高中物理竞赛教程(超详细)讲运动学

合集下载

高中物理竞赛讲座2(运动学word)

高中物理竞赛讲座2(运动学word)

第二章 运动学研究物体的运动规律。

具体地说就是寻找:1()x f t =(位移公式)、2()v f t =(速度公式)、3()a f t =(加速度公式),这个关系可以用函数表示,也可以图像表示。

搞清了这个关系也就搞清了物体的运动规律。

第一讲 运动的基本概念一、x 、v 、a 的关系 1、(微分)()()()x f t v f t a f t =→=→=tan x t dtθ==∆v∆22()tan d d x dt v k x dt dt θ=====2、(积分)3210ttx v t vdt -∆=∆=∑⎰0ttv a t adt -∆=∆=∑⎰图象的斜率(微分)和面积(积分)a-t 图线和t 轴围成的面积数值上等于Δvv-t 图线和t 轴围成的面积数值上等于Δx x-t 图线的斜率数值上等于速度 v-t 图线的斜率数值上等于加速度 学运动必学微积分例题:已知某质点直线运动,运动学方程42+=t x ,求t 时刻瞬时速度和加速度3、平均加速度练习:已知某质点直线运动,运动学方程3x t =,求t 时刻瞬时速度和加速度例题:有一变速直线运动,位移公式为sin x A t ω=,A 和ω为定值。

求t 时刻瞬时速度和加速度提示:数学知识 sinα+sinβ=2sinα+β2cosα−β20sin lim1x xx→=cosα−cosβ=−2sinα+β2sin α−β21、t ()t t →+∆内的平均速度3、平均加速度附:常用导数1、1()n n x nx -'=2、(sin )'cos x x = (cos )sin x x '=-21(tan )'cos x x =21(cot )'sin x x=- 3、()x xe e '= ()ln x x a a a '=4、1(log )ln xa x a '= 1(ln )x x '=二、研究办法 1、矢量法质点由A 点运动到B 点21r r r ∆=- (矢量的运算,体现在力的合成和分解,运动合成和分解) rv t∆=∆ (平均速度、割线) 0t ∆→时,v v =(瞬时速度、切线) B AV V v a t t -∆==∆∆ (平均加速度) 0t ∆→时,a a = (瞬时加速度)利用数学上的向量可以研究物体的运动规律 2、直角坐标法 3、自然坐标法 4、极坐标法 5、球坐标法例如:轨迹方程就是在坐标系中质点位置坐标的函数关系 平抛的轨迹方程 1、直角坐标系中参数方程: x =V 0t y =12gt 2 轨迹方程: y =−gx 22V 022、极坐标系中 参数方程r =0tan 2gt v θ=轨迹方程r =匀速圆周运动1、直角坐标系中参数方程: x =Rcos(ωt) y =Rsin(ωt) 轨迹方程: x 2+y 2=R 2 2、极坐标系中参数方程 r R = t θω= 轨迹方程 r R =第二讲 抛体运动和直角坐标系将物体以一定的初速度抛出去,在运动过程中只受恒定不变的重力的运动,叫抛体运动。

高中物理奥赛必看讲义——运动学

高中物理奥赛必看讲义——运动学

运动学第一讲 基本知识介绍一.一. 基本概念1. 质点质点2. 参照物参照物3. 参照系——固连于参照物上的坐标系(解题时要记住所选的是参照系,而不仅是一个点)是一个点)4.绝对运动,相对运动,牵连运动:v 绝=v 相+v 牵二.运动的描述1.位置:r=r(t) 2.位移:Δr=r(t+Δt)-r(t) 3.速度:v=lim Δt→0Δr/Δt.在大学教材中表述为:v =d r/dt, 表示r 对t 求导数求导数 4.加速度a =a n +a τ。

a n :法向加速度,速度方向的改变率,且a n =v 2/ρ,ρ叫做曲率半径,(这是中学物理竞赛求曲率半径的唯一方法)a τ: 切向加速度,速度大小的改变率。

a =d v /dt 5.以上是运动学中的基本物理量,以上是运动学中的基本物理量,也就是位移、也就是位移、也就是位移、位移的一阶导数、位移的一阶导数、位移的一阶导数、位移的二阶导数。

