几种边缘检测算子比较

合集下载

实现用三种边缘检测算子对一幅图像提取边缘

实现用三种边缘检测算子对一幅图像提取边缘

实现用三种边缘检测算子对一幅图像提取边缘,给出结果并分析。

用sobel,log,candy三种算子对图像进行边缘提取:f = imread('E:\木子的U盘\大三的木子\第一学期\数字图像处理\xback.jpg');f = rgb2gray(f); %将图像转化为灰度图像[gsobel_default,ts] = edge(f,'sobel');%利用sobel算子的默认语法得到边缘图像subplot(231);imshow(gsobel_default);title('g sobel default');[glog_default,tlog]=edge(f,'log');%利用log算子的默认语法得到边缘图像subplot(233);imshow(glog_default);title('g log default');[gcanny_default,tc]=edge(f,'canny');%利用candy算子的默认语法得到边缘图像subplot(235);imshow(gcanny_default);title('g canny default');gSobel_best=edge(f,'sobel',0.05);%减少不必要的细节subplot(232);imshow(gSobel_best);title('g sobel best');gLog_best=edge(f,'log',0.003,2.25);%subplot(234);imshow(gLog_best);title('g log best');gCanny_best=edge(f,'canny',[0.04 0.10],1.5);%subplot(236);imshow(gCanny_best);title('g canny best');MATLAB图像显示如下:分析如下:sobel得出的结果与试图检测边缘的目标相差太远。

基于Matlab的图像边缘检测算法的实现及应用汇总

基于Matlab的图像边缘检测算法的实现及应用汇总

目录摘要 (1)引言 (2)第一章绪论 (3)1.1 课程设计选题的背景及意义 (3)1.2 图像边缘检测的发展现状 (4)第二章边缘检测的基本原理 (5)2.1 基于一阶导数的边缘检测 (8)2.2 基于二阶导的边缘检测 (9)第三章边缘检测算子 (10)3.1 Canny算子 (10)3.2 Roberts梯度算子 (11)3.3 Prewitt算子 (12)3.4 Sobel算子 (13)3.5 Log算子 (14)第四章MATLAB简介 (15)4.1 基本功能 (15)4.2 应用领域 (16)第五章编程和调试 (17)5.1 edge函数 (17)5.2 边缘检测的编程实现 (17)第六章总结与体会 (20)参考文献 (21)摘要边缘是图像最基本的特征,包含图像中用于识别的有用信息,边缘检测是数字图像处理中基础而又重要的内容。

该课程设计具体考察了5种经典常用的边缘检测算子,并运用Matlab进行图像处理结果比较。

梯度算子简单有效,LOG 算法和Canny 边缘检测器能产生较细的边缘。

边缘检测的目的是标识数字图像中灰度变化明显的点,而导函数正好能反映图像灰度变化的显著程度,因而许多方法利用导数来检测边缘。

在分析其算法思想和流程的基础上,利用MATLAB对这5种算法进行了仿真实验,分析了各自的性能和算法特点,比较边缘检测效果并给出了各自的适用范围。

关键词:边缘检测;图像处理;MATLAB仿真引言边缘检测在图像处理系统中占有重要的作用,其效果直接影响着后续图像处理效果的好坏。

许多数字图像处理直接或间接地依靠边缘检测算法的性能,并且在模式识别、机器人视觉、图像分割、特征提取、图像压缩等方面都把边缘检测作为最基本的工具。

但实际图像中的边缘往往是各种类型的边缘以及它们模糊化后结果的组合,并且在实际图像中存在着不同程度的噪声,各种类型的图像边缘检测算法不断涌现。

早在1965 年就有人提出边缘检测算子,边缘检测的传统方法包括Kirsch,Prewitt,Sobel,Roberts,Robins,Mar-Hildreth 边缘检测方法以及Laplacian-Gaussian(LOG)算子方法和Canny 最优算子方法等。

图像识别中的轮廓提取算法探索(七)

图像识别中的轮廓提取算法探索(七)

