高一数学必修2第二章教案(完整版)教学文案

合集下载

高一数学必修2全套教案(共62页)

高一数学必修2全套教案(共62页)

高中数学新人教版A必修二全部教案第一章:空间几何体1.1.1柱、锥、台、球的结构特征一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括。

三、教学用具(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪四、教学思路(一)创设情景,揭示课题1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。

教师对学生的活动及时给予评价。

2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。

根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。

(二)、研探新知1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。

2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。

在此基础上得出棱柱的主要结构特征。

(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。

概括出棱柱的概念。

4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。

5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

高中数学必修2教案(5篇)

高中数学必修2教案(5篇)

高中数学必修2教案(5篇)
高中数学必修2教案1 讲义1:空间几何体
一、教学要求:通过实物模型,观察大量的空间图形,认识柱体、
锥体、台体、球体及简单组合体的构造特征,并
能运用这些特征描绘现实生活中简单物体的结
构.
二、教学重点:让学生感受大量空间实物及模型,概括出柱体、锥体、台体、球体的构造特征.
三、教学难点:柱、锥、台、球的构造特征的概括.
四、教学过程:
〔一〕、新课导入:
1. 导入:进入高中,在必修②的第一、二章中,将继续深化研究一些空间几何图形,即学习立体几何,注意学习方法:直观感知、操作确认、思维辩证、度量计算.
〔二〕、讲授新课:
1. 教学棱柱、棱锥的构造特征:
①、讨论:给一个长方体模型,经过上、下两个底面用刀垂直切,得到的几何体有哪些公共特征?把这些几何体用程度力
推斜后,仍然有哪些公共特征?
②、定义:有两个面互相平行,其余各面都是四边形,且
每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫棱柱. → 列举生活中的棱柱实例〔三棱镜、方砖、六角螺帽〕.
结合图形认识:底面、侧面、侧棱、顶点、高、对角面、对角线.
③、分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等.
表示:棱柱ABCDE-A’B’C’D’E’
④、讨论:埃及金字塔具有什么几何特征?
⑤、定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥.
结合图形认识:底面、侧面、侧棱、顶点、高. → 讨论:棱锥如何分类及表示?
⑥、讨论:棱柱、棱锥分别具有一些什么几何性质?有什么共同的性质?。