位移的二阶导数。

可是三阶导数为什么不是呢?因为牛顿第二定律是F=ma,即直接和加速度相联系。

(a 对t 的导数叫“急动度”。

)6.由于以上三个量均为矢量,所以在运算中用分量表示一般比较好.由于以上三个量均为矢量,所以在运算中用分量表示一般比较好三.等加速运动v(t)=v 0+at r(t)=r 0+v 0t+1t+1//2 at 2 一道经典的物理问题:二次世界大战中物理学家曾经研究,当大炮的位置固定,以同一速度v 0沿各种角度发射,问:当飞机在哪一区域飞行之外时,不会有危险?(注:结论是这一区域为一抛物线,此抛物线是所有炮弹抛物线的包络线。

此抛物线为在大炮上方h=v 2/2g 处,以v 0平抛物体的轨迹。

) 练习题:一盏灯挂在离地板高l 2,天花板下面l 1处。

灯泡爆裂,所有碎片以同样大小的速度v 朝各个方向飞去。

求碎片落到地板上的半径(认为碎片和天花板的碰撞是完全弹性的,(认为碎片和天花板的碰撞是完全弹性的,即切即切向速度不变,法向速度反向;碎片和地板的碰撞是完全非弹性的,即碰后静止。

高中物理竞赛教程(超详细修订版)_第七讲__运动定律精品文档24页

高中物理竞赛教程(超详细修订版)_第七讲__运动定律精品文档24页

第三讲运动定律§3.1牛顿定律3.1.1、牛顿第一定律任何物体都保持静止或匀速直线运动状态,直到其他物体所作用的力迫使它改变这种状态为止。

这是牛顿第一定律的内容。

牛顿第一定律是质点动力学的出发点。

物体保持静止状态或匀速直线运动状态的性质称为惯性。

牛顿第一定律又称为惯性定律,惯性定律是物体的固有属性,可用质量来量度。

无论是静止还是匀速直线运动状态,其速度都是不变的。

速度不变的运动也就是没有加速度的运动,所以物体如果不受到其他物体的作用,就作没有加速度的运动,牛顿第一定律指出了力是改变物体运动状态的原因。

牛顿第一定律只在一类特殊的参照系中成立,此参照系称为惯性参照系。

简称惯性系。

相对某一惯性系作匀速运动的参照系必定也是惯性系,牛顿第一定律不成立的参照系称为非惯性参照系,简称非惯性系,非惯性系相对惯性系必作变速运动,地球是较好的惯性系,太阳是精度更高的惯性系。

3.1.2.牛顿第二定律(1)定律内容:物体的加速度跟所受外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同(2)数学表达式:maFmFa= =∑∑或(3)理解要点①牛顿第二定律不仅揭示了物体的加速度跟它所受的合外力之间的数量关系,而且揭示了加速度方向总与合外力的方向一致的矢量关系。

在应用该定律处理物体在二维平面或三维空间中运动的问题,往往需要选择适当的坐标系,把它写成分量形式②牛顿第二定律反映了力的瞬时作用规律。

物体的加速度与它所受的合外力是时刻对应的,即物体所受合外力不论在大小还是方向上一旦发生变化,其加速度也一定同时发生相应的变化。

③当物体受到几个力的作用时,每个力各自独立地使物体产生一个加速度,就如同其他力不存在—样;物体受几个力共同作用时,产生的加速度等于每个力单独作用时产生的加速度的矢量和,如图3-1-1示。

这个结论称为力的独立作用原理。

④牛顿第二定律阐述了物体的质量是惯性大小的量度,公式∑=aFm/反映了对同—物体,其所受合外跟它的加速度之比值是个常数,而对不同物体其比值不同,这个比值的大小就是物体的质量,它是物体惯性大小量度,当合外力不变时,物体加速度跟其质量成反比,即质量越大,物体加速度越小,运动状态越难改变,惯性也就越大。

高中物理竞赛 第一章质点运动学第1讲

高中物理竞赛 第一章质点运动学第1讲
2
二、参考系和坐标系
参照物(参考物):被选作运动依据的物体
参照空间(参考空间):与参照物固连的三维空间 坐标系:固定在参照空间的一组坐标轴和用来确定物体位置的 一组坐标(量化了的参照空间) 参照系(参考系):参照空间(这里通常指量化了的参照空间, 即坐标系)和与之固连的钟的组合,简单地说,就是坐标系+
都是随位置变化的
ˆr e
5
3)、自然坐标系
s
O

e P en
Q e en
e 和e n
的方向是随 时间变化
在物体运动的轨道曲线上任取一点为坐标原点, 以“弯曲轨道”作为坐标轴,规定某一侧为ห้องสมุดไป่ตู้。
任意时刻质点的坐标值即为轨道的长度s (自然坐标)
方向描述
e en
9
2.位移 质点在一段时间内位置的改变~位移 z S t时刻:质点在a 点 r a a t+t时刻:质点在b 点 rb 经t时间质点的位置变化: r 位移 a r r r b a 注:
.
r
1)位移 r 矢量 方向:rb ra
x 大小:r r 并且:dr dr r S 但:dr = dS
3、速度(平均速度,瞬时速度,速率) z r a 平均速度: v 速度: ——瞬时速度
t
.
S
r
v lim r dr t 0 t dt
r (t )
r rb
y
.
b
r
0
3)位移可用坐标表示: r rb ra r rb ra ( x bi yb j zbk ) ( xai ya j zak ) xi y j zk r

