高中数学必修2第二章(免费)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章点、直线、平面之间的位置关系
A组
一、选择题
1.设α,β为两个不同的平面,l,m为两条不同的直线,且l⊂α,m⊂β,有如下的两个命题:①若 α∥β,则l∥m;②若l⊥m,则 α⊥β.那么().
A.①是真命题,②是假命题B.①是假命题,②是真命题
C.①②都是真命题D.①②都是假命题
2.如图,ABCD-A1B1C1D1为正方体,下面结论错误
..的是().
A.BD∥平面CB1D1
B.AC1⊥BD
C.AC1⊥平面CB1D1
D.异面直线AD与CB1角为60°
(第2题) 3.关于直线m,n与平面 α,β,有下列四个命题:
①m∥α,n∥β 且 α∥β,则m∥n;②m⊥α,n⊥β 且 α⊥β,则m⊥n;
③m⊥α,n∥β 且 α∥β,则m⊥n;④m∥α,n⊥β 且 α⊥β,则m∥n.
其中真命题的序号是().
A.①②B.③④C.①④D.②③
4.给出下列四个命题:
①垂直于同一直线的两条直线互相平行
②垂直于同一平面的两个平面互相平行
③若直线l1,l2与同一平面所成的角相等,则l1,l2互相平行
④若直线l1,l2是异面直线,则与l1,l2都相交的两条直线是异面直线
其中假.命题的个数是().
A.1 B.2 C.3 D.4
5.下列命题中正确的个数是().
①若直线l上有无数个点不在平面 α 内,则l∥α
②若直线l与平面 α 平行,则l与平面 α 内的任意一条直线都平行
③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行
④若直线l与平面 α 平行,则l与平面 α 内的任意一条直线都没有公共点
A.0个B.1个C.2个D.3个
6.两直线l1与l2异面,过l1作平面与l2平行,这样的平面().
A.不存在B.有唯一的一个C.有无数个D.只有两个
7.把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,直线BD和平面ABC所成的角的大小为().
A.90°B.60°C.45°D.30°
8.下列说法中不正确的
....是().
A.空间中,一组对边平行且相等的四边形一定是平行四边形
B.同一平面的两条垂线一定共面
C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内D.过一条直线有且只有一个平面与已知平面垂直
9.给出以下四个命题:
①如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行
②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面
③如果两条直线都平行于一个平面,那么这两条直线互相平行
④如果一个平面经过另一个平面的一条垂线,那么些两个平面互相垂直
其中真命题的个数是().
A.4 B.3 C.2 D.1
10.异面直线a,b所成的角60°,直线a⊥c,则直线b与c所成的角的范围为().A.[30°,90°]B.[60°,90°]C.[30°,60°]D.[30°,120°]
二、填空题
11.已知三棱锥P-ABC的三条侧棱P A,PB,PC两两相互垂直,且三个侧面的面积分别为S1,S2,S3,则这个三棱锥的体积为.
12.P是△ABC所在平面 α 外一点,过P作PO⊥平面 α,垂足是O,连P A,PB,PC.
(1)若P A=PB=PC,则O为△ABC的心;
(2)P A ⊥PB ,P A ⊥PC ,PC ⊥PB ,则O 是△ABC 的 心;
(3)若点P 到三边AB ,BC ,CA 的距离相等,则O 是△ABC 的 心; (4)若P A =PB =PC ,∠C =90º,则O 是AB 边的 点; (5)若P A =PB =PC ,AB =AC ,则点O 在△ABC 的 线上. 13.如图,在正三角形ABC 中,D ,E ,F 分别为各边的中点,G ,H ,I ,J 分别为AF ,AD ,BE ,DE 的中点,将△ABC 沿DE ,EF ,DF 折成三棱锥以后,GH 与IJ 所成角的度数为 .
14.直线l 与平面 α 所成角为30°,l ∩α=A ,直线m ∈α,则m 与l 所成角的取值范围 是 .
15.棱长为1的正四面体内有一点P ,由点P 向各面引垂线,垂线段长度分别为d 1,d 2,d 3,d 4,则d 1+d 2+d 3+d 4的值为 .
16.直二面角 α-l -β 的棱上有一点A ,在平面 α,β 内各有一条射线AB ,AC 与l 成45°,AB ⊂α,AC ⊂β,则∠BAC = .
三、解答题
17.在四面体ABCD 中,△ABC 与△DBC 都是边长为4的正三角形. (1)求证:BC ⊥AD ;
(2)若点D 到平面ABC 的距离等于3,求二面角A -BC -D 的正弦值;
(3)设二面角A -BC -D 的大小为 θ,猜想 θ 为何值时,四面体A -BCD 的体积最大.(不要求证明)
J
(第13题)
(第17题)
18. 如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,BB 1=BC =1,E 为D 1C 1的中点,连结ED ,EC ,EB 和DB .
(1)求证:平面EDB ⊥平面EBC ; (2)求二面角E -DB -C 的正切值.
19*.如图,在底面是直角梯形的四棱锥S-ABCD 中,AD ∥BC ,∠ABC =90°, SA ⊥面ABCD ,SA =AB =BC =1,AD =
2
1. (1)求四棱锥S —ABCD 的体积;
(2)求面SCD 与面SBA 所成的二面角的正切值. (提示:延长 BA ,CD 相交于点 E ,则直线 SE 是 所求二面角的棱.)
(第19题)
(第18题)