高中数学 必修二 第二章完整全部教案及导学案经典练习

高中数学 必修二 第二章完整全部教案及导学案经典练习

第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系2.1.1平面1.理解平面的概念,会画一个平面及会表示平面.2.会用符号语言表示空间点、直线、平面之间的位置关系.(重点)3.掌握三个公理并会简单应用.(难点、易混点)平面阅读教材P40至P41“思考”以上的内容,完成下列问题.1.平面的概念几何里所说的“平面”,是从课桌面、黑板面、海面这样的一些物体中抽象出来的.几何里的平面是无限延展的.2.平面的画法(1)水平放置的平面通常画成一个平行四边形,它的锐角通常画成45°,且横边长等于其邻边长的2倍.如图①.(2)如果一个平面被另一个平面遮挡住,为了增强它的立体感,把被遮挡部分用虚线画出来.如图②.3.平面的表示法图①的平面可表示为平面α、平面ABCD、平面AC或平面BD.【思考】立体几何中的平面与平面几何中的平面图形有何区别?【提示】立体几何中的平面与平面几何中的平面图形的区别:(1)平面图形如三角形、正方形、梯形等,它们有大小之分;(2)立体几何中的平面是无大小、厚薄之分的,是不可度量的,无大小,无面积.它可以无限延展,没有边界.平面的基本性质阅读教材P41“思考”以下至P43“练习”以上的内容,完成下列问题.填表公理内容图形符号公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内A∈l,B∈l,且A∈α,B∈α⇒l⊂α公理2 过不在一条直线上的三点,有且只有一个平面A,B,C三点不共线⇒存在唯一的α使A,B,C∈α公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线P∈α,且P∈β⇒α∩β=l,且P∈l【练习】(1)过三个点的平面的个数是()A.0B.1C.2 D.1或无数(2)如果两个平面有一个公共点,那么这两个平面()A.没有其他公共点B.仅有这一个公共点C.仅有两个公共点D.有无数个公共点【解析】(1)当三点不共线时,根据公理2知,过三点的平面有1个.当三点共线时,过三点的平面有无数个.故选D.(2)由公理3知,两个平面只要有一个公共点,就有一条过该点的公共直线,故选D.【答案】(1)D(2)D[探究问题]1.能否说多个平面重叠在一起比一个平面厚呢?2.为什么自行车后轮旁只安装一只撑脚就能固定自行车?3.两个平面有三个公共点,这两个平面重合吗?【探究提示】1.不能.平面是无厚薄的,无论多少个平面重叠在一起仍然是一个平面.2.撑脚和自行车的两个轮子与地面的接触点共有三个,且不在同一条直线上,根据公理2可知,可确定一个平面.3.不一定.当三点在同一条直线上时,不能判定两个平面重合;当三点不在同一条直线上时,根据不共线的三点确定一个平面,可知两平面重合.[探究成果]1.平面的概念与以前学习的“点”、“线”、“集合”的概念一样,只是一个描述性的不加严格定义的概念.平面是无大小、无厚薄、无所谓面积的.2.公理2可作为确定一个平面的依据,条件是“过不在一条直线上的三点”,结论是“有且只有一个平面”,特别注意“不共线”这一条件易被忽视,公理2又可表述为:不共线的三点确定一个平面.关键词:文字语言、符号语言、图形语言用符号语言表示下列语句,并画出图形.(1)三个平面α、β、γ相交于一点P,且平面α与平面β交于PA,平面α与平面γ交于PB,平面β与平面γ交于PC;(2)平面ABD与平面BCD相交于BD,平面ABC与平面ADC交于AC.【思路点拨】根据条件,适当确定其中的某一个平面,然后根据点、线、面的位置关系,将其附着于固定平面上,注意图形的立体感,要将被遮挡部分用虚线表示.【自主解答】(1)符号语言表示:α∩β∩γ=P,α∩β=PA,α∩γ=PB,β∩γ=PC.用图形表示:(2)符号语言表示:平面ABD∩平面BDC=BD,平面ABC∩平面ADC=AC.图形表示:1.解答本题要正确理解立体几何中表示点、线、面之间位置关系的符号“∈”、“∉”、“⊂”、“⊄”、“∩”的意义.2.解决立体几何问题首先应过好三大语言关,即“文字语言、图形语言、符号语言”,能实现这三种语言的相互转换.文字语言和符号语言在转换的时候,要注意符号语言所代表的含义,由符号语言作出直观图时,要注意实虚线的区别.[变式训练]1.完成下列各题:(1)将下列文字语言转化为符号语言.①点A在平面α内,但不在平面β内.②直线a经过平面α外一点M.③直线l在平面α内,又在平面β内(即平面α和平面β相交于直线l).(2)将下列符号语言转化为图形语言.①a⊂α,b∩α=A,A∉a.②α∩β=c,a⊂α,b⊂β,a∥c,b∩c=P.【解】(1)①A∈α,A∉β.②M∈a,M∉α.③α∩β=l.(2)①②关键词:同一法证明:两两相交且不共点的三条直线在同一平面内.【思路点拨】由两条相交直线确定一个平面,再证第三条直线在确定的平面内,也可利用平面重合法证明.【自主解答】已知:如图所示,l1∩l2=A,l2∩l3=B,l1∩l3=C.求证:直线l1、l2、l3在同一平面内.证法1:(纳入平面法)∵l1∩l2=A,∴l1和l2确定一个平面α.∵l2∩l3=B,∴B∈l2.又∵l2⊂α,∴B∈α.同理可证C∈α.又∵B∈l3,C∈l3,∴l3⊂α.∴直线l1、l2、l3在同一平面内.证法2:(辅助平面法)∵l1∩l2=A,∴l1、l2确定一个平面α.∵l2∩l3=B,∴l2、l3确定一个平面β.∵A∈l2,l2⊂α,∴A∈α.∵A∈l2,l2⊂β,∴A∈β.同理可证B∈α,B∈β,C∈α,C∈β.∴不共线的三个点A、B、C既在平面α内,又在平面β内.∴平面α和β重合,即直线l1、l2、l3在同一平面内.在证明多线共面时,可用下面的两种方法来证明:(1)纳入法:先由部分直线确定一个平面,再证明其他直线在这个平面内;(2)同一法:即先证明一些元素在一个平面内,再证明另一些元素在另一个平面内,然后证明这两个平面重合,即证得所有元素在同一个平面内.[变式训练]2.已知直线a∥b,直线l与a,b都相交,求证:过a,b,l有且只有一个平面.【证明】如图所示.由已知a∥b,所以过a,b有且只有一个平面α.设a∩l=A,b∩l =B,∴A∈α,B∈α,且A∈l,B∈l,∴l⊂α.即过a,b,l有且只有一个平面.点共线、线共点问题关键词:平面的交线公理3如图2-1-1,已知平面α,β,且α∩β=l.设梯形ABCD中,AD∥BC,且AB⊂α,CD⊂β.求证:AB,CD,l共点.图2-1-1【思路点拨】证明AB与CD的交点在α与β的交线l上.【自主解答】因为梯形ABCD中,AD∥BC,所以AB,CD是梯形ABCD的两腰,所以AB,CD必定相交于一点.如图,设AB∩CD=M.又因为AB⊂α,CD⊂β,所以M∈α,且M∈β,所以M∈(α∩β).又因为α∩β=l,所以M∈l,即AB,CD,l共点.线共点与点共线的证明思路:(1)证明三线共点问题可把其中一条作为分别过其余两条直线的两个平面的交线,然后再证两条直线的交点在此直线上,此外还可先将其中一条直线看作某两个平面的交线,证明该交线与另两条直线分别交于两点,再证这点重合,从而得三线共点;(2)证明多点共线通常利用公理3,即两相交平面交线的惟一性,通过证明点分别在两个平面内,证明点在相交平面的交线上,也可选择其中两点确定一条直线,然后证明其他点也在其上.图2-1-2[变式训练]3.已知△ABC在平面α外,其三边所在的直线满足AB∩α=P,BC∩α=Q.AC∩α=R,如图2-1-2所示.求证:P,Q,R三点共线.【证明】∵AB∩α=P,∴P∈AB,P∈平面α.又AB⊂平面ABC,∴P∈平面ABC.∴由公理3可知:点P在平面ABC与平面α的交线上,同理可证Q,R也在平面ABC 与平面α的交线上.∴P,Q,R三点共线.1.三种语言的相互转换是一种基本技能.要注意符号语言的意义.如点与直线的位置关系只能用“∈”或“∉”,直线与平面的位置关系只能用“⊂”或“⊄”.2.证明点线共面的常用方法有:纳入法、同一法.3.点共线与线共点的证明思路(1)点共线的思路:证明这些点都分别在两个相交的平面内,因此在两个平面的交线上.(2)线共点的思路:先由两条直线交于一点,再证明该点在第三条直线上.1.用符号表示“点A在直线l上,l在平面α外”,正确的表示是()A.A∈l,l∉αB.A∈l,l⊄αC.A⊂l,l⊄αD.A⊂l,l∉α【解析】点A在直线l上,应表示为A∈l,直线l不在平面α内,应表示为l⊄α.【答案】B2.(2014·福州高一检测)下列说法正确的是()A.三点可以确定一个平面B.一条直线和一个点可以确定一个平面C.四边形是平面图形D.两条相交直线可以确定一个平面【解析】A错误,不共线的三点可以确定一个平面.B错误,一条直线和直线外一个点可以确定一个平面.C错误,四边形不一定是平面图形.D正确,两条相交直线可以确定一个平面.【答案】D3.下列推理错误的是()A.A∈l,A∈α,B∈l,B∈α⇒l⊂αB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.l⊄α,A∈l⇒A∉αD.A,B,C∈α,A,B,C∈β,且A,B,C不共线⇒α与β重合【解析】当l⊄α,A∈l时,也有可能A∈α,如l∩α=A,故C错.【答案】C图2-1-34.如图2-1-3所示,D,E分别是△ABC的边AC,BC上的点,平面α经过D,E 两点.(1)求作直线AB与平面α的交点P;(2)求证:D,E,P三点共线.【解】(1)直线AB与平面α的交点P,如图所示.(2)证明:∵D∈AC,E∈BC,∴DE⊂平面ABC,又D∈α,E∈α,∴DE⊂α,∴DE为α与△ABC的交线,又P∈AB,AB⊂平面ABC且P∈α.∴P在α与△ABC的交线DE上,∴D,E,P三点共线.教学反思:平面基本性质的三个公理中符号语言掌握的不好,还需要进一步训练,特别是线在面内时,表示错误较多。

