结各单元知识.在此根底上,教师可对一些关键处予以强调.比方可重申解析几何根本思想——坐标法.并用解析几何根本思想串联全章知识,使全章知识网络更加清晰.指出本章学习要求与要注意问题.可让学生先阅读教科书中“思考与交流〞有关内容.教师重申坐标法、函数与方程思想、数形结合思想、化归与转化思想及分类与讨论思想等数学思想方法在本章中特殊地位.三维目标1.通过总结与归纳直线与直线方程、圆与圆方程、空间直角坐标系知识,对全章知识内容进展一次梳理,突出知识间内在联系,在综合运用知识解决问题能力上提高一步.2.能够使学生综合运用知识解决有关问题,培养学生分析、探究与思考问题能力,激发学生学习数学兴趣,培养分类讨论思想与抽象思维能力.重点难点教学重点:解析几何解题根本思路与解题方法形成.教学难点:整理形本钱章知识系统与网络.课时安排1课时教学过程导入新课设计1.我们知道学习是一个循序渐进过程,更是一个不断积累过程.送给大家这样一句话:疏浚源头流活水,承上根底梳理已整合;千寻飞瀑悬彩练,启下重点突破须提升.每学完一个单元都要总结复习,这节课我们就来复习刚完毕本章.引出课题.设计2.为了系统掌握第二章知识,教师直接点出课题.推进新课新知探究提出问题阅读教材P111思考交流,画出本章知识构造.讨论结果:知识构造应用例如思路1例1直线l与直线3x+4y-7=0平行,并且与两坐标轴围成三角形面积为24,求直线l方程.解:设l :3x +4y +m =0,那么当y =0时,x =-m 3;当x =0时,y =-m 4. ∵直线l 与两坐标轴围成三角形面积为24,∴12·|-m 3|·|-m 4|=24.∴m=±24. ∴直线l 方程为3x +4y±24=0.点评:与直线Ax +By +C =0平行直线方程可设为Ax +By +m=0(m≠C).变式训练求满足以下条件直线方程:(1)经过点P(2,-1)且与直线2x +3y +12=0平行;(2)经过点Q(-1,3)且与直线x +2y -1=0垂直;答案:(1)2x +3y -1=0.(2)2x -y +5=0.例2求圆心在直线2x -y -3=0上,且过点A(5,2)与点B(3,-2)圆方程.分析:因为条件与圆心有关系,因此可设圆标准方程,利用圆心在直线2x -y -3=0上,同时也在线段AB 垂直平分线上,由两直线交点得出圆心坐标,再由两点间距离公式得出圆半径,从而得到方程.解:方法一:设圆方程为(x -a)2+(y -b)2=r 2,由条件得⎩⎪⎨⎪⎧ 2a -b -3=0,5-a 2+2-b 2=r 2,3-a 2+-2-b 2=r 2.解得⎩⎪⎨⎪⎧ a =2,b =1,r =10.所以圆方程为(x -2)2+(y -1)2=10. 方法二:因为圆过点A(5,2)与点B(3,-2),所以圆心在线段AB 垂直平分线上,线段AB 垂直平分线方程为y =-12(x -4).设所求圆圆心C 坐标为(a ,b),那么有⎩⎪⎨⎪⎧ 2a -b -3=0,b =-12a -4.解得⎩⎪⎨⎪⎧ a =2,b =1.所以圆心C(2,1),r =|CA|=5-22+2-12=10.所以所求圆方程为(x -2)2+(y -1)2=10.点评:此题介绍了几何法求圆标准方程,利用圆心在弦垂直平分线上可得圆心满足一条直线方程,结合其他条件可确定圆心,由两点间距离公式得出圆半径,从而得到圆标准方程.其实求圆标准方程,就是求圆圆心与半径,有时借助于弦心距、圆半径之间关系计算,可大大简化计算过程与难度.如果用待定系数法求圆方程,那么需要三个独立条件,“选标准,定参数〞是解题根本方法,其中选标准是根据条件选择恰当圆方程形式,进而确定其中三个参数.变式训练求经过两点A(-1,4)、B(3,2)且圆心在y 轴上圆标准方程.解:2+(y -b)2=r 2.∵该圆经过A 、B 两点,∴⎩⎪⎨⎪⎧ -12+4-b 2=r 232+2-b 2=r 2⎩⎪⎨⎪⎧ b =1r 2=10.所以圆方程是x 2+(y -1)2=10.方法二:线段AB 中点为(1,3),k AB =2-43--1=-12⎩⎪⎨⎪⎧ y =2x +1x =0,得⎩⎪⎨⎪⎧ x =0,y =1.故点(0,1)为所求圆圆心.由两点间距离公式得圆半径r =10.所求圆方程为x 2+(y -1)2=10.思路2例3自点A(-3,3)发出光线l 射到x 轴上,被x 轴反射,其反射光线所在直线与圆x 2+y 2-4x -4y +7=0相切,求光线l 所在直线方程.解:(待定系数法)设光线l 所在直线方程为y -3=k(x +3),那么反射点坐标为(-31+k k,0)(k 存在且k≠0). ∵光线入射角等于反射角,∴反射线l′所在直线方程为y =-k[x +31+k k], 即l′:y +kx +3(1+k)=0.∵圆(x -2)2+(y -2)2=1,且l′与圆相切,∴圆心到l′距离d =|2+2k +31+k |1+k2=1. ∴k=-34或k =-43. ∴光线l 所在直线方程为3x +4y -3=0或4x +3y +3=0.点评:此题是方程思想典例,方法较多,无论那种方法都是设出适当未知数,列出相应方程求解,对光线问题解决,一般利用对称方法解题,往往会收到意想不到结果.变式训练 点A(0,2)与圆C :(x -6)2+(y -4)2=365,一条光线从A 点出发射到x 轴上后沿圆切线方向反射,求这条光线从A 点到切点所经过路程.解:设反射光线与圆相切于D 点.点A 关于x 轴对称点坐标为A 1(0,-2),那么光线从A 点到切点所走路程为|A 1D|在,Rt△A 1CD 中,|A 1D|2=|A 1C|2-|CD|2=(-6)2+(-2-4)2-365=36×95. ∴|A 1D|=1855,即光线从A 点到切点所经过路程是1855. 知能训练1.如果直线x +2ay -1=0与直线(3a -1)x -ay -1=0平行,那么a 等于( ) A .0 B.16C .0或 1D .0或16答案:D2.直线l 过点P(5,10),且原点到它距离为5,那么直线l 方程为__________.答案:x =5或3x -4y +25=03.直线x -2y +b =0与两坐标轴所围成三角形面积不大于1,那么b 取值范围是__________.答案:[-2,0)∪(0,2]4.经过点P(0,-1)作直线l ,假设直线l 与连接A(1,-2),B(2,1)线段没有公共点,那么直线l 斜率k 取值范围为__________.答案:(-∞,-1)∪(1,+∞)5.直线l 1:mx +(m -1)y +5=0与l 2:(m +2)x +my -1=0互相垂直,那么m 值是__________.答案:m =0或m =-126.求经过点P(2,3)且被两条平行直线3x +4y -7=0与3x +4y +8=0截得线段长为32直线方程.解:因为两条平行直线间距离d =|-7-8|32+42=3, 所以所求直线与直线3x +4y -7=0夹角为45°.设所求直线斜率为k ,那么tan45°=|k --34||1+-34k|. 解得k =17或k =-7. 因此x -7y +19=0或7x +y -17=0为所求.6.直线l :3x +4y -10=0与曲线C :x 2+y 2-5y +p =0交于A ,B 两点,且OA⊥OB,O 为坐标原点,求实数p 值.解:直线l 与曲线C 方程联立,得⎩⎪⎨⎪⎧ 3x +4y -10=0,x 2+y 2-5y +p =0,消去x ,得25y 2-125y +100+9p =0.∴y 1y 2=100+9p 25. 同理,x 1x 2=16p -10025. ∵OA⊥OB,∴y 1y 2x 1x 2=-1. ∴100+9p2516p -10025=-1, 解得p =0.拓展提升设有半径为3 km 圆形村落,A 、B 两人同时从村落中心出发,A 向东而B 向北前进,A 出村后不久,改变前进方向,斜着沿切于村落周界方向前进,后来恰好与B 相遇,设A 、B 两人速度都一定,其比为3∶1,问A 、B 两人在何处相遇?分析:首先建立适当坐标系,结合几何知识解题.由于是圆形村落,A 、B 两人同时从村落中心出发,于是可以以村落中心为原点,以开场时A 、B 两人前进方向为x 、y 轴,建立坐标系,这就为建立解析几何模型创造了条件,然后再准确设元,列出方程.解:以开场时A 、B 两人前进方向为x 、y 轴,建立坐标系,由题意可设A 、B 两人速度分别为3v km/h ,v km/h ,再设A 出发x 0 h 后在点P 处改变前进方向,又经y 0 h 在点Q 处与B 相遇,那么P 、Q 两点坐标为(3vx 0,0),(0,v(x 0+y 0)),如以下图所示.由于A 从点P 到Q 行走时间是y 0 h ,于是由勾股定理有|OP|2+|OQ|2=|PQ|2,有(3vx 0)2+[v(x 0+y 0)]2=(3vy 0)2.整理,得(x 0+y 0)(5x 0-4y 0)=0.又x 0+y 0>0,所以5x 0=4y 0.①于是k PQ =0-v x 0+y 03vx 0-0=-x 0+y 03x 0.② 把①代入②得k PQ =-34.由于切线PQ 与y 轴交点Q 对应纵坐标v(x 0+y 0)值就是问题答案,于是转化为“当直线y =-34x +b 与圆相切时,求纵截距b 值〞.利用圆心到切线距离等于圆半径,得4|b|32+42=3,解得b =154(b>0).因此A 、B 两人相遇位置是离村落中心正北334km 处. 课堂小结本节课学习了:1.复习本章知识,形成知识网络.2.解决与直线、圆有关问题.作业本章小结稳固与提高 6,7,9,11题.设计感想本节在设计过程中,注重了两点:一是表达学生主体地位,注重引导学生思考,让学生学会学习;二是既有根底知识复习、基此题型联系,又为了满足高考要求,对教材内容适当拓展.本节课对此进展了归纳与总结.通过新旧知识联系,加强横向沟通,培养学生多角度思考问题,利用不同方法解决问题能力.在课堂上进展解题方法讨论有助于活泼学生思维,促进发散思维培养,提高思维灵活性,抓住数形结合数学思想,总结解题规律,充分表达解析几何研究方法.教会学生思想方法比教会学生解题重要多.数学知识将来可能会遗忘,而数学思想方法会影响一个人一生.备课资料备选习题1.假设过定点M(-1,0)且斜率为k 直线与圆x 2+4x +y 2-5=0在第一象限内局部有交点,那么k 取值范围是( )A .0<k< 5B .-5<k<0C .0<k<13D .0<k<5 答案:A2.点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动120°弧长到达Q 点,那么Q 坐标为( )A .