高中物理竞赛辅导讲义 第 篇 运动学

高中物理竞赛辅导讲义 第 篇 运动学

高中物理竞赛辅导讲义第2篇 运动学【知识梳理】一、匀变速直线运动二、运动的合成与分解运动的合成包括位移、速度和加速度的合成,遵从矢量合成法则(平行四边形法则或三角形法则)。

我们一般把质点对地或对地面上静止物体的运动称为绝对运动,质点对运动参考照系的运动称为相对运动,而运动参照系对地的运动称为牵连运动。

以速度为例,这三种速度分别称为绝对速度、相对速度、牵连速度,则v 绝对 = v 相对 + v 牵连或 v 甲对乙 = v 甲对丙 + v 丙对乙位移、加速度之间也存在类似关系。

三、物系相关速度正确分析物体(质点)的运动,除可以用运动的合成知识外,还可充分利用物系相关速度之间的关系简捷求解。

以下三个结论在实际解题中十分有用。

1.刚性杆、绳上各点在同一时刻具有相同的沿杆、绳的分速度(速度投影定理)。

2.接触物系在接触面法线方向的分速度相同,切向分速度在无相对滑动时亦相同。

3.线状交叉物系交叉点的速度,是相交物系双方运动速度沿双方切向分解后,在对方切向运动分速度的矢量和。

四、抛体运动: 1.平抛运动。

2.斜抛运动。

五、圆周运动: 1.匀速圆周运动。

2.变速圆周运动:线速度的大小在不断改变的圆周运动叫变速圆周运动,它的角速度方向不变,大小在不断改变,它的加速度为a = a n + a τ,其中a n 为法向加速度,大小为2n v a r =,方向指向圆心;a τ为切向加速度,大小为0lim t v a tτ∆→∆=∆,方向指向切线方向。

六、一般的曲线运动一般的曲线运动可以分为很多小段,每小段都可以看做圆周运动的一部分。

在分析质点经过曲线上某位置的运动时,可以采用圆周运动的分析方法来处理。

对于一般的曲线运动,向心加速度为2n v a ρ=,ρ为点所在曲线处的曲率半径。

七、刚体的平动和绕定轴的转动1.刚体所谓刚体指在外力作用下,大小、形状等都保持不变的物体或组成物体的所有质点之间的距离始终保持不变。

刚体的基本运动包括刚体的平动和刚体绕定轴的转动。

高中物理竞赛辅导运动学

高中物理竞赛辅导运动学

高中物理竞赛辅导运动学§2.1质点运动学的差不多概念2.1.1、参照物和参照系要准确确定质点的位置及其变化,必须事先选取另一个假定不动的物体作参照,那个被选的物体叫做参照物。

为了定量地描述物体的运动需要在参照物上建立坐标,构成坐标系。

通常选用直角坐标系O –xyz ,有时也采纳极坐标系。

平面直角坐标系一样有三种,一种是两轴沿水平竖直方向,另一是两轴沿平行与垂直斜面方向,第三是两轴沿曲线的切线和法线方向〔我们常把这种坐标称为自然坐标〕。

2.1.2、位矢 位移和路程在直角坐标系中,质点的位置可用三个坐标x ,y ,z 表示,当质点运动时,它的坐标是时刻的函数 x=X 〔t 〕 y=Y 〔t 〕 z=Z 〔t 〕 这确实是质点的运动方程。

质点的位置也可用从坐标原点O 指向质点P 〔x 、y 、z 〕的有向线段r来表示。

如图2-1-1所示, r 也是描述质点在空间中位置的物理量。

r 的长度为质点到原点之间的距离,r 的方向由余弦αcos 、βcos 、γcos 决定,它们之间满足1cos cos cos 222=++γβα当质点运动时,其位矢的大小和方向也随时刻而变,可表示为r =r (t)。