新课标人教A版高中数学必修二第二章第一节《空间点、线、面之间的位置关系》教案

新课标人教A版高中数学必修二第二章第一节《空间点、线、面之间的位置关系》教案

《空间点、直线、平面之间的位置关系》教案一、课题2.1.1空间点、直线、平面之间的位置关系二、教学目标1、知识与技能①理解空间平面的概念,掌握平面的基本性质②熟练掌握文字语言、图形语言、符号语言转换③掌握三条公理,并且能运用三条公理证明一些简单空间图形的位置关系2、过程与方法①通过三种语言的学习,培养学生分析问题的能力,作图能力以及空间想象能力②学生亲历两条公理归纳过程,学会利用已有的知识与经验归纳新的知识3、情感态度与价值观通过语言、符号、图形的转换,使学生体会到数学的乐趣,激发其学习数学的兴趣三、课型新授课四、课时第一课时五、教学重难点④重点:文字语言、图形语言、符号语言转换,运用三条公理证明一些简单空间图形的位置关系难点:文字语言、图形语言、符号语言转换六、教学过程1、新课引入师:图示是我们生活中常见的物体,观察图片,你能总结出它们的共同特点吗?(课桌面、黑板面、海平面)生:它们都是平面师:非常好,那么我们应该如何理解平面这一几何概念呢?(设计意图:通过生活中的实际例子出发,提出问题,引发思考,导入新课)2、教授新课生:......师:几何学里所说的“平面”是从这样的一些物体之中抽象出来的,但是应该要注意几何里的平面平面是无限延伸的,无大小,无厚薄之分,不可度量。

师:下面请同学们做一道小练习:①10个平面重叠起来,要比5个平面重叠起来厚;②有一个平面的长是50m,宽是20m;③黑板面是平面;④平面是绝对的平,没有大小,没有厚度,可以无限延展的抽象数学概念。

其中正确的说法是师:那么我们应该如何画平面呢?生:......师:我们常常把水平的平面画成一个平行四边形,并且平行四边形的锐角通常画成45°.且横边长等于其邻边长的2倍,如图所示。

师:如果一个平面被另一个平面遮挡住,为了增强它的立体感,我们常把被遮挡部分用虚线画出来,如图所示。

师:同学们还要注意到,在表示平面时,我们常把希腊字母α,β,γ等写在代表平面的平行四边形的一个角上,如上图所示;当然也可以用代表平行四边形的四个顶点,或者相对的两个顶点的大写英文字母作为这个平面的名称,即:平面α,平面ABCD,平面AC。