(-12,32)B .(-32,-12)C .(-12,-32)D .(-32,12)答案:A3.过坐标原点且与x 2+y 2-4x +2y +52=0相切直线方程为( )A .y =-3x 或y =13x B .y =-3x 或y=-13xC .y =-3x 或y =-13x D .y =3x 或y=13x 解析:过坐标原点直线为y =kx ,与圆x 2+y 2-4x +2y +52=0相切,那么圆心(2,-1)到直线方程距离等于半径102,那么|2k +1|1+k 2=102,解得k =13或k =-3,∴切线方程为y =-3x 或y =13x.答案:A4.以点(2,-1)为圆心且与直线3x -4y +5=0相切圆方程为( )A .(x -2)2+(y +1)2=3B .(x +2)2+(y -1)2=3C .(x -2)2+(y +1)2=9D .(x +2)2+(y -1)2=9解析:r =|3×2-4×-1+5|32+42=3.答案:C5.圆:x 2+y 2-4x +6y =0与圆:x 2+y 2-6x =0交于A 、B 两点,那么AB 垂直平分线方程是________.答案:3x -y -9=06.从点A(-4,1)出发一束光线l ,经过直线l 1:x -y +3=0反射,反射光线恰好通过点B(1,6),求入射光线l 所在直线方程.解:设B(1,6)关于直线l 1对称点为B′(x 0,y 0),那么⎩⎪⎨⎪⎧x 0+12-y 0+62+3=0,y 0-6x 0-1·1=-1,解得⎩⎪⎨⎪⎧x 0=3,y 0=4.∴直线AB′方程为y -14-1=x +43+4,即3x -7y +19=0.故直线l方程为3x -7y +19=0.7.直线l :2x -y +1=0与点A(-1,2)、B(0,3),试在l 上找一点P ,使得|PA|+|PB|值最小,并求出这个最小值.解:过点B(0,3)且与直线l 垂直直线方程为l′:y -3=-12x ,由⎩⎪⎨⎪⎧2x -y +1=0,y =-12x +3,得⎩⎪⎨⎪⎧x =45,y =135,即直线l 与直线l′相交于点Q(45,135).点B(0,3)关于点Q(45,135)对称点为B′(85,115),连接AB′,那么依平面几何知识,知AB′与直线l 交点P 即为所求.直线AB′方程为y -2=113(x +1),由⎩⎪⎨⎪⎧2x -y +1=0,y =113x +2713,得⎩⎪⎨⎪⎧x =1425,y =5325,即P(1425,5325),相应最小值为|AB′|=-1-852+2-1152=170 5.。
高一数学必修二教案
高一数学必修二教案高一数学必修二教案 (7篇)作为一位优秀的人民教师,时常会需要准备好教案,编写教案有利于我们科学、合理地支配课堂时间。
那么大家知道正规的教案是怎么写的吗?下面是小编精心整理的高一数学必修二教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
高一数学必修二教案 1教学目标:使学生初步理解集合的基本概念,了解“属于”关系的意义、常用数集的记法和集合中元素的特性、了解有限集、无限集、空集概念,教学重点:集合概念、性质;“∈”,“?”的使用教学难点:集合概念的理解;课型:新授课教学手段:教学过程:一、引入课题军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
研究集合的数学理论在现代数学中称为集合论,它不仅是数学的一个基本分支,在数学中占据一个极其独特的地位,如果把数学比作一座宏伟大厦,那么集合论就是这座宏伟大厦的基石。
集合理论是由德国数学家康托尔,他创造的集合论是近代许多数学分支的基础。
(参看阅教材中读材料P17)。
下面几节课中,我们共同学习有关集合的一些基础知识,为以后数学的学习打下基础。
二、新课教学“物以类聚,人以群分”数学中也有类似的分类。
如:自然数的集合0,1,2,3,……如:2x-1>3,即x>2所有大于2的实数组成的集合称为这个不等式的解集。
如:几何中,圆是到定点的距离等于定长的点的集合。
1、一般地,指定的某些对象的全体称为集合,标记:A,B,C,D,…集合中的每个对象叫做这个集合的元素,标记:a,b,c,d,…2、元素与集合的关系a是集合A的元素,就说a属于集合A,记作a∈A,a不是集合A的元素,就说a不属于集合A,记作a?A思考1:列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。
北师大版高中数学必修2第二章《解析几何初步》2.2《圆与圆的方程(4)》教案
第四课时 圆与圆的位置关系
一、教学目标
1、知识与技能:(1)理解圆与圆的位置的种类;(2)利用平面直角坐标系中两点间的距离公式求两圆的连心线长;(3)会用连心线长判断两圆的位置关系。
2、过程与方法:设两圆的连心线长为l ,则判别圆与圆的位置关系的依据有以下几点:(1)当21r r l +>时,圆1C 与圆2C 相离;(2)当21r r l +=时,圆1C 与圆2C 外切;(3)当<-||21r r 21r r l +<时,圆1C 与圆2C 相交;(4)当||21r r l -=时,圆1C 与圆2C 内切;(5)当||21r r l -<时,圆1C 与圆2C 内含。
3、情态与价值观:让学生通过观察图形,理解并掌握圆与圆的位置关系,培养学生数形结合的思想。
二、教学重点、难点:重点与难点:用坐标法判断圆与圆的位置关系. 三、教学方法:学导式 四、教学过程
圆与圆的位置关系有几类?
生利用“图形”求,对这些学生应
用代数的方法来解决几何问题.
指出两圆的交点,可以
引导学生讨论、交流,说出各
自
页的练习题.生:阅读教科书的例
程相减,
组:五、教后反思:。
高一数学必修第二章教案
第二章函数概念与基本初等函数§映射、函数、反函数一、知识导学1.映射:一般地,设A、B两个集合,如果按照某种对应法则,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的单值对应叫做集合A到集合B的映射,记作f:A→B.包括集合A、B及A到B的对应法则2.函数:设A,B都是非空的数集,如果按某种对应法则f,对于集合A中每一个元素x,在集合B 中都有唯一的元素和它对应,且B中每一个元素都的原象,这样的对应叫做从集合A到集合B的一个函数,记作()=.y f x其中所有的输入值x组成的集合A称为函数()=定义域.y f x对于A中的每一个x,都有一个输出值y与之对应,我们将所有输出值y组成的集合称为函数的值域.3.反函数:一般地,设函数y=fxx∈A的值域是C,根据这个函数中x,y的关系,用y把x 表示出来,得到x=f-1y.若对于y在C中的任何一个值,通过x在A中都有唯一的值和它对应,那么x=f-1y就表示y是自变量,x是自变量y的函数,这样的函数叫做函数y=fxx∈A的反函数,记作x=f-1y.我们一般用x表示自变量,用y表示函数,为此我们常常对调函数x=f-1y中的字母x,y,把它改写成y=f-1x反函数y=f-1x的定义域、值域分别是函数y=fx的值域、定义域.二、疑难知识导析1.对映射概念的认识1与是不同的,即与上有序的.或者说:映射是有方向的,2输出值的集合是集合B的子集.即集合B中可能有元素在集合A中找不到对应的输入值.集合A中每一个输入值,在集合B中必定存在唯一的输出值.或者说:允许集合B中有剩留元素;允许多对一,不允许一对多.3集合A,B可以是数集,也可以是点集或其它类型的集合.2.对函数概念的认识1对函数符号()f x的含义是一样的,它们都表示是的函数,其f x的理解知道y=()f x与()中是自变量,()f x是函数值,连接的纽带是法则.是单值对应.2注意定义中的集合A,B都是非空的数集,而不能是其他集合;3函数的三种表示法:解析法,列表法,和图像法.3.对反函数概念的认识1函数y=()f x只有满足是从定义域到值域上一一映射,才有反函数;2反函数的定义域和值域分别是原函数的值域和定义域,因此反函数的定义域一般不能由其解析式来求,而应该通过原函数的值域而得.3互为反函数的函数有相同的单调性,它们的图像关于y=x对称.三、经典例题导讲例1设M={a,b,c},N={-2,0,2},求1从M到N的映射种数;2从M 到N 的映射满足f a>f b ≥fc,试确定这样的映射f 的种数.错解:1由于M ={a,b,c },N ={-2,0,2},结合映射的概念,有2200220,2,2,2,0,2222220a a a a a a b b b b b b c c c c c c →-→-→→→→⎧⎧⎧⎧⎧⎧⎪⎪⎪⎪⎪⎪→→→→-→→-⎨⎨⎨⎨⎨⎨⎪⎪⎪⎪⎪⎪→→→-→→-→⎩⎩⎩⎩⎩⎩,共6个映射2由1得满足条件的映射仅有202a b c →⎧⎪→⎨⎪→-⎩一种情况错因:没有找全满足条件的映射个数,关健是对概念认识不清正解:1由于M ={a,b,c },N ={-2,0,2},结合映射的概念,有一共有27个映射2符合条件的映射共有4个0222,2,2,0,0,2220a a a a b b b b c c c c →→→→⎧⎧⎧⎧⎪⎪⎪⎪→-→-→→⎨⎨⎨⎨⎪⎪⎪⎪→-→-→-→⎩⎩⎩⎩例2已知函数()f x 的定义域为0,1,求函数(1)f x +的定义域错解:由于函数()f x 的定义域为0,1,即01x ≤≤,112x ∴≤+≤∴(1)f x +的定义域是1,2错因:对函数定义域理解不透,不明白()f x 与(())f u x 定义域之间的区别与联系,其实在这里只要明白:()f x 中x 取值的范围与(())f u x 中式子()u x 的取值范围一致就好了.正解:由于函数()f x 的定义域为0,1,即01x ≤≤∴(1)f x +满足011x ∴≤+≤10x -≤≤,∴(1)f x +的定义域是-1,0例3已知:*,x N ∈5(6)()(2)(6)x x f x f x x -≥⎧=⎨+<⎩,求(3)f . 错解:∵5(6)()(2)(6)x x f x f x x -≥⎧=⎨+<⎩,∴(2)(2)53f x x x +=+-=- 故5(6)()3(6)x x f x x x -≥⎧=⎨-<⎩,∴(3)f =3-3=0.错因:没有理解分段函数的意义,(3)f 的自变量是3,应代入(2)f x +中去,而不是代入x -5中,只有将自变量化为不小于6的数才能代入解析式求解.