在直角坐标系中,设分不为i 、j 、k 沿方向x 、y 、z 和单位矢量,那么r 可表示为k t z j t y i t x t r )()()()(++=位矢r 与坐标原点的选择有关。

研究质点的运动,不仅要明白它的位置,还必须明白它的位置的变化情形,假如质点从空间一点),,(1111z y x P运动到另一点),,(2222z y x P ,相应的位矢由r 1变到r 2,其改变量为r ∆k z z j y y i x x r r r )()()(12121212-+-+-=-=∆称为质点的位移,如图2-1-2所示,位移是矢量,它是从初始位置指向终止位置的一个有向线段。

它描写在一定时刻内质点位置变动的大小和方向。

高中物理竞赛辅导资料第一章运动学

高中物理竞赛辅导资料第一章运动学
2
x t 图关键要将一
些特殊点的位置先求出来,如 t 1 、2、3、4、5、6、7、8s 末各时刻的位移,再将这些点用平滑的曲线 连接起来。如下图所示。 例 2 用边长为 l 的正方形薄板做成一个小屋,置于地面上,并且屋顶面相互垂直,如图所示。已知 水滴沿屋顶从 A 点流到 B 点所需的时间为从 B 点滴落地面所需时间的 2 倍。假定水滴从 A 点以初速度零开 始滴下,试求水滴从 A 流到地面所需的时间。
r xi yj zk .
2.运动方程 质点在空间运动时,位矢随时间变化的规律即为运动方程,记为:
r r (t ) x(t )i y(t ) j z(t )k .
(1)运动方程中包含了质点运动的全部信息。或者说知道了也就可以解决质点的运动问题。 (2)运动方程的分量式 x=x(t)、y=y(t)、z=z(t),是运动方程的分量式。 (3)轨道(轨迹)方程 在运动方程的分量式中,消去时间 t 得 f(x, y, z)=0,此方程称为质点的轨迹方程;轨迹是直线的称为 直线运动;轨迹是曲线的称为曲线运动。 3.位移 t 时刻,质点在 P1 点,位矢为 r1 ;t+Δ t 时刻,质点在 P2 点,位矢为 r2 ,则在Δ t 这段时间内位矢的 增量 r r2 r1 称为质点在Δ t 时间内的位移。 4. 路程Δ S 与位移大小 | r | 的区别:路程是Δ t 内走过的轨道的长度,而位移大小是质点实际移动的直 线距离,位移和位矢均为向量,但路程为标量,路程用Δ S 表示。即使在直线运动中,位移和路程也是截 然不同的两个概念。 三、速度
解析:由图中的阴影三角形 BDE 可得
4 / 70
x BE ED
2l l 2
2 1 l 2

高中物理竞赛辅导教程(新大纲版)

高中物理竞赛辅导教程(新大纲版)

高中物理竞赛辅导教程(新大纲版)一、力学部分1. 运动学- 基本概念:位移、速度、加速度。

位移是矢量,表示位置的变化;速度是描述物体运动快慢和方向的物理量,加速度则反映速度变化的快慢。

- 匀变速直线运动公式:v = v_0+at,x=v_0t+(1)/(2)at^2,v^2-v_{0}^2 = 2ax。

这些公式在解决直线运动问题时非常关键,要注意各物理量的正负取值。

- 相对运动:要理解相对速度的概念,例如v_{AB}=v_{A}-v_{B},在处理多个物体相对运动的问题时很有用。

- 曲线运动:重点掌握平抛运动和圆周运动。

平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动;圆周运动中要理解向心加速度a =frac{v^2}{r}=ω^2r,向心力F = ma的来源和计算。