高中数学第二章第三节教案

高中数学第二章第三节教案

高中数学第二章第三节教案
教学目标:
1. 理解一元一次方程式的概念。

2. 掌握解一元一次方程的基本方法。

3. 能够在实际问题中应用一元一次方程式进行求解。

教学重点与难点:
1. 一元一次方程式的定义与性质。

2. 方程的等价变形及解法。

3. 题目实际问题的翻译与解答。

教学过程:
一、导入 (5分钟)
老师通过一个生活中的例子引入一元一次方程式的概念,让学生感受方程式在实际问题中的运用。

二、讲解与示范 (15分钟)
1. 介绍一元一次方程式的定义,并通过例题讲解如何解一元一次方程。

2. 指导学生如何进行等式方程的变形运算,引导掌握解题方法。

三、练习与引导 (20分钟)
1. 给予学生一些简单的练习题,让他们巩固知识点。

2. 引导学生分析实际问题,将问题转化为一元一次方程进行解答。

四、达标检测 (10分钟)
出一些难度较高的应用题让学生在规定时间内完成,并及时纠正错误。

五、课堂小结 (5分钟)
总结本节课的重点知识,强调解题方法和注意事项。

六、作业布置 (5分钟)
布置相关练习题作为课后作业,巩固学生对一元一次方程的掌握程度。

教学反思:
本节课通过理论讲解与实例演练相结合的方式,能够帮助学生更快地掌握一元一次方程的解题方法并应用到实际问题中。

同时,鼓励学生多进行思考、多动手操作,提高问题解决能力和数学思维。

人教A版高一数学必修二第二章 2.2.3-2.2.4【教案设计】

人教A版高一数学必修二第二章  2.2.3-2.2.4【教案设计】

2.2.3 直线与平面平行的性质2.2.4 平面与平面平行的性质[学习目标] 1.能应用文字语言、符号语言、图形语言准确描述直线与平面平行,两平面平行的性质定理.2.能用两个性质定理,证明一些空间线面平行关系的简单问题.[知识链接]1.直线与平面平行的判定定理:平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行.2.平面与平面平行的判定定理:平面内的两条相交直线与另一个平面平行,则这两个平面平行.[预习导引]线面平行的性质定理面面平行的性质定理文字一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行如果两个平行平面同时和第三个平面相交,那么它们的交线平行符号Error!⇒a∥b Error!⇒a ∥b图形作用线面平行⇒线线平行面面平行⇒线线平行要点一 线面平行性质定理的应用例1 求证:如果一条直线和两个相交平面都平行,那么这条直线和它们的交线平行.解 已知直线a ,l ,平面α,β满足α∩β=l ,a ∥α,a ∥β.求证:a ∥l .证明:如图所示,过a 作平面γ交平面α于b ,∵a ∥α,∴a ∥b .同样过a 作平面δ交平面β于c ,∵a ∥β,∴a ∥c .则b ∥c .又∵b ⊄β,c ⊂β,∴b ∥β.又∵b ⊂α,α∩β=l ,∴b ∥l .又∵a ∥b ,∴a ∥l .规律方法 线∥面 线面平行的性质线面平行的判定线∥线.在空间平行关系中,交替使用线线平行、线面平行的判定定理与性质定理是解决此类问题的关键.跟踪演练1 若两个相交平面分别过两条平行直线,则它们的交线和这两条平行直线平行.解 已知:a ∥b ,a ⊂α,b ⊂β,α∩β=l .求证:a ∥b ∥l .证明:如图所示,∵a ∥b ,b ⊂β,a ⊄β,∴a ∥β,又a ⊂α,α∩β=l ,∴a ∥l ,又a ∥b ,∴a ∥b ∥l .要点二 面面平行性质定理的应用例2 已知AB 、CD 是夹在两个平行平面α、β之间的线段,M 、N 分别为AB 、CD 的中点,求证:MN ∥平面α.证明 (1)若AB 、CD 在同一平面内,则平面ABDC 与α、β的交线为BD 、AC .∵α∥β,∴AC ∥BD .又M 、N 为AB 、CD 的中点,∴MN ∥BD .又BD ⊂平面α,MN ⊄平面α,∴MN ∥平面α.(2)若AB、CD异面,如图,过A作AE∥CD交α于E,取AE中点P,连接MP、PN、BE、ED.∵AE∥CD.∴AE、CD确定平面AEDC.则平面AEDC与α、β的交线分别为ED、AC,∵α∥β,∴ED∥AC.又P、N分别为AE、CD的中点,∴PN∥ED,又ED⊂平面α,PN⊄平面α,∴PN∥平面α.同理可证MP∥BE,∴MP∥平面α,∵AB、CD异面,∴MP、NP相交.∴平面MPN∥平面α.又MN⊂平面MPN,∴MN∥平面α.规律方法 1.利用面面平行的性质定理证明线线平行的关键是把要证明的直线看作是平面的交线,往往需要有三个平面,即有两平面平行,再构造第三个面与两平行平面都相交.2.面面平行⇒线线平行,体现了转化思想与判定定理的交替使用,可实现线线、线面及面面平行的相互转化.跟踪演练2 如图,已知α∥β,点P是平面α、β外的一点(不在α与β之间),直线PB、PD 分别与α、β相交于点A、B和C、D.(1)求证:AC∥BD;(2)已知PA=4 cm,AB=5 cm,PC=3 cm,求PD的长.(1)证明 ∵PB∩PD=P,∴直线PB和PD确定一个平面γ,则α∩γ=AC,β∩γ=BD.又α∥β,∴AC∥BD.(2)解 由(1)得AC ∥BD ,∴PA AB =PC CD ,∴45=3CD ,∴CD =154(cm),∴PD =PC +CD =274(cm).要点三 平行关系的综合应用例3 如图所示,四边形ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH ,求证:GH ∥平面PAD .证明 如图所示,连接AC 交BD 于点O ,连接MO .∵ABCD 是平行四边形,∴O 是AC 的中点,又M 是PC 的中点,∴PA ∥MO ,而AP ⊄平面BDM ,OM ⊂平面BDM ,∴PA ∥平面BMD ,又∵PA ⊂平面PAHG ,平面PAHG ∩平面BMD =GH ,∴PA ∥GH .又PA ⊂平面PAD ,GH ⊄平面PAD ,∴GH ∥平面PAD .规律方法 1.本题证明线面平行,利用了线面平行的性质定理和判定定理进行转化,即线线平行⇒线面平行⇒线线平行⇒线面平行.2.在将线面平行转化为线线平行时,注意观察图形中是不是性质定理中符合条件的平面.跟踪演练3 如图,三棱锥ABCD 被一平面所截,截面为平行四边形EFGH .求证:CD ∥平面EFGH .证明 ∵四边形EFGH是平行四边形,∴EF∥GH.∵EF⊄平面BCD,GH⊂平面BCD,∴EF∥平面BCD.又∵EF⊂平面ACD,平面ACD∩平面BCD=CD,∴EF∥CD.又∵EF⊂平面EFGH,CD⊄平面EFGH,∴CD∥平面EFGH.1.已知:α∩β=b,a∥α,a∥β,则a与b的位置关系是( )A.a∥b B.a⊥bC.a,b相交但不垂直D.a,b异面答案 A解析 利用结论:若一直线与两个相交平面平行则此直线与交线平行.2.已知a,b表示直线,α、β、γ表示平面,下列推理正确的是( )A.α∩β=a,b⊂α⇒a∥bB.α∩β=a,a∥b⇒b∥α且b∥βC.a∥β,b∥β,a⊂α,b⊂α⇒α∥βD.α∥β,α∩γ=a,β∩γ=b⇒a∥b答案 D解析 由面面平行的性质定理知D正确.3.若平面α∥平面β,直线a⊂α,点B∈β,则在β内过点B的所有直线中( ) A.不一定存在与a平行的直线B.只有两条与a平行C.存在无数多条直线与a平行D.存在唯一一条直线与a平行答案 D解析 设点B 与直线a 确定一平面为γ,γ∩β=b ,∴a ∥b .4.已知直线l ∥平面α,l ⊂平面β,α∩β=m ,则直线l ,m 的位置关系是________.