平面图形的镶嵌课件公开课
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0
5
10
15
20
用形状、大小 完全相同的一 种或几种平面 图形进行拼接, 彼此之间不留 空隙、不重叠 地铺成一片, 就是平面图形 的镶嵌.(也 叫平面图形的 密铺)
探究一 哪些正多边形可以单独镶嵌
每个内角和度数
正三角形
正四边形
能否镶嵌
正五边形
正六边形
能够单独镶嵌的正多边形只有正三角形、正方形和正六边形。 用一种正多边形能进行平面图形铺设的条件是:内角整除360度
• 平面图形 的镶嵌
• 图案设计
hanks
0
5
10
15
20
剪出一些形状、大小完全相同 的任意三角形纸板,拼拼看,它们 能否镶嵌成平面图案?
剪出一些形状、大小完全相同 的任意四边形纸板,拼拼看,它们 能否镶嵌成平面图案?
D
4
A1
3C 2B
整个图案可以由一个基本图形通过平移、旋转 或对称得到。
探究二 哪两种正多边形可以组合镶嵌
镶嵌组合 正三边形 正四边形 正五边形 正六边形
….
能否组 合镶嵌? 正三边形
正四边形
正五边形
正六边形
……
平面镶嵌的条件
满足边长相等和每个公共顶点处几个内角 的和为360度,两个正多边形就进进行镶嵌。
1、边长相等。 2、每个公共顶点处几个内角的 和为360°。
用同一种大小相等的正多边形密铺成一个“环”, 我们称之为环形密铺
小结
Βιβλιοθήκη Baidu
• 从实际生 活出发
5
10
15
20
用形状、大小 完全相同的一 种或几种平面 图形进行拼接, 彼此之间不留 空隙、不重叠 地铺成一片, 就是平面图形 的镶嵌.(也 叫平面图形的 密铺)
探究一 哪些正多边形可以单独镶嵌
每个内角和度数
正三角形
正四边形
能否镶嵌
正五边形
正六边形
能够单独镶嵌的正多边形只有正三角形、正方形和正六边形。 用一种正多边形能进行平面图形铺设的条件是:内角整除360度
• 平面图形 的镶嵌
• 图案设计
hanks
0
5
10
15
20
剪出一些形状、大小完全相同 的任意三角形纸板,拼拼看,它们 能否镶嵌成平面图案?
剪出一些形状、大小完全相同 的任意四边形纸板,拼拼看,它们 能否镶嵌成平面图案?
D
4
A1
3C 2B
整个图案可以由一个基本图形通过平移、旋转 或对称得到。
探究二 哪两种正多边形可以组合镶嵌
镶嵌组合 正三边形 正四边形 正五边形 正六边形
….
能否组 合镶嵌? 正三边形
正四边形
正五边形
正六边形
……
平面镶嵌的条件
满足边长相等和每个公共顶点处几个内角 的和为360度,两个正多边形就进进行镶嵌。
1、边长相等。 2、每个公共顶点处几个内角的 和为360°。
用同一种大小相等的正多边形密铺成一个“环”, 我们称之为环形密铺
小结
Βιβλιοθήκη Baidu
• 从实际生 活出发