2. 牛顿运动定律- 牛顿第二定律F = ma是核心。

要学会对物体进行受力分析,正确画出受力图。

- 整体法和隔离法:在处理多个物体组成的系统时,整体法可以简化问题,求出系统的加速度;隔离法用于分析系统内单个物体的受力情况。

- 超重和失重:当物体具有向上的加速度时超重,具有向下的加速度时失重,加速度为g时完全失重。

3. 动量与能量- 动量定理I=Δ p,其中I是合外力的冲量,Δ p是动量的变化量。

- 动量守恒定律:对于一个系统,如果合外力为零,则系统的总动量守恒。

在碰撞、爆炸等问题中经常用到。

- 动能定理W=Δ E_{k},要明确功是能量转化的量度。

- 机械能守恒定律:在只有重力或弹力做功的系统内,机械能守恒。

要熟练掌握机械能守恒定律的表达式E_{k1}+E_{p1}=E_{k2}+E_{p2}。

二、电磁学部分1. 电场- 库仑定律F = kfrac{q_{1}q_{2}}{r^2},描述真空中两个静止点电荷之间的相互作用力。

- 电场强度E=(F)/(q),电场线可以形象地描述电场的分布情况。

- 电势、电势差:U_{AB}=φ_{A}-φ_{B},电场力做功与电势差的关系W = qU。

(珍藏版)全套物理竞赛 物理讲解 PPT

(珍藏版)全套物理竞赛 物理讲解 PPT
(4)逆推法
•把运动过程的“末态”作为“初态”,一般用于末态已知的 情况。如匀减速直线运动至静止的问题,可以逆推为初速度 为零的匀加速直线运动。
(5)比例法 •对于初速度为零的匀变速直线运动或匀减速直线运动到静止 的运动,可利用匀变速直线运动的五个二级结论,用比例法 求解。
(6)图像法 专题一:图像方法
t1 : t2 : : tn 1: 2 : : n
⑤第1m、第2m、…第nm所用时间之比:
t : t : : tN 1: ( 2 1) : : ( n n 1)
5.匀变速直线运动解题方法及典型例题 (1)一般公式法
•利用匀变速直线运动的三个规律进行求解,需要注意的有以 下三点:
①匀变速直线运动的规律有三个公式,但只有两个独立方程, 是典型的“知三求二”的问题,即要找出三个已知条件,才 能求出两个未知量;
②受力分析,牛顿运动定律是基础。
③注意矢量的方向性,一般以初速度方向为正方向,其余矢 量与正方向相同者为正,与正方向相反者取负;
(2)平均速度法 例3.做匀加速直线运动的物体途经A、B、C三点,已知AB=BC, AB段的平均速度为3m/s,BC段的平均速度为6m/s,则B点的 瞬时速度为 ( )
A.4m/s B.4.5m/s C.5m/s D.5.5m/s 点评:求平均速度的两个公式的联系、区别与应用
方法二:由平均速度与推论求解
vA vB 3 2
vA 6 vB
vB vC 6 2
vC 12 vB
vB
v
2 A