答案 平行解析 由直线与平面平行的性质定理知l ∥m .5.过两平行平面α,β外的点P 的两条直线AB 与CD ,它们分别交α于A ,C 两点,交β于B ,D 两点,若PA =6,AC =9,PB =8,则BD 的长为________.答案 12解析 两条直线AB 与CD 相交于P 点,所以可以确定一个平面,此平面与两平行平面α,β的交线AC ∥BD ,所以PA PB =AC BD,又PA =6,AC =9,PB =8,故BD =12.1.三种平行关系可以任意转化,其相互转化关系如图所示:2.证明线与线、线与面的平行关系的一般规律是:“由已知想性质,由求证想判定”,是分析和解决问题的一般思维方法,而作辅助线和辅助面往往是沟通已知和未知的有效手段.一、基础达标1.a ∥α,b ∥β,α∥β,则a 与b 位置关系是( )A .平行B .异面C .相交D .平行或异面或相交答案 D解析 如图(1),(2),(3)所示,a 与b 的关系分别是平行、异面或相交.2.已知直线l ∥平面α,P ∈α,那么过点P 且平行于l 的直线( )A.只有一条,不在平面α内B.只有一条,在平面α内C.有两条,不一定都在平面α内D.有无数条,不一定都在平面α内答案 B解析 如图所示,∵l∥平面α,P∈α,∴直线l与点P确定一个平面β,α∩β=m,∴P∈m,∴l∥m且m是唯一的.3.三棱锥SABC中,E、F分别是SB、SC上的点,且EF∥平面ABC,则( )A.EF与BC相交B.EF与BC平行C.EF与BC异面D.以上均有可能答案 B解析 由线面平行的性质定理可知EF∥BC.4. 如图,四棱锥PABCD中,M,N分别为AC,PC上的点,且MN∥平面PAD,则( )A.MN∥PDB.MN∥PAC.MN∥ADD.以上均有可能答案 B解析 ∵MN∥平面PAD,MN⊂平面PAC,平面PAD∩平面PAC=PA,∴MN∥PA.5.下列说法正确的是( )A.平行于同一条直线的两个平面平行B.平行于同一个平面的两个平面平行C.一个平面内有三个不共线的点到另一个平面的距离相等,则这两个平面平行D.若三直线a,b,c两两平行,则在过直线a的平面中,有且只有一个平面与b,c均平行答案 B解析 平行于同一条直线的两个平面可以平行也可以相交,所以A不正确;B正确;C不正确,因为没有指明这三个点在平面的同侧还是异侧;D不正确,因为过直线a的平面中,只要b,c不在其平面内,则与b,c均平行.6.过正方体ABCDA1B1C1D1的三个顶点A1、C1、B的平面与底面ABCD所在平面的交线为l,则l与A1C1的位置关系是________.答案 平行解析 由面面平行的性质定理可知第三平面与两平行平面的交线是平行的.7. 如图所示,在三棱柱ABCA1B1C1中,过A1,B,C1的平面与平面ABC的交线为l,试判断l与直线A1C1的位置关系,并给以证明.解 l∥A1C1.证明如下:在三棱柱ABCA1B1C1中,A1C1∥AC,A1C1⊄平面ABC,AC⊂平面ABC,∴A1C1∥平面ABC.又∵A1C1⊂平面A1BC1,且平面A1BC1∩平面ABC=l,∴A1C1∥l.二、能力提升8.过平面α外的直线l,作一组平面与α相交,如果所得的交线为a,b,c,…,则这些交线的位置关系为( )A.都平行B.都相交且一定交于同一点C.都相交但不一定交于同一点D.都平行或交于同一点答案 D解析 ∵l⊄α,∴l∥α或l与α相交.(1)若l ∥α,则由线面平行的性质定理可知l ∥a ,l ∥b ,l ∥c ,…,∴a ,b ,c ,…这些交线都平行.(2)若l 与α相交,不妨设l ∩α=A ,则A ∈l ,又由题意可知A ∈a ,A ∈b ,A ∈c ,…,∴这些交线交于同一点A .综上可知D 正确.9. 如图所示,直线a ∥平面α,A ∉α,并且a 和A 位于平面α两侧,点B ,C ∈a ,AB 、AC 分别交平面α于点E 、F ,若BC =4,CF =5,AF =3,则EF =________.答案 32解析 EF 可看成为直线a 与点A 确定的平面与平面α的交线,∵a ∥α,由线面平行的性质定理知,BC ∥EF ,由条件知AC =AF +CF =3+5=8.又EF BC =AF AC ,∴EF =AF ×BC AC =3×48=32.10. 如图,P 是△ABC 所在平面外一点,平面α∥平面ABC ,α分别交线段PA 、PB 、PC 于A ′、B ′、C ′,若PA ′∶AA ′=2∶3,则S △A ′B ′C ′S △ABC=________.答案 425解析 由平面α∥平面ABC ,得AB ∥A ′B ′,BC ∥B ′C ′,AC ∥A ′C ′,由等角定理得∠ABC =∠A ′B ′C ′,∠BCA =∠B ′C ′A ′,∠CAB =∠C ′A ′B ′,从而△ABC ∽△A ′B ′C ′,△PAB ∽△PA ′B ′,S △A ′B ′C ′S △ABC =(A ′B ′AB )2=(PA ′PA )2=425.11.如图,在正方体ABCD -A 1B 1C 1D 1中,点N 在BD 上,点M 在B 1C 上,且CM =DN .求证:MN ∥平面AA 1B 1B .证明 如图,作MP ∥BB 1交BC 于点P ,连接NP ,∵MP ∥BB 1,∴CM MB 1=CP PB.∵BD =B 1C ,DN =CM ,∴B 1M =BN ,∴CM MB 1=DN NB ,∴CP PB =DN NB,∴NP ∥CD ∥AB .∵NP ⊄平面AA 1B 1B ,AB ⊂平面AA 1B 1B ,∴NP ∥平面AA 1B 1B .∵MP ∥BB 1,MP ⊄平面AA 1B 1B ,BB 1⊂平面AA 1B 1B ,∴MP ∥平面AA 1B 1B .又∵MP ⊂平面MNP ,NP ⊂平面MNP ,MP ∩NP =P ,∴平面MNP ∥平面AA 1B 1B .∵MN ⊂平面MNP ,∴MN ∥平面AA 1B 1B .三、探究与创新12. 如图所示,在棱长为2的正方体ABCDA 1B 1C 1D 1中,A 1B 1的中点是P ,过点A 1作与截面PBC 1平行的截面,能否确定截面的形状?如果能,求出截面的面积.解 能.取AB ,C 1D 1的中点M ,N ,连接A 1M ,MC ,CN ,NA 1,∵A1N∥PC1且A1N=PC1,PC1∥MC,PC1=MC.∴四边形A1MCN是平行四边形,又∵A1N∥PC1,A1M∥BP,A1N∩A1M=A1,C1P∩PB=P,∴平面A1MCN∥平面PBC1,∴过点A1与截面PBC1平行的截面是平行四边形.连接MN,作A1H⊥MN于点H,∵A1M=A1N=5,MN=22,∴A1H=3.∴S△A1MN=12×22×3=6.故S▱A1MCN=2S△A1MN=26.13.如图所示,已知P是▱ABCD所在平面外一点,M、N分别是AB、PC的中点,平面PAD∩平面PBC=l.(1)求证:l∥BC;(2)MN与平面PAD是否平行?试证明你的结论.方法一 (1)证明 因为BC∥AD,BC⊄平面PAD,AD⊂平面PAD,所以BC∥平面PAD.又因为平面PBC∩平面PAD=l,所以BC∥l.(2)解 平行.取PD的中点E,连接AE,NE,可以证得NE∥AM且NE=AM.可知四边形AMNE为平行四边形.所以MN∥AE,又因为MN⊄平面APD,AE⊂平面APD,所以MN∥平面APD.方法二 (1)证明 由于AD∥BC,AD⊄平面PBC,BC⊂平面PBC,所以AD∥平面PBC.又因为平面PBC∩平面PAD=l,所以l∥AD,l∥BC.(2)解 平行.设Q是CD的中点,连接NQ,MQ,则MQ∥AD,NQ∥PD,而MQ∩NQ=Q,所以平面MNQ∥平面PAD.MN⊂平面MNQ,所以MN∥平面PAD.。