正解:∵5(6)()(2)(6)x x f x f x x -≥⎧=⎨+<⎩,∴(3)f =(32)(5)f f +==(52)(7)f f +==7-5=2例4已知()f x 的反函数是1()f x -,如果()f x 与1()f x -的图像有交点,那么交点必在直线y x =上,判断此命题是否正确错解:正确错因:对互为反函数的图像关于直线y x =对称这一性质理解不深,比如函数1161()log 16x y y x ==与的图像的交点中,点1111(,),2442(,)不在直线y x =上,由此可以说明“两互为反函数图像的交点必在直线y x =上”是不正确的.例5求函数2()46y f x x x ==-+,[1,5)x ∈的值域.错解:22(1)14163,(5)545611f f =-⨯+==-⨯+=又[1,5)x ∈,()f x ∴的值域是[)311,错因:对函数定义中,输入定义域中每一个x 值都有唯一的y 值与之对应,错误地理解为x 的两端点时函数值就是y 的取值范围了.正解:配方,得22()46(2)2y f x x x x ==-+=-+∵[1,5)x ∈,对称轴是2x =∴当2x =时,函数取最小值为(2)f =2,()f x ∴的值域是[)211,例6已知()34f x x =+,求函数1(1)f x -+的解析式.错解:由已知得(1)3(1)437f x x x +=++=+37,y x ∴=+即73y x -=,∴1(1)f x -+=73x - 错因:将函数1(1)f x -+错误地认为是(1)f x +的反函数,是由于对函数表达式理解不透彻所致,实际上(1)f x +与1(1)f x -+并不是互为反函数,一般地应该由()f x 先求1()f x -,再去得到1(1)f x -+.正解:因为()34f x x =+的反函数为1()f x -=43x -, 所以1(1)f x -+=(1)4333x x +--==113x - 例7根据条件求下列各函数的解析式: 1已知()f x 是二次函数,若(0)0,(1)()1f f x f x x =+=++,求()f x .2已知1)f x +=+求()f x3若()f x 满足1()2(),f x f ax x+=求()f x 解:1本题知道函数的类型,可采用待定系数法求解设()f x =2(0)ax bx c a ++≠由于(0)0f =得2()f x ax bx =+,又由(1)()1f x f x x +=++,∴22(1)(1)1a x b x ax bx x +++=+++即 22(2)(1)1ax a b x a b ax b x ++++=+++211021a b b a a b a b +=+⎧⎪∴≠∴==⎨⎪+=⎩ 因此:()f x =21122x x + 2本题属于复合函数解析式问题,可采用换元法求解设22()(1)2(1)1(1)f u u u u u ∴=-+-=-≥∴()f x =21x - 1x ≥3由于()f x 为抽象函数,可以用消参法求解用1x 代x 可得:11()2(),f f x a x x+= 与 1()2()f x f ax x+= 联列可消去1()f x 得:()f x =233a ax x -. 点评:求函数解析式1若已知函数()f x 的类型,常采用待定系数法;2若已知[()]f g x 表达式,常采用换元法或采用凑合法;3若为抽象函数,常采用代换后消参法.例8已知x y x 62322=+,试求22y x +的最大值.分析:要求22y x +的最大值,由已知条件很快将22y x +变为一元二次函数,29)3(21)(2+--=x x f 然后求极值点的x 值,联系到02≥y ,这一条件,既快又准地求出最大值.1(0),1(1)u x u u =+≥=-≥解由x y x 62322=+得 又,29)3(2132322222+--=+-=+x x x x y x ∴当2=x 时,22y x +有最大值,最大值为.429)32(212=+-- 点评:上述解法观察到了隐蔽条件,体现了思维的深刻性.大部分学生的作法如下:由x y x 62322=+得,32322x x y +-= ∴当3=x 时,22y x +取最大值,最大值为29 这种解法由于忽略了02≥y 这一条件,致使计算结果出现错误.因此,要注意审题,不仅能从表面形式上发现特点,而且还能从已知条件中发现其隐蔽条件,既要注意主要的已知条件,又要注意次要条件,甚至有些问题的观察要从相应的图像着手,这样才能正确地解题.. 例9设()f x 是R 上的函数,且满足(0)1,f =并且对任意的实数,x y 都有()()(21)f x y f x y x y -=--+,求()f x 的表达式.解法一:由(0)1,f =()()(21)f x y f x y x y -=--+,设x y =,得(0)()(21)f f x x x x =--+,所以()f x =21x x ++解法二:令0x =,得(0)(0)(1)f y f y y -=--+即()1(1)f y y y -=--+又将y -用x 代换到上式中得()f x =21x x ++点评:所给函数中含有两个变量时,可对这两个变量交替用特殊值代入,或使这两个变量相等代入,再用已知条件,可求出未知的函数.具体取什么特殊值,根据题目特征而定.四、典型习题导练1.已知函数fx,x ∈F,那么集合{x,y|y=fx,x ∈F}∩{x,y|x=1}中所含元素的个数是.1 C 或或22.对函数b ax x x f ++=23)(作代换x =gt,则总不改变fx 值域的代换是 A.t t g 21log )(=B.t t g )21()(= t=t -12 t=cost3.方程fx ,y=0的曲线如图所示,那么方程f 2-x ,y=0的曲线是4.06年高考全国II 函数fx =的最小值为A ..171 C 若函数fx =34-x mx x ≠43在定义域内恒有ffx =x ,则m 等于 A B C DB.23C.-23D.-36.已知函数()f x 满足:()()()f a b f a f b +=⋅,(1)2f =,则2222(1)(2)(2)(4)(3)(6)(4)(8)(1)(3)(5)(7)f f f f f f f f f f f f +++++++=. 7.已知函数fx 满足f log a x =)1(12x x a a --其中a >0,a ≠1,x >0,求fx 的表达式. 8.已知函数()f x 是函数21101x y =-+∈x R 的反函数,函数()g x 的图像与函数431x y x -=-的图像关于直线y =x -1成轴对称图形,记()F x =()f x +()g x .1求函数Fx 的解析式及定义域;2试问在函数Fx 的图像上是否存在两个不同的点A 、B,使直线AB 恰好与y 轴垂直 若存在,求出A 、B 两点的坐标;若不存在,说明理由.§函数的性质一、知识导学1.函数的单调性:1增函数:一般地,设函数()y f x =的定义域为I,如果定义域I 内某个区间上任意两个自变量的值x 1,x 2,当x 1<x 2时,都有fx 1<fx 2,那么就说fx 在这个区间上是增函数.2减函数:一般地,设函数()y f x =的定义域为I,如果定义域I 内某个区间上任意两个自变量的值x 1,x 2,当x 1<x 2时,都有fx 1>fx 2,那么就说fx 在这个区间上是减函数.3单调性单调区间如y=fx 在某个区间上是增函数或减函数,那么就说函数fx 在这区间上具有单调性,这一区间叫做函数y=fx 的单调区间.2.函数的奇偶性:1奇函数:一般地,如果对于函数fx 的定义域内的任意一个x,都有f -x=-fx,那么函数fx 就叫做奇函数.2一般地,如果对于函数fx 的定义域内的任意一个x,都有f -x=fx,那么函数fx 就叫做偶函数.3如果函数fx 是奇函数或偶函数,那么就说fx 具有奇偶性.3.函数的图像:将自变量的一个值x 0作为横坐标,相应的函数值fx 0作为纵坐标,就得到平面内的一个点x 0,fx 0,当自变量取遍函数定义域内的每一个值时,就得到一系列这样的点,所有这些点的集合点集组成的图形就是函数y=fx 的图像.二、疑难知识导析1.对函数单调性的理解,函数的单调性一般在函数的定义域内的某个子区间上来讨论,函数y=fx 在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制.2.对函数奇偶性定义的理解,不能只停留在f-x=fx 和f-x=-fx 这两个等式上,要明确对定义域内任意一个x,都有f-x=fx,f-x=-fx 的实质:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数fx 的图像关于直线x=a 对称的充要条件是对定义域内的任意x,都有fx+a=fa-x 成立.函数的奇偶性是其相应图像的特殊的对称性的反映.这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求.3.用列表描点法总能作出函数的图像,但是不了解函数本身的特点,就无法了解函数图像的特点,如二次函数图像是抛物线,如果不知道抛物线的顶点坐标和存在着对称轴,盲目地列表描点是很难将图像的特征描绘出来的.三、经典例题导讲例1判断函数1()3x y -=的单调性. 错解:1101,()33x y -<<∴=是减函数 错因:概念不清,导致判断错误.这是一个复合函数,而复合函数的单调性或单调区间,仍是从基础函数的单调性或单调区间分析,但需注意内函数与外函数的单调性的变化.当然这个函数可化为3x y =,从而可判断出其单调性. 正解: 令t x =-,则该函数在R 上是减函数,又1101,()33t y <<∴=在R 上是减函数, ∴ 1()3x y -=是增函数例2判断函数()(1f x x =+的奇偶性.错解:∵()(1f x x =+=∴()()f x f x -===∴()(1f x x =+是偶函数错因:对函数奇偶性定义实质理解不全面.对定义域内任意一个x,都有f-x=fx,f-x=-fx 的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.正解:()(1f x x =+有意义时必须满足10111x x x-≥⇒-<≤+ 即函数的定义域是{x |11x -<≤},由于定义域不关于原点对称,所以该函数既不是奇函数也不是偶函数例3判断2()log (f x x =的奇偶性.错解:∵)1(log )1)((log )(2222++-=+-+-=-x x x x x f∴)()(x f x f ≠-且)()(x f x f -≠-所以该函数既不是奇函数也不是偶函数错因:对数运算公式不熟悉,或者说奇偶性的判别方法不灵活.