vC2
2
方法三:图像法
v/ms-1
vC
6 vB
23 3 vA
o
t/s

高中物理竞赛教程(超详细) 第十五讲 温度和气体分子运动论

高中物理竞赛教程(超详细) 第十五讲  温度和气体分子运动论

第一讲 温度和气体分子运动论§1。

1 温度1.1.1、平衡态、状态参量温度是表示物体冷热程度的物理量。

凡是跟温度有关的现象均称为热现象。

热现象是自然界中的一种普遍现象。

热学是研究热现象规律的科学。

热学研究的对象都是由大量分子组成的宏观物体,称为热力学系统或简称系统。

在不受外界影响的条件下,系统的宏观性质不再随时间变化的状态称为平衡态,否则就称为非平衡态。

可见系统平衡态的改变依赖于外界影响(作功、传热)。

系统处于平衡态,所有宏观物理都具有确定的值,我们就可以选择其中几个物理量来描述平衡态,这几个量称为状态参量。

P 、V 、T 就是气体的状态参量。

气体的体积V 是指盛放气体的容器的容积,国际单位制中,体积的单位是m 3。

1m 3=103L=106cm 3气体的压强P 是气体作用在容器的单位面积器壁上的平均压力,单位是p a 。

1atm=76cmHg=1.013⨯105p a1mmHg=133.3p a1.1.2、 温标温度的数值表示法称为温标。

建立温标的三要素是:1、选择某种物质的一个随温度改变发生单调显著变化的属性来标志温度,制作温度计。

例如液体温度计T(V)、电阻温度计T(R)、气体温度计T(P)、T(V)等等。

这种选用某种测温物质的某一测温属性建立的温标称为经验温标。

2、规定固定点,即选定某一易于复现的特定平衡态指定其温度值。

1954年以前,规定冰点为0℃,汽点为100℃,其间等分100份,从而构成旧摄氏温标。

1954年以后,国际上选定水的三相点为基本固定点,温度值规定为273.16K 。

这样0℃与冰点,100℃与汽点不再严格相等,百分温标的概念已被废弃。

3、规定测温属性随温度变化的函数关系。

如果某种温标(例如气体温度计)选定为线性关系,由于不同物质的同一属性或者同一物质的不同属性随温度变化的函数关系不会相同,因而其它的温标就会出现非线性的函数关系。

1.1.3、理想气体温标定容气体温度计是利用其测温泡内气体压强的大小来标志温度的高低的。

高中物理竞赛辅导-运动学

高中物理竞赛辅导-运动学

运动学§2.1质点运动学的基本概念2.1.1、参照物和参照系要准确确定质点的位置及其变化,必须事先选取另一个假定不动的物体作参照,这个被选的物体叫做参照物。

为了定量地描述物体的运动需要在参照物上建立坐标,构成坐标系。

通常选用直角坐标系O –xyz ,有时也采用极坐标系。

平面直角坐标系一般有三种,一种是两轴沿水平竖直方向,另一是两轴沿平行与垂直斜面方向,第三是两轴沿曲线的切线和法线方向(我们常把这种坐标称为自然坐标)。

2.1.2、位矢 位移和路程在直角坐标系中,质点的位置可用三个坐标x ,y ,z 表示,当质点运动时,它的坐标是时间的函数 x=X (t ) y=Y (t ) z=Z (t )这就是质点的运动方程。

质点的位置也可用从坐标原点O 指向质点P (x 、y 、z )的有向线段r来表示。

如图2-1-1所示, r 也是描述质点在空间中位置的物理量。

r 的长度为质点到原点之间的距离,r 的方向由余弦αcos 、βcos 、γcos 决定,它们之间满足1cos cos cos 222=++γβα当质点运动时,其位矢的大小和方向也随时间而变,可表示为r =r (t)。

在直角坐标系中,设分别为i 、j 、k 沿方向x 、y 、z 和单位矢量,则r 可表示为k t z j t y i t x t r )()()()(++=位矢r 与坐标原点的选择有关。

研究质点的运动,不仅要知道它的位置,还必须知道它的位置的变化情况,如果质点从空间一点),,(1111z y x P 运动到另一点),,(2222z y x P ,相应的位矢由r 1变到r 2,其改变量为r ∆k z z j y y i x x r r r )()()(12121212-+-+-=-=∆ 称为质点的位移,如图2-1-2所示,位移是矢量,它是从初始位置指向终止位置的一个有向线段。

它描写在一定时间内质点位置变动的大小和方向。

它与坐标原点的选择无关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二讲 运动学§2.1质点运动学的基本概念2.1.1、参照物和参照系要准确确定质点的位置及其变化,必须事先选取另一个假定不动的物体作参照,这个被选的物体叫做参照物。

为了定量地描述物体的运动需要在参照物上建立坐标,构成坐标系。

通常选用直角坐标系O –xyz ,有时也采用极坐标系。

平面直角坐标系一般有三种,一种是两轴沿水平竖直方向,另一是两轴沿平行与垂直斜面方向,第三是两轴沿曲线的切线和法线方向(我们常把这种坐标称为自然坐标)。

2.1.2、位矢 位移和路程在直角坐标系中,质点的位置可用三个坐标x ,y ,z 表示,当质点运动时,它的坐标是时间的函数 x=X (t ) y=Y (t ) z=Z (t ) 这就是质点的运动方程。

质点的位置也可用从坐标原点O 指向质点P (x 、y 、z )的有向线段r来表示。

如图2-1-1所示, r 也是描述质点在空间中位置的物理量。

r 的长度为质点到原点之间的距离,r 的方向由余弦αcos 、βcos 、γcos 决定,它们之间满足1cos cos cos 222=++γβα当质点运动时,其位矢的大小和方向也随时间而变,可表示为r =r (t)。

在直角坐标系中,设分别为i 、j 、k 沿方向x 、y 、z 和单位矢量,则r 可表示为k t z j t y i t x t r )()()()(++=位矢r 与坐标原点的选择有关。

研究质点的运动,不仅要知道它的位置,还必须知道它的位置的变化情况,如果质点从空间一点),,(1111z y x P运动到另一点),,(2222z y x P ,相应的位矢由r 1变到r 2,其改变量为r ∆k z z j y y i x x r r r )()()(12121212-+-+-=-=∆称为质点的位移,如图2-1-2所示,位移是矢量,它是从初始位置指向终止位置的一个有向线段。

它描写在一定时间内质点位置变动的大小和方向。

它与坐标原点的选择无关。

2.1.3、速度平均速度 质点在一段时间内通过的位移和所用的时间之比叫做这段时间内的平均速度)2zy图2-1-1t s v ∆=平均速度是矢量,其方向为与r∆的方向相同。

平均速度的大小,与所取的时间间隔t ∆有关,因此须指明是哪一段时间(或哪一段位移)的平均速度。

瞬时速度 当t ∆为无限小量,即趋于零时,r∆成为t 时刻的瞬时速度,简称速度t s v v t t ∆==→∆→∆00limlim瞬时速度是矢量,其方向在轨迹的切线方向。