北师大版高中数学必修2第二章《解析几何初步》2.1《直线与直线的方程(5)》教案

北师大版高中数学必修2第二章《解析几何初步》2.1《直线与直线的方程(5)》教案

第五课时 直线的一般式方程一、教学目标1、知识与技能:(1)明确直线方程一般式的形式特征;(2)会把直线方程的一般式化为斜截式,进而求斜率和截距;(3)会把直线方程的点斜式、两点式化为一般式。

2、过程与方法:学会用分类讨论的思想方法解决问题。

3、情态与价值观:(1)认识事物之间的普遍联系与相互转化;(2)用联系的观点看问题。

二、教学重点、难点1、重点:直线方程的一般式。

2、难点:对直线方程一般式的理解与应用。

三、教学方法:探析交流法 四、教学过程问 题设计意图 师生活动1、(1)平面直角坐标系中的每一条直线都可以用一个关于yx ,的二元一次方程表示吗?(2)每一个关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0)都表示一条直线吗?使学生理解直线和二元一次方程的关系。

教师引导学生用分类讨论的方法思考探究问题(1),即直线存在斜率和直线不存在斜率时求出的直线方程是否都为二元一次方程。

对于问题(2),教师引导学生理解要判断某一个方程是否表示一条直线,只需看这个方程是否可以转化为直线方程的某种形式。

为此要对B 分类讨论,即当0≠B 时和当B=0时两种情形进行变形。

然后由学生去变形判断,得出结论:关于y x ,的二元一次方程,它都表示一条直线。

教师概括指出:由于任何一条直线都可以用一个关于y x ,的二元一次方程表示;同时,任何一个关于y x ,的二元一次方程都表示一条直线。

我们把关于关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0)叫做直线的一般式方程,简称一般式(general form ).2、直线方程的一般式与其他几种形式的直线方程相比,它有什么优点?使学生理解直线方程的一般式的与其他形 学生通过对比、讨论,发现直线方程的一般式与其他形式的直线方程的一个不同点是:问 题设计意图 师生活动式的不同点。

直线的一般式方程能够表示平面上的所有直线,而点斜式、斜截式、两点式方程,都不能表示与x 轴垂直的直线。

高一数学必修二教案(优秀3篇)

高一数学必修二教案(优秀3篇)

高一数学必修二教案(优秀3篇)作为一名无私奉献的老师,时常需要用到教案,教案是教学活动的总的组织纲领和行动方案。

那么问题来了,教案应该怎么写?以下是人见人爱的小编分享的高一数学必修二教案(优秀3篇),希望大家可以喜欢并分享出去。

高一必修二数学教案篇一一、教材分析函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。

函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。

在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。

这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。

本节《函数的概念》是函数这一章的起始课。

概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。

本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。

也为进一步学习函数这一章的其它内容提供了方法和依据。

二、重难点分析根据对上述对教材的分析及新课程标准的要求,确定函数的概念既是本节课的重点,也应该是本章的难点。

三、学情分析1、有利因素:一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。

2、不利因素:函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度。

四、目标分析1、理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。

2、通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。

3、通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(必修二)高中数学第二章教案2.1.1 平面二、教学重点、难点重点:1.平面的概念及表示;2.平面的基本性质,注意他们的条件、结论、作用、图形语言及符号语言.难点:平面基本性质的掌握与运用.观察并思考以下问题:1.长方体由哪些基本元素构成? 答:点、线、面.2.观察长方体的面,说说它的特点?答:是平的.指出:长方体的面给我们以平面的印象;生活中常见的如黑板、平整的操场、桌面、平静的湖面等等,都给我们以平面的印象.(二)探究新知1.平面含义指出:以上实物都给我们以平面的印象,几何里所说的平面,就是从这样的一些物体中抽象出来的。

平面是没有厚薄的,可以无限延伸,这是平面最基本的属性常见的桌面,黑板面,平静的水面等都是平面的局部形象;一个平面把空间分成两部分,一条直线把平面分成两部分.2.平面的画法及表示①平面的画法:和学生一起,老师边说边画,学生跟着画.在立体几何中,常用平行四边形表示平面,当平面水平放置时,通常把平行四45,且横边长画成邻边长的两倍;画两个平面相交时,当一个平边形的锐角画成0面的一部分被另一个平面遮住时,应把被遮住的部分画成虚线或不画.②平面的表示方法平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等.3.点与平面的关系及其表示方法指出:平面内有无数个点,平面可以看成点的集合.点A 在平面α内,记作:A α∈ 点B 在平面α外,记作:B α∉ 想一想:点和平面的位置关系有几种? 4.平面的基本性质思考:如果直线与平面有一个公共点P ,直线是否在平面内?如果直线与平面有两个公共点呢? 要让学生充分发表自己的见解.观察理解:把一把直尺边缘上的任意两点放在桌边,可以看到,直尺的整个边缘就落在了桌面上. 得出结论:公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 (教师引导学生阅读教材P42前几行相关内容,并加以解析) 符号表示为A lB l l A B ααα∈⎫⎪∈⎪⇒⊂⎬∈⎪⎪∈⎭公理1作用:判断直线是否在平面内师:生活中,我们看到三脚架可以牢固地支撑照相机或测量用的平板仪等等……引导学生归纳出公理2公理2:过不在一条直线上的三点,有且只有一个平面. 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α 使A ∈α、B ∈α、C ∈α 公理2作用:确定一个平面的依据. 补充3个推论:推论1:经过一条直线与直线外一点,有且只有一个平面. 推论2:经过两条平行直线,有且只有一个平面. 推论3:经过两条相交直线,有且只有一个平面.教师用正(长)方形模型,让学生理解两个平面的交线的含义. 引导学生阅读P42的思考题,从而归纳出公理3公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.符号表示为:P∈α∩β=>α∩β=L,且P∈L公理3作用:判定两个平面是否相交的依据2.1.2空间中直线与直线之间的位置关系二、教学重、难点:1.重点: (1)空间中两条直线的位置关系的判定;(2)理解并掌握公理4.2.难点: 理解异面直线的概念、画法.四、教学过程:(一)复习引入1. 前面我们已学习了平面的概念及其基本性质.回顾一下,怎样确定一个平面呢?(公理3及其三个推论)2 .在一个平面内,两直线有哪几种位置关系呢?在空间中呢?(二)新课推进1.空间中两条直线的位置关系以学生身边的实例引出空间两条直线位置关系问题共面直线相交:同一平面内,有且只有一个公共点平行:同一平面内,没有公共点异面直线:不同在任何一个平面内,没有公共点2.异面直线(1)概念:不同在任何一个平面内的两条直线.(2)判断:下列各图中直线l 与m 是异面直线吗?让学生直观判断异面直线,既加深了对概念的理解,又可引出异面直线的画法,还为下面的辨析作好铺垫.(3)画法:用一个或两个平面衬托(4)辨析①空间中没有公共点的两条直线是异面直线. ②分别在两个不同平面内的两条直线是异面直线. ③不同在某一平面内的两条直线是异面直线. ④平面内的一条直线和平面外的一条直线是异面直线. ⑤既不相交,又不平行的两条直线是异面直线 . (5)结合实例小结判断异面直线的关键① 例1:在正方体1111ABCD A B C D -中,哪些棱所在的直线与1BA 成异面直线?αlmαlmlmαβl mαβαlmlmαβαlmlαβm lmαβlmαβ②合作探究如右图所示是一个正方体的展开图,如果将它还原成正方体,那么AB 、CD 、EF 、GH 这四条线段所在的直线是异面直线的有几对?让学生根据异面直线的定义判断在几何体上的具有异面直线位置关系的两条直线.培养学生的空间想象能力,加深对异面直线概念的理解.③判断异面直线的关键:既不相交,又不平行. 3.公理4的教学⑴思考:在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线平行。