定义中f-x=-fxf-x=fx,也可改为研究f-x+fx=0,f-x-fx =0是否成立.正解:方法一:∵)1(log )1)((log )(2222++-=+-+-=-x x x x x f =11log 22++x x =)1(log 22++-x x =-)(x f∴)(x f 是奇函数方法二:∵)1(log )1(log )()(2222++-+++=-+x x x x x f x f =01log )1()1[(log 2222==++-⋅++x x x x)()(x f x f -=- ∴)(x f 是奇函数例4函数y=245x x --的单调增区间是_________.错解:因为函数2()54g x x x =--的对称轴是2x =-,图像是抛物线,开口向下,由图可知2()54g x x x =--在(,2]-∞-上是增函数,所以y=245x x --的增区间是(,2]-∞-错因:在求单调性的过程中注意到了复合函数的单调性研究方法,但没有考虑到函数的单调性只能在函数的定义域内来讨论,从而忽视了函数的定义域,导致了解题的错误. 正解:y=245x x --的定义域是[5,1]-,又2()54g x x x =--在区间[5,2]--上增函数,在区间[2,1]-是减函数,所以y=245x x --的增区间是[5,2]--例5已知奇函数fx 是定义在-3,3上的减函数,且满足不等式fx -3+fx 2-3<0,求x 的取值范围.错解:∵fx 是奇函数,∴fx -3<-fx 2-3= f 3-x 2,又fx 在-3,3上是减函数,∴x -3>3-x 2,即x 2+x -6>0解得x >2或x <-3又fx 是定义在-3,3上的函数,所以2<x <3错因:只考虑到奇函数与单调性,而没有正确理解函数的定义域.正解:由⎩⎨⎧<<-<<⎩⎨⎧<-<-<-<-66603333332x x x x 得,故0<x <6, 又∵fx 是奇函数,∴fx -3<-fx 2-3=f 3-x 2,又fx 在-3,3上是减函数,∴x -3>3-x 2,即x 2+x -6>0,解得x >2或x <-3,综上得2<x <6,即A ={x |2<x <6}, 例6作出下列函数的图像1y=|x-2|x +1;2|lg |10x y =.分析:显然直接用已知函数的解析式列表描点有些困难,除去对其函数性质分析外,我们还应想到对已知解析式进行等价变形.在变换函数解析式中运用了转化变换和分类讨论的思想.解:1当x ≥2时,即x-2≥0时,当x <2时,即x-2<0时,所以⎪⎪⎩⎪⎪⎨⎧<+--≥--=)2(49)21()2(49)21(22x x x x y 这是分段函数,每段函数图像可根据二次函数图像作出见图2当x ≥1时,lgx ≥0,y =10lgx=x ;当0<x <1时,lgx <0,所以这是分段函数,每段函数可根据正比例函数或反比例函数作出.见图点评:作不熟悉的函数图像,可以变形成基本函数再作图,但要注意变形过程是否等价,要特别注意x,y 的变化范围.因此必须熟记基本函数的图像.例如:一次函数、反比例函数、二次函数、指数函数、对数函数,及三角函数、反三角函数的图像.例7若fx=21++x ax 在区间-2,+∞上是增函数,求a 的取值范围 解:设12121212112,()()22ax ax x x f x f x x x ++-<<-=-++ 由fx =21++x ax 在区间-2,+∞上是增函数得 12()()0f x f x -<210a ∴->∴a >21 点评:有关于单调性的问题,当我们感觉陌生,不熟悉或走投无路时,回到单调性的定义上去,往往给我们带来“柳暗花明又一村”的感觉.例8已知函数fx 在-1,1上有定义,f 21=-1,当且仅当0<x <1时fx <0,且对任意x 、y ∈-1,1都有fx +fy =f xy y x ++1,试证明: 1fx 为奇函数;2fx 在-1,1上单调递减解:证明:1由fx +fy =f xy y x ++1,令x =y =0,得f 0=0,令y =-x ,得fx +f -x =f 21xx x --=f 0=0.∴fx =-f -x .∴fx 为奇函数.2先证fx 在0,1上单调递减.令0<x 1<x 2<1,则fx 2-fx 1=fx 2+f -x 1=f 21121x x x x -- ∵0<x 1<x 2<1,∴x 2-x 1>0,1-x 1x 2>0,∴21121x x x x -->0, 又x 2-x 1-1-x 2x 1=x 2-1x 1+1<0∴x 2-x 1<1-x 2x 1,∴0<12121x x x x --<1,由题意知f 21121x x x x --<0,即fx 2<fx 1.∴fx 在0,1上为减函数,又fx 为奇函数且f 0=0.∴fx 在-1,1上为减函数.点评:本题知识依托:奇偶性及单调性定义及判定、赋值法及转化思想.对函数的奇偶性、单调性的判定以及运算能力和逻辑推理能力要求较高.如果“赋值”不够准确,运算技能不过关,结果很难获得.对于1,获得f 0的值进而取x =-y 是解题关键;对于2,判定21121x x x x --的范围是解题的焦点.四、典型习题导练1.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了,再走余下的路,下图中y 轴表示离学校的距离,x 轴表示出发后的时间,则适合题意的图形是2.05年高考重庆卷若函数)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且(2)0f =,则使得x x f 的0)(<的取值范围是A.)2,(-∞B.),2(+∞C.),2()2,(+∞--∞D.-2,23.05年高考江西卷若函数)2(log )(22a x x x f n ++=是奇函数,则a =.4.05年高考辽宁卷已知)(x f y =是定义在R 上的单调函数,实数21x x ≠,,1,121λλλ++=-≠x x a λλβ++=112x x ,若|)()(||)()(|21βαf f x f x f -<-,则A.0<λB.0=λC.10<<λD.1≥λ.5.已知()f x 是定义在R 上的奇函数,且当(0,)x ∈+∞时,()f x =(1x +,求()f x .6.已知函数fx 的定义域为R,且对m 、n ∈R,恒有fm +n =fm +fn -1,且f -21=0, 当x >-21时,fx >0.1求证:fx 是单调递增函数;2试举出具有这种性质的一个函数,并加以验证.7.已知函数y =fx =cbx ax ++12a ,b ,c ∈R,a >0,b >0是奇函数,当x >0时,fx 有最小值2,其中b ∈N 且f 1<25.1试求函数fx 的解析式;2问函数fx 图像上是否存在关于点1,0对称的两点,若存在,求出点的坐标;若不存在,说明理由.§ 基本初等函数一、知识导学1. 二次函数的概念、图像和性质.1注意解题中灵活运用二次函数的一般式2()(0)f x ax bx c a =++≠二次函数的顶点式2()()(0)f x a x m n a =-+≠和 二次函数的坐标式12()()()(0)f x a x x x x a =--≠2解二次函数的问题如单调性、最值、值域、二次三项式的恒正恒负、二次方程根的范围等要充分利用好两种方法:配方、图像,很多二次函数都用数形结合的思想去解.①2()(0)f x ax bx c a =++≠,当240b ac ∆=->时图像与x 轴有两个交点.Mx 1,0Nx 2,0,|MN|=|x 1-x 2|=||a② 二次函数在闭区间上必有最大值和最小值,它只能在区间的端点或二次函数的顶点处取得.2.指数函数x y a =(0,1)a a >≠和对数函数log a y x =(0,1)a a >≠的概念和性质. 1有理指数幂的意义、幂的运算法则:①m n m n a a a +⋅=;②()m n mn a a =;③()n n n ab a b =这时m,n 是有理数 对数的概念及其运算性质、换底公式.1log log ;log log n a a a a M n M M n==; log log log c a c b b a =2指数函数的图像、单调性与特殊点.对数函数的图像、单调性与特殊点.①指数函数图像永远在x 轴上方,当a >1时,图像越接近y 轴,底数a 越大;当0<a<1时,图像越接近y 轴,底数a 越小.②对数函数的符号常受到底数和真数的范围的制约,注意对底数a 的讨论.③当a>1时,图像越接近x 轴,底数a 越大;当0<a<1时,图像越接近x 轴,底数a 越小. 3.幂函数y x α=的概念、图像和性质.结合函数y=x,y=x 2,y=x 3,y=12,y x y x --==,y=12x 的图像,了解它们的变化情况. ①α>0时,图像都过0,0、1,1点,在区间0,+∞上是增函数; 注意α>1与0<α<1的图像与性质的区别.②α<0时,图像都过1,1点,在区间0,+∞上是减函数;在第一象限内,图像向上无限接近y 轴,向右无限接近x 轴.③当x>1时,指数大的图像在上方.二、疑难知识导析1.二次函数在区间上最值的求解要注意利用二次函数在该区间上的图像.二次函数的对称轴与区间的位置通常有三种情况:1定义域区间在对称轴的右侧;2定义域区间在对称轴的左侧;3对称轴的位置在定义域区间内2.幂的运算性质、对数的运算性质的运用,要注意公式正确使用.会用语言准确叙述这些运算性质防止出现下列错误: 1a ,2log ()log log ;log ()log log a a a a a a M N M N M N M N +=+⋅=⋅3.利用指数函数的性质解题,一定要注意底数的取值.4.函数()f x y a =的研究方法一般是先研究()f x 的性质,再由a 的情况讨论()f x y a =的性质.5.对数函数log a y x =(0,1)a a >≠与指数函数x y a =(0,1)a a >≠互为反函数,会将指数式与对数式相互转化.6.幂函数y x α=的性质,要注意α的取值变化对函数性质的影响.1当奇奇=α时,幂函数是奇函数;2当奇偶=α时,幂函数是偶函数;3当偶奇=α时,定义域不关于原点对称,幂函数为非奇非偶函数.三、经典例题导讲例1已知18log 9,185,b a ==求36log 45 错解:∵185,b =∴18log 5b = ∴1818183618181818log 45log 5log 9log 45log 36log 4log 9log 4b aa++===++错因:因对性质不熟而导致题目没解完. 