瞬时速度的大小称为速率。

速率是标量。

2.1.4、加速度平均加速度 质点在t ∆时间内,速度变化量为v ∆,则v∆与t ∆的比值为这段时间内的平均加速度t v a ∆∆=平均加速度是矢量,其方向为v∆的方向。

瞬时加速度 当t ∆为无限小量,即趋于零时,v∆与t ∆的比值称为此时刻的瞬时加速度,简称加速度t va t ∆∆=→∆0lim加速度是矢量,其方向就是当t ∆趋于零时,速度增量的极限方向。

2.1.5、匀变速直线运动加速度a 不随时间t 变化的直线运动称为匀变速直线运动。

若a 与v 同方向,则为匀加速直线运动;若a 与v 反方向,则为匀减速直线运动。

匀变速直线运动的规律为:at v v +=ο12021at t v s ==as v v 2221=-ο t v v vt s t )(210+==匀变速直线运动的规律也可以用图像描述。

其位移—时间图像(s ~t 图)和速度—时间图像(v ~t 图)分别如图2-1-3和图2-1-4所示。

从(s ~t )图像可得出: (1)任意一段时间内的位移。

(2)平均速度,在(12t t -)的时间内的平均速度的大小,是通过图线上点1、点2的割线的斜率。

(3)瞬时速度,图线上某点的切线的斜率值,等于该时刻的速度值。

从s ~t 图像可得出: 从(v ~t )图像可得出: (1)任意时刻的速度。

(2)任意一段时间内的位移,21t t 时间内的位移等于v ~t 图线,21t t 、时刻与横轴所围的“面积”。

这一结论对非匀变速直线运动同样成立。

(3)加速度,v ~t 图线的斜率等于加速度的值。

若为非匀变速直线运动,则v ~t 图线任一点切线的斜率即为该时刻的瞬时加速度的大小。

§2.2 运动的合成与分解相对运动2.2.1、运动的合成与分解 (1)矢量的合成与分解矢量的合成与分解的基本方法是平行四边形法则,即两分量构成平行四边形的两邻边,合矢量为该平行四边形与两分量共点的对角线。

由平行四边形法则又衍生出三角形法则,多个矢量的合成又可推导出多边形法则。

同一直线上的矢量的合成与分解可以简化为代数运算,由此,不在同一直线上的矢量的合成与分解一般通过正交分解法进行运算,即把各个矢量向互相垂直的坐标轴投影,先在各轴上进行代数运算之后,再进行矢量运算。

(2)运动的合成和分解运动的合成与分解是矢量的合成与分解的一种。

运动的合成与分解一般包括位移、速度、加速度等的合成与分解。

运动的合成与分解的特点主要有:①运动的合成与分解总是与力的作用相对应的;②各个分运动有互不相干的性质,即各个方向上的运动与其他方向的运动存在与否无关,这与力的独立作用原理是对应的;③位移等物理量是在一段时间内才可完成的,故他们的合成与分解要讲究等时性,即各个运动要取相同时间内的位移;④瞬时速度等物理量是指某一时刻的,故它们的合成分解要讲究瞬时性,即必须取同一时刻的速度。

两直线运动的合成不一定就是直线运动,这一点同学们可以证明。

如:①两匀速直线运动的合成仍为匀速直线运动;②两初速为零(同一时刻)的匀加速直线运动的合成仍为初速为零的匀加速直线运动;③在同一直线上的一个匀速运动和一个初速为零的匀变速运动的合运动是一个初速不为零的匀变速直线运动,如:竖上抛与竖下抛运动;④不在同一直线上的一个匀速运动与一个初速为零的匀加速直线运动的合成是一个曲线运动,如:斜抛运动。

2.2.2、相对运动任何物体的运动都是相对于一定的参照系而言的,相对于不同的参照系,同一物体的运动往往具有不同的特征、不同的运动学量。

通常将相对观察者静止的参照系称为静止参照系;将相对观察者运动的参照系称为运动参照系。

物体相对静止参照系的运动称为绝对运动,相应的速度和加速度分别称为绝对速度和绝对加速度;物体相对运动参照系的运动称为相对运动,相应的速度和加速度分别称为相对速度和相对加速度;而运动参照系相对静止参照系的运动称为牵连运动,相应的速度和加速度分别称为牵连速度和牵连加速度。