空间中,如果两条直线都与第三条直线平行,是否也有类似的规律? (2)观察:如图2.1.2-2,长方体1111ABCD A B C D -中, AA 1∥1BB , AA 1∥1DD ,那么1BB 与1DD 平行吗? 公理4:平行于同一条直线的两条直线互相平行。

符号表示为:设a 、b 、c 是三条直线//////a b a c b c ⎫⇒⎬⎭注:公理4公理4作用:判断空间两条直线平行的依据.⑶ 讲解例2,让学生掌握公理4的运用例2:如图在空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点. 求证:四边形EFGH 是平行四边形.简单介绍什么叫空间四边形,再分析如何证明)分析:如何判定一个四边形是平行四边形? 怎样证明EH ∥ FG ?证明关键是什么?ABDC GEHFC 1A 1提问:有没有其它证明方法呢?(EF ∥HG,且EF=HG ) 变式练习:(1)在例2中, 如果再加上条件AC BD =,那么四边形EFGH 是什么图形? (2) 把条件改为: E 、H 分别是边AB 、AD 的中点,F 、G 分别是边CB 、CD 上的点,且CG CFCD CB=则四边形EFGH 是什么图形?为什么? (四)小结(1)空间中两直线有何位置关系?(平行、相交、异面)(2)怎样判断两直线是异面直线?(判断关键:既不平行又不相交) (3)什么是平行公理?它的作用是什么?(平行同一条直线的两条直线互相平行, 作用:判断两直线平行它将空间平行问题转化为平面内的平行问题) (五)作业(1) P56习题2.1A 组第6题(2) 在正方体1111ABCD A B C D -中,与对角线1DB 成异面直线的棱共有几条?§2.1.3 空间中直线与平面§2.1.4 平面与平面之间的位置关系二、教学重点、难点重点:空间直线与平面、平面与平面之间的位置关系。

难点:用图形表达直线与平面、平面与平面的位置关系。

三、教学设计空间中直线与平面有多少种位置关系?(二)研探新知1.引导学生观察、思考身边的实物,从而直观、准确地归纳出直线与平面有三种位置关系:(1)直线在平面内——有无数个公共点(2)直线与平面相交——有且只有一个公共点(3)直线在平面平行——没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示a α a∩α=A a∥α例4: 加深了学生对这几种位置关系的理解.2.引导学生对生活实例以及对长方体模型的观察、思考,准确归纳出两个平面之间有两种位置关系:(1)两个平面平行 —— 没有公共点(2)两个平面相交 —— 有且只有一条公共直线用类比的方法,学生很快地理解与掌握了新内容,这两种位置关系用图形表示为α∥β α∩β= L指出:画两个相互平行的平面时,要注意使表示平面的两个平行四边形的对应边平行.2.2.1直线与平面平行的判定二、教学的重点与难点:教学重点:通过直观感知、操作确认,归纳出直线和平面平行的判定及其应用。

教学难点:直线和平面平行的判定定理的探索过程及其应用。

三、教学过程设计: (二)温故知新直线与平面平行的定义是什么?如果一条直线和一个平面没有公共点,那么我们就说这条直线与这个平面平行. 这里所说的直线是向两方无限延伸的,平面是向四周无限延展的. 那么,直线与平面的位置关系有几种? 直线与平面的位置关系有三种: ①直线在平面内——有无数个公共点; ②直线与平面相交——有且只有一个公共点;αβαβL③直线与平面平行——没有公共点.问:我们把直线与平面相交或直线与平面平行的情况统称为直线在平面外。

今后凡谈到直线在平面外,则有两种情况:直线与平面相交,直线与平面平行。

直线与平面的三种位置关系的图形语言、符号语言各是怎样的? (三)讲解新课直线a 在平面α外,是不是能够断定//a α呢? 直线与平面平行将如何判定呢?直线无限延伸,平面无限延展,如何保证直线与平面有没有公共点呢?请同学们将一本书平放在桌面上,翻动书的硬皮封面,封面边缘AB 所在直线与桌面所在平面具有什么样的位置关系?如图:直线a 与平面平行吗?若α内有直线b 与a 平行,那么α与a 的位置关系如何?是否可以保证直线a 与平面α平行?判定定理告诉我们直线与平面平行应具备几个条件? 符号语言表示:////a b a a b αβα⊄⎫⎪⊂⇒⎬⎪⎭这个定理可以简述为:“线线平行,则线面平行”,不过要注意,前面的线线有什么区别?例1 求证:空间四边形相邻两边中点的连线平行于经过另外两边所在的平面.已知:如图,空间四边形ABCD 中,E,F 分别是AB,AD 的中点. 求证:EF//平面BCD.证明:连接BD ,则AE=EB,AF=FB 所以 EF//BD因为 EF ⊄平面BCD,BD ⊂平面BCDαa由直线与平面平行的判定定理得 EF//平面BCD2.2.2 平面与平面平行的判定二、教学重、难点:1.重点:平面和平面平行的判定定理的探索过程及应用。