正解:∵185,b =∴18log 5b = ∴1818183621818181818log 45log 5log 9log 451818log 36log 4log 92log ()2log ()99b a b a b aa a a++++=====+-++例2分析方程2()0f x ax bx c =++=0a >的两个根都大于1的充要条件. 错解:由于方程2()0f x ax bx c =++=0a >对应的二次函数为2()f x ax bx c =++的图像与x 轴交点的横坐标都大于1即可.故需满足(1)012f b a >⎧⎪⎨->⎪⎩,所以充要条件是(1)012f b a>⎧⎪⎨->⎪⎩错因:上述解法中,只考虑到二次函数与x 轴交点坐标要大于1,却忽视了最基本的的前题条件,应让二次函数图像与x 轴有交点才行,即满足△≥0,故上述解法得到的不是充要条件,而是必要不充分条件.正解:充要条件是2(1)01240f bab ac >⎧⎪⎪->⎨⎪⎪∆=-≥⎩ 例3求函数361265x x y =-⋅-的单调区间. 错解:令6x t =,则361265x x y =-⋅-=2125t t -⋅- ∴当t ≥6,即x ≥1时,y 为关于t 的增函数,当t ≤6,即x ≤1时,y 为关于t 的减函数∴函数361265x x y =-⋅-的单调递减区间是(,6]-∞,单调递增区间为[6,)+∞ 错因:本题为复合函数,该解法未考虑中间变量的取值范围.正解:令6x t =,则6x t =为增函数,361265x x y =-⋅-=2125t t -⋅-=2(6)41t --∴当t ≥6,即x ≥1时,y 为关于t 的增函数, 当t ≤6,即x ≤1时,y 为关于t 的减函数∴函数361265x x y =-⋅-的单调递减区间是(,1]-∞,单调递增区间为[1,)+∞ 例4已知)2(log ax y a -=在0,1上是x 的减函数,则a 的取值范围是 错解:∵)2(log ax y a -=是由u y a log =,ax u -=2复合而成,又a >0 ∴ax u -=2在0,1上是x 的减函数,由复合函数关系知u y a log =应为增函数,∴a >1错因:错因:解题中虽然考虑了对数函数与一次函数复合关系,却忽视了数定义域的限制,单调区间应是定义域的某个子区间,即函数应在0,1上有意义. 正解:∵)2(log ax y a -=是由u y a log =,ax u -=2复合而成,又a >0 ∴ax u -=2在0,1上是x 的减函数,由复合函数关系知u y a log =应为增函数,∴a >1又由于x 在0,1上时)2(log ax y a -=有意义,ax u -=2又是减函数,∴x =1时,ax u -=2取最小值是a u -=2min >0即可, ∴a <2 综上可知所求的取值范围是1<a <2 例5已知函数()log (3)a f x ax =-.1当[0,2]x ∈时()f x 恒有意义,求实数a 的取值范围.2是否存在这样的实数a 使得函数()f x 在区间1,2上为减函数,并且最大值为1,如果存在,试求出a 的值;如果不存在,请说明理由.分析:函数()f x 为复合函数,且含参数,要结合对数函数的性质具体分析找到正确的解题思路,是否存在性问题,分析时一般先假设存在后再证明. 解:1由假设,ax -3>0,对一切[0,2]x ∈恒成立,0,1a a >≠ 显然,函数gx=ax -3在0,2上为减函数,从而g2=32a ->0得到a <32∴a 的取值范围是0,1∪1,322假设存在这样的实数a ,由题设知(1)1f =,即(1)log (3)a f a =-=1∴a =32此时3()log (3)2a f x x =-当2x =时,()f x 没有意义,故这样的实数不存在.点评:本题为探索性问题,应用函数、方程、不等式之间的相互转化,存在性问题一般的处理方法是先假设存在,结合已知条件进行推理和等价转化,若推出矛盾,说明假设不成立.即不存在,反之没有矛盾,则问题解决.例6已知函数fx =1421lg 2+-⋅++a a ax x ,其中a 为常数,若当x ∈-∞,1时,fx 有意义,求实数a 的取值范围. 分析:参数深含在一个复杂的复合函数的表达式中,欲直接建立关于a 的不等式组非常困难,故应转换思维角度,设法从原式中把a 分离出来,重新认识a 与其它变元x 的依存关系,利用新的函数关系,常可使原问题“柳暗花明”.解:14212+-⋅++a a a x x >0,且a 2-a +1=a -212+43>0, ∴1+2x +4x ·a >0,a >)2141(x x +-, 当x ∈-∞,1时,y =x 41与y =x 21都是减函数,∴y =)2141(x x +-在-∞,1上是增函数,)2141(x x +-max =-43,∴a >-43,故a 的取值范围是-43,+∞.点评:发掘、提炼多变元问题中变元间的相互依存、相互制约的关系、反客为主,主客换位,创设新的函数,并利用新函数的性质创造性地使原问题获解,是解题人思维品质高的表现.本题主客换位后,利用新建函数y =)2141(x x +-的单调性转换为函数最值巧妙地求出了实数a 的取值范围.此法也叫主元法.例7若1133(1)(32)a a --+<-,试求a 的取值范围.解:∵幂函数13y x -=有两个单调区间,∴根据1a +和32a -的正、负情况,有以下关系10320.132a a a a +>⎧⎪->⎨⎪+>-⎩① 10320.132a a a a+<⎧⎪-<⎨⎪+>-⎩② 10.320a a +<⎧⎨->⎩③ 解三个不等式组:①得23<a <32,②无解,③a <-1 ∴a 的取值范围是-∞,-1∪23,32点评:幂函数13y x-=有两个单调区间,在本题中相当重要,不少学生可能在解题中误认为132a a +>-,从而导致解题错误.例8已知a>0且a ≠1,flog a x=12-a a x -x 11求fx ;2判断fx 的奇偶性与单调性;3对于fx,当x ∈-1,1时,有f1-m+f1-m 2<0,求m 的集合M.分析:先用换元法求出fx 的表达式;再利用有关函数的性质判断其奇偶性和单调性;然后利用以上结论解第三问. 解:1令t=log a xt ∈R,则 fx 在R 上都是增函数.点评:对含字母指数的单调性,要对字母进行讨论.对本例的③不需要代入fx 的表达式可求出m 的取值范围,请同学们细心体会. 四、典型习题导练1.函数b x a x f -=)(的图像如图,其中a 、b 为常数,则下列结论正确的是A.0,1<>b aB.0,1>>b aC.0,10><<b aD.0,10<<<b a05年高考福建试题2、已知2lgx -2y=lgx+lgy,则yx 的值为或4 或83、方程2)1(log 2=++x x a 0<a<1的解的个数为4、函数fx 与gx=21x的图像关于直线y=x 对称,则f4-x 2的单调递增区间是 A.[)+∞,0 B.(]0,∞- C.[)2,0 D.(]0,2- 5、图中曲线是幂函数y =x n 在第一象限的图像,已知n 可取±2,±12四个值,则相应于曲线c1、c2、c3、c4的n 依次为 A.-2,-12,12,2B .2,12,-12,-2C.-12,-2,2,12,12,-2,-126.求函数y=log 2x 2-5x+6的定义域、值域、单调区间.7.若x 满足03log 14)(log 24221≤+-x x ,求fx=2log 2log 22xx 最大值和最小值. 8.已知定义在R 上的函数()2,2x xaf x =+a 为常数 1如果()f x =()f x -,求a 的值;2当()f x 满足1时,用单调性定义讨论()f x 的单调性.§ 函数与方程一、知识导学1.函数的零点与方程的根的关系:一般地,对于函数()y f x =x D ∈我们称方程()0f x =的实数根x 也叫做函数的零点,即函数的零点就是使函数值为零的自变量的值.求综合方程fx =gx 的根或根的个数就是求函数()()y f x g x =-的零点.2.函数的图像与方程的根的关系:一般地,函数()y f x =x D ∈的图像与x 轴交点的横坐标就是()0f x =的根.综合方程fx =gx 的根,就是求函数y =fx 与y =gx 的图像的交点或交点个数,或求方程()()y f x g x =-的图像与x 轴交点的横坐标.3.判断一个函数是否有零点的方法:如果函数()y f x =在区间a,b 上图像是连续不断的曲线,并且有()()0f a f b ⋅<,那么,函数()y f x =在区间a,b 上至少有一个零点,即至少存在一个数(,)c a b ∈使得()0f c =,这个c 也就是方程()0f x =的一个根.对于我们学习的简单函数,可以借助()y f x =图像判断解的个数,或者把()f x 写成()()g x h x -,然后借助()y g x =、()y h x =的图像的交点去判断函数()f x 的零点情况.4.二次函数、一元二次方程、二次函数图像之间的关系:二次函数2y ax bx c =++的零点,就是二次方程20ax bx c ++=的根,也是二次函数2y ax bx c =++的图像与x 轴交点的横坐标.5.二分法:对于区间a,b 上的连续不断,且()()0f a f b ⋅<的函数()y f x =,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.二、疑难知识导析1.关于函数()()y f x g x =-的零点,就是方程()()f x g x =的实数根,也就是()y f x =与函数()y g x =图像的交点的横坐标.要深刻理解,解题中灵活运用.2.如果二次函数2()y f x ax bx c ==++,在闭区间m,n 上满足()()0f m f n ⋅<,那么方程20ax bx c ++=在区间m,n 上有唯一解,即存在唯一的1(,)x m n ∈,使1()0f x =,方程20ax bx c ++=另一解2(,)(,)x m n ∈-∞⋃+∞.3.二次方程20ax bx c ++=的根在某一区间时,满足的条件应据具体情形而定.如二次方程()f x =20ax bx c ++=的根都在区间(,)m n 时应满足:02()0()0b m n af m f n ∆≥⎧⎪⎪<-<⎪⎨⎪>⎪>⎪⎩ 4.用二分法求二次方程的近似解一般步骤是 1取一个区间,a b 使()()0f a f b ⋅< 2取区间的中点,02a bx +=3计算0()f x ,①若0()0f x =,则0x 就是()0f x =的解,计算终止;②若0()()0f a f x ⋅<,则解位于区间0,a x 中,令110,a a b x ==;若0()()0f x f b ⋅<则解位于区间0,x b 令101,a x b b == 4取区间是11,a b 的中点,1112a b x +=重服第二步、第三骤直到第n 步,方程的解总位于区间,n n a b 内5当,n n a b 精确到规定的精确度的近似值相等时,那么这个值就是所求的近似解. 三、经典例题导讲例1已知函数2()3f x x ax a =++-若[2,2]x ∈-时,()f x ≥0恒成立,求a 的取值范围. 错解:一()0f x ≥恒成立,∴△=24(3)a a --≤0恒成立解得a 的取值范围为62a -≤≤错解:二∵2()3f x x ax a =++-若[2,2]x ∈-时,()f x ≥0恒成立∴(2)0(2)0f f -≥⎧⎨≥⎩即22(2)2302230a a a a ⎧--+-≥⎪⎨++-≥⎪⎩解得a 的取值范围为773a -≤≤错因:对二次函数()f x =2ax bx c ++当x R ∈上()f x ≥0恒成立时,△≤0。