绝对运动、相对运动、牵连运动的速度关系是:绝对速度等于相对速度和牵连速度的矢量和。

牵连相对绝对v v v +=这一结论对运动参照系是相对于静止参照系作平动还是转动都成立。

当运动参照系相对静止参照系作平动时,加速度也存在同样的关系: 牵连相对绝对a a a +=当运动参照系相对静止参照系作转动时,这一关系不成立。

如果有一辆平板火车正在行驶,速度为火地v (脚标“火地”表示火车相对地面,下同)。

有一个大胆的驾驶员驾驶着一辆小汽车在火车上行驶,相对火车的速度为汽火v ,那么很明显,汽车相对地面的速度为:火地汽火汽地v v v +=(注意:汽火v 和火地v 不一定在一条直线上)如果汽车中有一只小狗,以相对汽车为狗汽v 的速度在奔跑,那么小狗相对地面的速度就是火地汽火狗汽狗地v v v v ++=从以上二式中可看到,上列相对运动的式子要遵守以下几条原则:①合速度的前脚标与第一个分速度的前脚标相同。

合速度的后脚标和最后一个分速度的后脚标相同。

②前面一个分速度的后脚标和相邻的后面一个分速度的前脚标相同。

③所有分速度都用矢量合成法相加。

④速度的前后脚标对调,改变符号。

以上求相对速度的式子也同样适用于求相对位移和相对加速度。

相对运动有着非常广泛的应用,许多问题通过它的运用可大为简化,以下举两个例子。

例 如图2-2-1所示,在同一铅垂面上向图示的两个方向以s m v s m v B A /20/10==、的初速度抛出A 、B 两个质点,问1s后A 、B 相距多远?这道题可以取一个初速度为零,当A 、B 抛出时开始以加速度g 向下运动的参考系。

在这个参考系中,A 、B 二个质点都做匀速直线运动,而且方向互相垂直,它们之间的距离()()4.2251022==+=m t v t v s B A AB m在空间某一点O ,向三维空间的各个方向以相同的速度οv 射出很多个小球,球ts 之后这些小球中离得最远的二个小球之间的距离是多少(假设ts 之内所有小球都未与其它物体碰撞)?这道题初看是一个比较复杂的问题,要考虑向各个方向射出的小球的情况。

但如果我们取一个在小球射出的同时开始自O 点自由下落的参考系,所有小球就都始终在以O 点为球心的球面上,球的半径是t v 0,那么离得最远的两个小球之间的距离自然就是球的直径2t v 0。

图2-2-1§2.3抛体运动2.3.1、曲线运动的基本知识 轨迹为曲线的运动叫曲线运动。

它一定是一个变速运动。

图2-3-1表示一质点作曲线运动,它经过P 点时,在P 点两旁的轨迹上取11b a 、两点,过11b P a 、、三点可作一圆,当这两点无限趋近于P 点时,则圆亦趋近于一个定圆,我们把这个圆叫P 点的曲率圆,曲率圆的半径叫P 点的曲率半径,曲率圆的圆心叫P 点的曲率中心,曲率半径的倒数叫P 点的曲率。

如图2-3-1,亦可做出Q 点的曲率圆。

曲率半径大,曲率小,表示曲线弯曲较缓,曲率半径小,曲率大,表示曲线弯曲厉害。

直线可认为是曲率半径为无穷大的曲线。

质点做曲线运动的瞬时速度的方向总是沿该点的切线方向。

如图2-3-2所示,质点在△t 时间内沿曲线由A 点运动到B 点,速度由V A变化到V B ,则其速度增量V ∆为两者之矢量差,V ∆=V B ―V A,这个速度增量又可分解成两个分量:在V B 上取一段AC 等于V A,则△V 分解成△V 1和△V 2,其中△V 1表示质点由A 运动到B 的速度方向上的增量,△V 2表示速度大小上的增量。

法向加速度a n 表示质点作曲线运动时速度方向改变的快慢,其大小为在A 点的曲率圆的向心加速度:t V a t n ∆∆=→∆20lim其方向指向A 点的曲率中心。

切向加速度τa 表示质点作曲线运动时速度大小改变的快慢,方向亦沿切线方向,其大小为A At R V t V a 210lim =∆∆=→∆τ总加速度a 方法向加速度和切向加速度的矢量和。

2.3.2、抛物运动是曲线运动的一个重要特例物体以一定的初速度抛出后,若忽略空气阻力,且物体的运动在地球表面附近,它的运动高度远远小于地球半径,则在运动过程中,其加速度恒为竖直向下的重力加速度。

相关文档
最新文档