2.难点:平面和平面平行的判定定理的探究发现及其应用。

三、教学过程:(一)创设情景1.你知道建筑师是如何检验屋顶平面是与水平面平行的吗?2.三角板的一条边所在直线与地面平行,这个三角板所在平面与地面平行吗?三角板的两条边所在直线与地面平行,情况又如何呢?(二)温故知新线面平行的判定方法有几种?(1)定义法:若直线与平面无公共点,则直线与平面平行.(2)面面平行定义的推论:若两平面平行,则其中一个平面内的直线与另一平面平行.(3)判定定理:证明面外直线与面内直线平行. (三)探求新知平面与平面平行的定义是什么?如何判断两平面平行?如果两个平面平行,那么其中一个平面内的直线与另一个平面关系如何?为什么?若一个平面内所有直线都和另一个平面平行,那么这两个平面会平行吗? 由此将判定两个平面平行的问题可以转化为线面平行的问题来解决,可是最少需要几条线与面平行呢?平面β内有一条直线与平面α平行,α、β平行吗?请举例说明. 如右图,借助长方体模型,我们可以看出,平面''A ADD 中直线'//,A A ''平面DCC D ''A ADD ''但平面与平面DCC D 相交.若平面α内有两条直线a 、b 都平行于平面β,能保证α∥β吗?如上图,借助长方体模型,在平面''A ADD 内,有一条与'A A 平行的直线EF ,显然'A A 与EF 都平行与平面''DCC D ,但这两条平行直线所在的平面''A ADD 与平面''DCC D 相交. 如下图,平面β内有两条相交直线与平面α平行,情况如何?一般地,我们有如下的判定平面平行的定理:如果一个平面内的两条交直线与另一个平面平行,则这两个平面平行. 以上是两个平面平行的文字语言表述,你能写出定理的符号语言吗?若,,,//a b a b P ββαααβ⊂⊂⋂=,且a//,b//则.利用判定定理证明两个平面平行,必须具备哪些条件? (1)由两条直线平行与另一个平面,(2)这两条直线必须相交. 从转化的角度认识该定理就是:线线相交,线面相交⇒面面平行. (四)拓展应用例1. 已知正方体ABCD-1111A B C D ,求证:平面11AB D //平面1C BD . 证明:因为ABCD-1111A B C D 为正方体, 所以11,AB A B = 1111//D C A B 1111D C A B =, 又11//AB A B ,11,AB A B =所以11//D C AB ,11D C AB =,所以11D C BA 为平行四边形.所以11,C B C BD ⊂平面 11//D A C B . 又11D A C BD ⊄平面,11C B C BD ⊂平面,由直线与平面的判定定理得11//D A C BD 平面,同理111//D B C BD 平面,又1111D A D B D ⋂=,所以平面111//AB D C BD 平面.拓展1.已知正方体ABCD-A 1B 1C 1D 1,M 、N 分别为A 1A 、CC 1的中点 .求证:平面NBD ∥平面MB 1D 1.拓展2.已知正方体ABCD-A 1B 1C 1D 1,P 、Q 、R 分别为A 1A 、AB 、AD 的中点 .求证:平面PQR ∥平面CB 1D 1.例2.点P 是△ABC 所在平面外一点,M 、N 、G 分别是△PBC 、△PCA 、△PAB 的重心. 求证:平面MNG//平面ABC分析:连结PM,PN,PG 则PM:PD=PN:PE=PG:PF 故MN ∥DE,MG ∥EF2.2.3平面与平面平行的判定二、教学重点、难点、疑点及解决方法1.教学重点:掌握两个平面平行的性质及其应用;掌握两平行平面间的距离的概念,会求两个平行平面间的距离.2.教学难点:掌握两个平行平面的性质及其应用. 三 、教学设计(一)复习两个平面的位置关系及两个平面平行的判定 两个平面的位置关系有哪几种? 两个平面平行的判定方法有哪几种? (二)两个平面平行的性质根据两个平面平行直线和平面平行的定义可知:两个平面平行,其中一个平面内的直线必平行于另一个平面.因此,在解决实际问题时,常常把面面平行转化为线面平行或线线平行.这个结论可作为两个平面平行的性质1://,a αβα⊂ 则//a β.1.两个平面平行的性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行.已知:α∥β,γ∩α=a ,γ∩β=b . 求证:a ∥b .直接证法: ∵α∥β,∴α与β没有公共点.又,a b γγ⊂⊂∴a ∥b这个结论可作为性质2:若α∥β,α∩γ=a ,β∩γ=b ,则a ∥b . 2.例题例2 一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.已知:α∥β,,l l αα⊥⋂=A . 求证:l β⊥.证明直线与平面垂直的方法有几种?方法一,证明直线与平面内的任何一条直线都垂直;方法二,证明直线与平面内两条相交的直线垂直;方法三,证明直线的一条平行线与平面垂直.我们可以试着用第一种方法来证明.证明:在平面β内任取一条直线b,平面γ是经过点A与直线b的平面,设γ∩α=a.因为直线b是平面β内的任意一条直线,所以l⊥β.这个例题的结论可与定理“一个平面垂直于两条平行直线中的一条直线,它也垂直于另一条直线.”联系起来记忆,它也可作为性质3:若α∥β,l⊥α,则l ⊥β.3.两个平行平面的公垂线、公垂线段和距离与两个平行平面α,β同时垂直的直线L叫做这两个平行平面α,β的公垂线,它夹在这两个平行平面间的部分叫做这两个平行平面的公垂线段.如图α∥β.如果AA'、BB'都是它们的公垂线段,那么AA'∥BB',根据两个平面平行的性质定理有A'B'∥AB,所以四边形ABB'A'是平行四边形,AA'=BB'.由此,我们得到,两个平行平面的公垂线段都相等,公垂线段的长度具有唯一性.与两平行线间的距离定义相类似,我们把公垂线段的长度叫做两个平行平面的距离.两个平行平面间距离实质上也是点到面或两点间的距离,求值最后也是通过解三角形求得练习.夹在两个平行平面间的平行线段相等.已知:如图1—116,α∥β,AB∥CD,A∈α,C∈α,B∈β,D∈β.求证:AB=CD.证明:∵AB∥CD,∴过AB、CD的平面γ与平面α和β分别交于AC'和BD.∵α∥β,∴BD∥AC.∴四边形ABCD是平行四边形,∴AB=CD.这个练习的结论可作为性质4:夹在两个平行平面间的平行线段相等.2.2.4平面与平面平行的性质二、教学重、难点:1.重点:两个平面平行的性质定理的探索过程及应用.2.难点:两个平面平行的性质定理的探究发现及其应用.三、教学过程:(一)温故知新1. 两个平面的位置关系?2. 面面平行的判定方法:(1)定义法:若两平面无公共点,则两平面平行.(2)判定定理:如果一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面平行.(二)创设情景两个平面平行,那么其中一个平面内的直线与另一平面有什么样的关系?通过分析可以发现,若平面α和平面β平行,则两面无公共点,那么就意味着平面α内任一直线a 和平面β也无公共点,即直线a 和平面β平行.用语言表述就是:如果两个平面平行,那么其中一个平面内的直线平行与另一个平面.用式子可表示为://,//a a ββαα⊂⇒。

相关文档
最新文档