高一数学必修2第二章教案(完整版)
二、教学的重点与难点:
教学重点:通过直观感知、操作确认,归纳出直线和平面平行的判定及其应用。
教学难点:直线和平面平行的判定定理的探索过程及其应用。
三、教学过程设计:
(二)温故知新
直线与平面平行的定义是什么?
如果一条直线和一个平面没有公共点,那么我们就说这条直线与这个平面平行
.
这里所说的直线是向两方无限延伸的,平面是向四周无限延展的
3
公理 3:如果两个不重合的平面有一个公共点, 的公共直线 .
符号表示为: P∈ α∩β=>α∩β =,L 且 P∈ L 公理 3 作用:判定两个平面是否相交的依据
那么它们有且只有一条过该点
2.1.2 空间中直线与直线之间的位置关系
二、教学重、难点:
1.重点 : ( 1)空间中两条直线的位置关系的判定;
点 B 在平面 α外,记作: B
想一想:点和平面的位置关系有几种 ?
4.平面的基本性质
思考:如果直线与平面有一个公共点
P,直线是否在平面内 ?如果直线与平面
有两个公共点呢 ? 要让学生充分发表自己的见解 .
观察理解 :把一把直尺边缘上的任意两点放在桌边, 可以看到, 直尺的整个边
缘就落在了桌面上 . 得出结论: 公理 1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 (教师引导学生阅读教材 P42 前几行相关内容,并加以解析) 符号表示为
(2) 观察:如图 2.1.2-2,长方体 ABCD A1B1C1D1 中 ,
AA 1∥ BB1 , AA 1∥ DD1 ,那么 BB1 与 DD 1平行吗 ?
公理 4:平行于同一条直线的两条直线互相平行。
D1
符号表示为:设 a、 b、 c 是三条直线
[2020高中数学]新课标人教A版高中数学必修2教案完整版
第一章:空间几何体1.1.1柱、锥、台、球的结构特征一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知.(2)能根据几何结构特征对空间物体进行分类.(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征.(4)会表示有关于几何体以及柱、锥、台的分类.2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征. (2)让学生观察、讨论、归纳、概括所学的知识.3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力.(2)培养学生的空间想象能力和抽象括能力.二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征.难点:柱、锥、台、球的结构特征的概括.三、教学用具(1)学法:观察、思考、交流、讨论、概括.(2)实物模型、投影仪四、教学思路(一)创设情景,揭示课题1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流.教师对学生的活动及时给予评价.2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察.根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容.(二)、研探新知1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥.2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果.在此基础上得出棱柱的主要结构特征.(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行.概括出棱柱的概念.4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示.5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示.7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示.8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括.9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体.10.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成.请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考.1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)2.棱柱的何两个平面都可以作为棱柱的底面吗?3.课本P8,习题1.1 A组第1题.4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?四、巩固深化练习:课本P7 练习1、2(1)(2)课本P8 习题1.1 第2、3、4题五、归纳整理由学生整理学习了哪些内容六、布置作业课本P8 练习题1.1 B组第1题课外练习课本P8 习题1.1 B组第2题1.2.1 空间几何体的三视图(1课时)一、教学目标1.知识与技能(1)掌握画三视图的基本技能(2)丰富学生的空间想象力2.过程与方法主要通过学生自己的亲身实践,动手作图,体会三视图的作用.3.情感态度与价值观(1)提高学生空间想象力(2)体会三视图的作用二、教学重点、难点重点:画出简单组合体的三视图难点:识别三视图所表示的空间几何体三、学法与教学用具1.学法:观察、动手实践、讨论、类比2.教学用具:实物模型、三角板四、教学思路(一)创设情景,揭开课题“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图.在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?(二)实践动手作图1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;2.教师引导学生用类比方法画出简单组合体的三视图(1)画出球放在长方体上的三视图(2)画出矿泉水瓶(实物放在桌面上)的三视图学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得.作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图.3.三视图与几何体之间的相互转化.(1)投影出示图片(课本P10,图1.2-3)请同学们思考图中的三视图表示的几何体是什么?(2)你能画出圆台的三视图吗?(3)三视图对于认识空间几何体有何作用?你有何体会?教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法.4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流.(三)巩固练习课本P12 练习1、2 P18习题1.2 A组1(四)归纳整理请学生回顾发表如何作好空间几何体的三视图(五)课外练习1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图.2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图.1.2.2 空间几何体的直观图(1课时)一、教学目标1.知识与技能(1)掌握斜二测画法画水平设置的平面图形的直观图.(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点.2.过程与方法学生通过观察和类比,利用斜二测画法画出空间几何体的直观图.3.情感态度与价值观(1)提高空间想象力与直观感受.(2)体会对比在学习中的作用.(3)感受几何作图在生产活动中的应用.二、教学重点、难点重点、难点:用斜二测画法画空间几何值的直观图.三、学法与教学用具1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程.2.教学用具:三角板、圆规四、教学思路(一)创设情景,揭示课题1.我们都学过画画,这节课我们画一物体:圆柱把实物圆柱放在讲台上让学生画.2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容.(二)研探新知1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评.画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法.强调斜二测画法的步骤.练习反馈根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查.2.例2,用斜二测画法画水平放置的圆的直观图教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点.教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法.3.探求空间几何体的直观图的画法(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A’B’C’D’的直观图.教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事.(2)投影出示几何体的三视图、课本P15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图.教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系.4.平行投影与中心投影投影出示课本P17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点.5.巩固练习,课本P16练习1(1),2,3,4三、归纳整理学生回顾斜二测画法的关键与步骤四、作业1.书画作业,课本P17 练习第5题2.课外思考课本P16,探究(1)(2)1.3.1柱体、锥体、台体的表面积与体积一、教学目标1、知识与技能(1)通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法.(2)能运用公式求解,柱体、锥体和台全的全积,并且熟悉台体与术体和锥体之间的转换关系.(3)培养学生空间想象能力和思维能力. 2、过程与方法(1)让学生经历几何全的侧面展一过程,感知几何体的形状.(2)让学生通对照比较,理顺柱体、锥体、台体三间的面积和体积的关系. 3、情感与价值通过学习,使学生感受到几何体面积和体积的求解过程,对自己空间思维能力影响.从而增强学习的积极性. 二、教学重点、难点重点:柱体、锥体、台体的表面积和体积计算 难点:台体体积公式的推导 三、学法与教学用具1、学法:学生通过阅读教材,自主学习、思考、交流、讨论和概括,通过剖析实物几何体感受几何体的特征,从而更好地完成本节课的教学目标.2、教学用具:实物几何体,投影仪 四、教学设想1、创设情境(1)教师提出问题:在过去的学习中,我们已经接触过一些几何体的面积和体积的求法及公式,哪些几何体可以求出表面积和体积?引导学生回忆,互相交流,教师归类.(2)教师设疑:几何体的表面积等于它的展开圈的面积,那么,柱体,锥体,台体的侧面展开图是怎样的?你能否计算?引入本节内容.2、探究新知(1)利用多媒体设备向学生投放正棱柱、正三棱锥和正三棱台的侧面展开图(2)组织学生分组讨论:这三个图形的表面由哪些平面图形构成?表面积如何求? (3)教师对学生讨论归纳的结果进行点评. 3、质疑答辩、排难解惑、发展思维(1)教师引导学生探究圆柱、圆锥、圆台的侧面展开图的结构,并归纳出其表面积的计算公式:)''22rl l r r r S +++=(圆台表面积πr 1为上底半径 r 为下底半径 l 为母线长(2)组织学生思考圆台的表面积公式与圆柱及圆锥表面积公式之间的变化关系.(3)教师引导学生探究:如何把一个三棱柱分割成三个等体积的棱锥?由此加深学生对等底、等高的锥体与柱体体积之间的关系的了解.如图:(4)教师指导学生思考,比较柱体、锥体,台体的体积公式之间存在的关系.(s ’,s 分别我上下底面面积,h 为台柱高) 4、例题分析讲解(课本)例1、 例2、 例3 5、巩固深化、反馈矫正 教师投影练习1、已知圆锥的表面积为 a ㎡,且它的侧面展开图是一个半圆,则这个圆锥的底面直径为 . (答案:m a ππ332) 2、棱台的两个底面面积分别是245c ㎡和80c㎡,截得这个棱台的棱锥的高为35cm,求这个棱台的体积. (答案:2325cm 3)6、课堂小结本节课学习了柱体、锥体与台体的表面积和体积的结构和求解方法及公式.用联系的关点看待三者之间的关系,更加方便于我们对空间几何体的了解和掌握. 7、评价设计习题1.3 A 组1.3§1.3.2 球的体积和表面积一. 教学目标1. 知识与技能错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(必修二)高中数学第二章教案2.1.1 平面二、教学重点、难点重点:1.平面的概念及表示;2.平面的基本性质,注意他们的条件、结论、作用、图形语言及符号语言.难点:平面基本性质的掌握与运用.观察并思考以下问题:1.长方体由哪些基本元素构成? 答:点、线、面.2.观察长方体的面,说说它的特点?答:是平的.指出:长方体的面给我们以平面的印象;生活中常见的如黑板、平整的操场、桌面、平静的湖面等等,都给我们以平面的印象.(二)探究新知1.平面含义指出:以上实物都给我们以平面的印象,几何里所说的平面,就是从这样的一些物体中抽象出来的。
平面是没有厚薄的,可以无限延伸,这是平面最基本的属性常见的桌面,黑板面,平静的水面等都是平面的局部形象;一个平面把空间分成两部分,一条直线把平面分成两部分.2.平面的画法及表示①平面的画法:和学生一起,老师边说边画,学生跟着画.在立体几何中,常用平行四边形表示平面,当平面水平放置时,通常把平行四45,且横边长画成邻边长的两倍;画两个平面相交时,当一个平边形的锐角画成0面的一部分被另一个平面遮住时,应把被遮住的部分画成虚线或不画.②平面的表示方法平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等.3.点与平面的关系及其表示方法指出:平面内有无数个点,平面可以看成点的集合.点A 在平面α内,记作:A α∈ 点B 在平面α外,记作:B α∉ 想一想:点和平面的位置关系有几种? 4.平面的基本性质思考:如果直线与平面有一个公共点P ,直线是否在平面内?如果直线与平面有两个公共点呢? 要让学生充分发表自己的见解.观察理解:把一把直尺边缘上的任意两点放在桌边,可以看到,直尺的整个边缘就落在了桌面上. 得出结论:公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 (教师引导学生阅读教材P42前几行相关内容,并加以解析) 符号表示为A lB l l A B ααα∈⎫⎪∈⎪⇒⊂⎬∈⎪⎪∈⎭公理1作用:判断直线是否在平面内师:生活中,我们看到三脚架可以牢固地支撑照相机或测量用的平板仪等等……引导学生归纳出公理2公理2:过不在一条直线上的三点,有且只有一个平面. 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α 使A ∈α、B ∈α、C ∈α 公理2作用:确定一个平面的依据. 补充3个推论:推论1:经过一条直线与直线外一点,有且只有一个平面. 推论2:经过两条平行直线,有且只有一个平面. 推论3:经过两条相交直线,有且只有一个平面.教师用正(长)方形模型,让学生理解两个平面的交线的含义. 引导学生阅读P42的思考题,从而归纳出公理3公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.符号表示为:P∈α∩β=>α∩β=L,且P∈L公理3作用:判定两个平面是否相交的依据2.1.2空间中直线与直线之间的位置关系二、教学重、难点:1.重点: (1)空间中两条直线的位置关系的判定;(2)理解并掌握公理4.2.难点: 理解异面直线的概念、画法.四、教学过程:(一)复习引入1. 前面我们已学习了平面的概念及其基本性质.回顾一下,怎样确定一个平面呢?(公理3及其三个推论)2 .在一个平面内,两直线有哪几种位置关系呢?在空间中呢?(二)新课推进1.空间中两条直线的位置关系以学生身边的实例引出空间两条直线位置关系问题共面直线相交:同一平面内,有且只有一个公共点平行:同一平面内,没有公共点异面直线:不同在任何一个平面内,没有公共点2.异面直线(1)概念:不同在任何一个平面内的两条直线.(2)判断:下列各图中直线l 与m 是异面直线吗?让学生直观判断异面直线,既加深了对概念的理解,又可引出异面直线的画法,还为下面的辨析作好铺垫.(3)画法:用一个或两个平面衬托(4)辨析①空间中没有公共点的两条直线是异面直线. ②分别在两个不同平面内的两条直线是异面直线. ③不同在某一平面内的两条直线是异面直线. ④平面内的一条直线和平面外的一条直线是异面直线. ⑤既不相交,又不平行的两条直线是异面直线 . (5)结合实例小结判断异面直线的关键① 例1:在正方体1111ABCD A B C D -中,哪些棱所在的直线与1BA 成异面直线?αlmαlmlmαβl mαβαlmlmαβαlmlαβm lmαβlmαβ②合作探究如右图所示是一个正方体的展开图,如果将它还原成正方体,那么AB 、CD 、EF 、GH 这四条线段所在的直线是异面直线的有几对?让学生根据异面直线的定义判断在几何体上的具有异面直线位置关系的两条直线.培养学生的空间想象能力,加深对异面直线概念的理解.③判断异面直线的关键:既不相交,又不平行. 3.公理4的教学⑴思考:在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线平行。
空间中,如果两条直线都与第三条直线平行,是否也有类似的规律? (2)观察:如图2.1.2-2,长方体1111ABCD A B C D -中, AA 1∥1BB , AA 1∥1DD ,那么1BB 与1DD 平行吗? 公理4:平行于同一条直线的两条直线互相平行。
符号表示为:设a 、b 、c 是三条直线//////a b a c b c ⎫⇒⎬⎭注:公理4公理4作用:判断空间两条直线平行的依据.⑶ 讲解例2,让学生掌握公理4的运用例2:如图在空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点. 求证:四边形EFGH 是平行四边形.简单介绍什么叫空间四边形,再分析如何证明)分析:如何判定一个四边形是平行四边形? 怎样证明EH ∥ FG ?证明关键是什么?ABDC GEHFC 1A 1提问:有没有其它证明方法呢?(EF ∥HG,且EF=HG ) 变式练习:(1)在例2中, 如果再加上条件AC BD =,那么四边形EFGH 是什么图形? (2) 把条件改为: E 、H 分别是边AB 、AD 的中点,F 、G 分别是边CB 、CD 上的点,且CG CFCD CB=则四边形EFGH 是什么图形?为什么? (四)小结(1)空间中两直线有何位置关系?(平行、相交、异面)(2)怎样判断两直线是异面直线?(判断关键:既不平行又不相交) (3)什么是平行公理?它的作用是什么?(平行同一条直线的两条直线互相平行, 作用:判断两直线平行它将空间平行问题转化为平面内的平行问题) (五)作业(1) P56习题2.1A 组第6题(2) 在正方体1111ABCD A B C D -中,与对角线1DB 成异面直线的棱共有几条?§2.1.3 空间中直线与平面§2.1.4 平面与平面之间的位置关系二、教学重点、难点重点:空间直线与平面、平面与平面之间的位置关系。
难点:用图形表达直线与平面、平面与平面的位置关系。
三、教学设计空间中直线与平面有多少种位置关系?(二)研探新知1.引导学生观察、思考身边的实物,从而直观、准确地归纳出直线与平面有三种位置关系:(1)直线在平面内——有无数个公共点(2)直线与平面相交——有且只有一个公共点(3)直线在平面平行——没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示a α a∩α=A a∥α例4: 加深了学生对这几种位置关系的理解.2.引导学生对生活实例以及对长方体模型的观察、思考,准确归纳出两个平面之间有两种位置关系:(1)两个平面平行 —— 没有公共点(2)两个平面相交 —— 有且只有一条公共直线用类比的方法,学生很快地理解与掌握了新内容,这两种位置关系用图形表示为α∥β α∩β= L指出:画两个相互平行的平面时,要注意使表示平面的两个平行四边形的对应边平行.2.2.1直线与平面平行的判定二、教学的重点与难点:教学重点:通过直观感知、操作确认,归纳出直线和平面平行的判定及其应用。
教学难点:直线和平面平行的判定定理的探索过程及其应用。
三、教学过程设计: (二)温故知新直线与平面平行的定义是什么?如果一条直线和一个平面没有公共点,那么我们就说这条直线与这个平面平行. 这里所说的直线是向两方无限延伸的,平面是向四周无限延展的. 那么,直线与平面的位置关系有几种? 直线与平面的位置关系有三种: ①直线在平面内——有无数个公共点; ②直线与平面相交——有且只有一个公共点;αβαβL③直线与平面平行——没有公共点.问:我们把直线与平面相交或直线与平面平行的情况统称为直线在平面外。
今后凡谈到直线在平面外,则有两种情况:直线与平面相交,直线与平面平行。
直线与平面的三种位置关系的图形语言、符号语言各是怎样的? (三)讲解新课直线a 在平面α外,是不是能够断定//a α呢? 直线与平面平行将如何判定呢?直线无限延伸,平面无限延展,如何保证直线与平面有没有公共点呢?请同学们将一本书平放在桌面上,翻动书的硬皮封面,封面边缘AB 所在直线与桌面所在平面具有什么样的位置关系?如图:直线a 与平面平行吗?若α内有直线b 与a 平行,那么α与a 的位置关系如何?是否可以保证直线a 与平面α平行?判定定理告诉我们直线与平面平行应具备几个条件? 符号语言表示:////a b a a b αβα⊄⎫⎪⊂⇒⎬⎪⎭这个定理可以简述为:“线线平行,则线面平行”,不过要注意,前面的线线有什么区别?例1 求证:空间四边形相邻两边中点的连线平行于经过另外两边所在的平面.已知:如图,空间四边形ABCD 中,E,F 分别是AB,AD 的中点. 求证:EF//平面BCD.证明:连接BD ,则AE=EB,AF=FB 所以 EF//BD因为 EF ⊄平面BCD,BD ⊂平面BCDαa由直线与平面平行的判定定理得 EF//平面BCD2.2.2 平面与平面平行的判定二、教学重、难点:1.重点:平面和平面平行的判定定理的探索过程及应用。
2.难点:平面和平面平行的判定定理的探究发现及其应用。
三、教学过程:(一)创设情景1.你知道建筑师是如何检验屋顶平面是与水平面平行的吗?2.三角板的一条边所在直线与地面平行,这个三角板所在平面与地面平行吗?三角板的两条边所在直线与地面平行,情况又如何呢?(二)温故知新线面平行的判定方法有几种?(1)定义法:若直线与平面无公共点,则直线与平面平行.(2)面面平行定义的推论:若两平面平行,则其中一个平面内的直线与另一平面平行.(3)判定定理:证明面外直线与面内直线平行. (三)探求新知平面与平面平行的定义是什么?如何判断两平面平行?如果两个平面平行,那么其中一个平面内的直线与另一个平面关系如何?为什么?若一个平面内所有直线都和另一个平面平行,那么这两个平面会平行吗? 由此将判定两个平面平行的问题可以转化为线面平行的问题来解决,可是最少需要几条线与面平行呢?平面β内有一条直线与平面α平行,α、β平行吗?请举例说明. 如右图,借助长方体模型,我们可以看出,平面''A ADD 中直线'//,A A ''平面DCC D ''A ADD ''但平面与平面DCC D 相交.若平面α内有两条直线a 、b 都平行于平面β,能保证α∥β吗?如上图,借助长方体模型,在平面''A ADD 内,有一条与'A A 平行的直线EF ,显然'A A 与EF 都平行与平面''DCC D ,但这两条平行直线所在的平面''A ADD 与平面''DCC D 相交. 如下图,平面β内有两条相交直线与平面α平行,情况如何?一般地,我们有如下的判定平面平行的定理:如果一个平面内的两条交直线与另一个平面平行,则这两个平面平行. 以上是两个平面平行的文字语言表述,你能写出定理的符号语言吗?若,,,//a b a b P ββαααβ⊂⊂⋂=,且a//,b//则.利用判定定理证明两个平面平行,必须具备哪些条件? (1)由两条直线平行与另一个平面,(2)这两条直线必须相交. 从转化的角度认识该定理就是:线线相交,线面相交⇒面面平行. (四)拓展应用例1. 已知正方体ABCD-1111A B C D ,求证:平面11AB D //平面1C BD . 证明:因为ABCD-1111A B C D 为正方体, 所以11,AB A B = 1111//D C A B 1111D C A B =, 又11//AB A B ,11,AB A B =所以11//D C AB ,11D C AB =,所以11D C BA 为平行四边形.所以11,C B C BD ⊂平面 11//D A C B . 又11D A C BD ⊄平面,11C B C BD ⊂平面,由直线与平面的判定定理得11//D A C BD 平面,同理111//D B C BD 平面,又1111D A D B D ⋂=,所以平面111//AB D C BD 平面.拓展1.已知正方体ABCD-A 1B 1C 1D 1,M 、N 分别为A 1A 、CC 1的中点 .求证:平面NBD ∥平面MB 1D 1.拓展2.已知正方体ABCD-A 1B 1C 1D 1,P 、Q 、R 分别为A 1A 、AB 、AD 的中点 .求证:平面PQR ∥平面CB 1D 1.例2.点P 是△ABC 所在平面外一点,M 、N 、G 分别是△PBC 、△PCA 、△PAB 的重心. 求证:平面MNG//平面ABC分析:连结PM,PN,PG 则PM:PD=PN:PE=PG:PF 故MN ∥DE,MG ∥EF2.2.3平面与平面平行的判定二、教学重点、难点、疑点及解决方法1.教学重点:掌握两个平面平行的性质及其应用;掌握两平行平面间的距离的概念,会求两个平行平面间的距离.2.教学难点:掌握两个平行平面的性质及其应用. 三 、教学设计(一)复习两个平面的位置关系及两个平面平行的判定 两个平面的位置关系有哪几种? 两个平面平行的判定方法有哪几种? (二)两个平面平行的性质根据两个平面平行直线和平面平行的定义可知:两个平面平行,其中一个平面内的直线必平行于另一个平面.因此,在解决实际问题时,常常把面面平行转化为线面平行或线线平行.这个结论可作为两个平面平行的性质1://,a αβα⊂ 则//a β.1.两个平面平行的性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行.已知:α∥β,γ∩α=a ,γ∩β=b . 求证:a ∥b .直接证法: ∵α∥β,∴α与β没有公共点.又,a b γγ⊂⊂∴a ∥b这个结论可作为性质2:若α∥β,α∩γ=a ,β∩γ=b ,则a ∥b . 2.例题例2 一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.已知:α∥β,,l l αα⊥⋂=A . 求证:l β⊥.证明直线与平面垂直的方法有几种?方法一,证明直线与平面内的任何一条直线都垂直;方法二,证明直线与平面内两条相交的直线垂直;方法三,证明直线的一条平行线与平面垂直.我们可以试着用第一种方法来证明.证明:在平面β内任取一条直线b,平面γ是经过点A与直线b的平面,设γ∩α=a.因为直线b是平面β内的任意一条直线,所以l⊥β.这个例题的结论可与定理“一个平面垂直于两条平行直线中的一条直线,它也垂直于另一条直线.”联系起来记忆,它也可作为性质3:若α∥β,l⊥α,则l ⊥β.3.两个平行平面的公垂线、公垂线段和距离与两个平行平面α,β同时垂直的直线L叫做这两个平行平面α,β的公垂线,它夹在这两个平行平面间的部分叫做这两个平行平面的公垂线段.如图α∥β.如果AA'、BB'都是它们的公垂线段,那么AA'∥BB',根据两个平面平行的性质定理有A'B'∥AB,所以四边形ABB'A'是平行四边形,AA'=BB'.由此,我们得到,两个平行平面的公垂线段都相等,公垂线段的长度具有唯一性.与两平行线间的距离定义相类似,我们把公垂线段的长度叫做两个平行平面的距离.两个平行平面间距离实质上也是点到面或两点间的距离,求值最后也是通过解三角形求得练习.夹在两个平行平面间的平行线段相等.已知:如图1—116,α∥β,AB∥CD,A∈α,C∈α,B∈β,D∈β.求证:AB=CD.证明:∵AB∥CD,∴过AB、CD的平面γ与平面α和β分别交于AC'和BD.∵α∥β,∴BD∥AC.∴四边形ABCD是平行四边形,∴AB=CD.这个练习的结论可作为性质4:夹在两个平行平面间的平行线段相等.2.2.4平面与平面平行的性质二、教学重、难点:1.重点:两个平面平行的性质定理的探索过程及应用.2.难点:两个平面平行的性质定理的探究发现及其应用.三、教学过程:(一)温故知新1. 两个平面的位置关系?2. 面面平行的判定方法:(1)定义法:若两平面无公共点,则两平面平行.(2)判定定理:如果一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面平行.(二)创设情景两个平面平行,那么其中一个平面内的直线与另一平面有什么样的关系?通过分析可以发现,若平面α和平面β平行,则两面无公共点,那么就意味着平面α内任一直线a 和平面β也无公共点,即直线a 和平面β平行.用语言表述就是:如果两个平面平行,那么其中一个平面内的直线平行与另一个平面.用式子可表示为://,//a a ββαα⊂⇒。