图像识别中的轮廓提取算法探索引言:图像识别技术如今已经广泛应用于各个领域,其关键之一就是图像中的轮廓提取算法。

轮廓提取的准确与否直接影响到图像识别的效果。

本文将探索图像识别中常用的轮廓提取算法,并对其原理和优缺点进行分析。

一、边缘检测算法边缘检测是图像处理中最基础的一步,是进行轮廓提取的前提。

常用的边缘检测算法有Sobel算子、Laplacian算子和Canny算子等。

1. Sobel算子Sobel算子是一种基于梯度的边缘检测算法,其原理是通过计算每个像素点的梯度值来判断其是否为边缘点。

然后根据梯度值的大小确定边缘的强度,进而提取轮廓。

Sobel算子的优点是计算简单,对噪声鲁棒性强。

但其缺点也较为明显,容易产生边缘断裂的情况,并且对角线边缘检测效果较差。

2. Laplacian算子Laplacian算子是一种基于二阶导数的边缘检测算法,其原理是通过计算图像中每个像素点的二阶导数来判断其是否为边缘点。

Laplacian算子的优点是能够检测出边缘的交叉点,能够更精准地定位边缘。

但其缺点是对噪声比较敏感,容易产生误检。

3. Canny算子Canny算子是一种综合考虑多种因素的边缘检测算法,其原理是通过梯度计算、非极大值抑制和阈值处理来提取目标轮廓。

Canny算子的优点是能够提取清晰且连续的边缘,对噪声抑制效果好。

但其缺点是计算量较大,算法较为复杂。

二、区域生长算法区域生长算法是一种基于种子点的轮廓提取方法,其原理是在图像中选择若干个种子点,然后通过像素点之间的相似性判断来逐渐生长成为一个完整的区域。

区域生长算法的优点是能够提取出连续且相似的轮廓,适用于要求较高的图像识别任务。

但其缺点是对种子点的选择比较敏感,容易受到图像质量和噪声的影响。

三、边缘跟踪算法边缘跟踪算法是一种基于边缘连接的轮廓提取方法,其原理是通过追踪边缘点的连接关系,形成完整的轮廓。

边缘跟踪算法的优点是能够提取出精细的轮廓,并且对噪声抑制效果好。

几种常用边缘检测算法的比较

几种常用边缘检测算法的比较

几种常用边缘检测算法的比较边缘检测是在数字图像上寻找图像亮度变化的过程,它对于图像处理和计算机视觉任务非常重要。

常见的边缘检测算法有Sobel算子、Prewitt算子、Roberts算子和Canny边缘检测算法。

本文将对这几种算法进行比较。

1. Sobel算子:Sobel算子是一种常见的边缘检测算法,它通过计算图像像素点与其邻域像素点之间的差异来检测边缘。

Sobel算子具有简单、快速的优点,可以检测水平和垂直方向的边缘,但对于斜向边缘检测效果较差。

2. Prewitt算子:Prewitt算子也是一种常用的边缘检测算法,它类似于Sobel算子,通过计算图像像素点与其邻域像素点之间的差异来检测边缘。

Prewitt算子可以检测水平、垂直和斜向边缘,但对于斜向边缘的检测结果可能不够精确。

3. Roberts算子:Roberts算子是一种简单的边缘检测算法,它通过计算图像像素点与其对角线方向上的邻域像素点之间的差异来检测边缘。

Roberts算子计算简单,但对于噪声敏感,容易产生干扰边缘。

4. Canny边缘检测算法:Canny边缘检测算法是一种经典的边缘检测算法,它包含多个步骤:高斯滤波、计算梯度、非最大抑制和双阈值处理。

Canny算法具有良好的边缘定位能力,并且对于噪声和细节边缘具有较好的抑制效果。

但Canny算法计算复杂度较高,在处理大规模图像时可能较慢。

综上所述,不同的边缘检测算法具有各自的优缺点。

若要选择适合应用的算法,需要综合考虑图像特点、计算复杂度和应用需求等因素。

如果对图像边缘的方向要求不高,可以选择Sobel或Prewitt算子;如果对图像边缘的方向要求较高,可以选择Canny算法。

另外,为了获得更好的边缘检测结果,通常需要进行适当的预处理,如灰度化、滤波和阈值处理等。

最后,对于不同的应用场景,可能需要使用不同的算法或算法组合来满足特定需求。

边缘检测及拟合-概述说明以及解释

边缘检测及拟合-概述说明以及解释

边缘检测及拟合-概述说明以及解释1.引言1.1 概述边缘检测及拟合是图像处理和计算机视觉领域中重要的技术研究方向,旨在从图像中提取出物体或目标的边缘信息,并进一步对边缘进行拟合和分析。

通过边缘检测和拟合,可以实现诸如物体检测、轮廓提取、目标跟踪、三维重构等多种计算机视觉任务。

边缘是指图像中灰度或颜色变化剧烈的区域。

边缘检测的目标是在图像中准确地标记和定位出这些边缘。

边缘检测是计算机视觉中常用的技术,具有广泛的应用领域,例如机器人导航、图像识别、医学影像处理等。

通过边缘检测,我们可以对图像进行分割,从而将图像分成不同的区域,方便后续处理。

边缘拟合是对图像中的边缘进行曲线或直线拟合的过程。

通过对边缘进行拟合,可以得到更加平滑的边缘曲线或直线,从而更好地描述物体的形状和轮廓。

边缘拟合广泛应用于图像重建、形状分析、目标识别等领域,能够提高边缘的准确性和鲁棒性。

边缘检测和拟合是紧密相连的两个过程,相互影响并共同完成对图像边缘的提取和分析。

边缘检测是边缘拟合的基础,而边缘拟合可以通过拟合来修正和优化边缘检测的结果。

在实际应用中,边缘检测和拟合经常需要同时进行,相互补充来提高整体的效果和精度。

本文将对边缘检测和拟合的概念进行介绍,并总结常用的方法和应用领域。

同时还会重点探讨边缘检测与拟合的关系,包括相互影响、综合应用以及未来的研究方向。

通过深入研究边缘检测及拟合的原理和方法,我们可以更好地理解图像的结构和特征,为计算机视觉和图像处理领域的相关应用提供有力支持。

文章结构部分的内容可以如下所示:1.2 文章结构本文分为引言、正文和结论三部分。

- 引言部分介绍了边缘检测及拟合的相关概念和研究意义,并对文章的结构进行了概述。

- 正文部分包括了边缘检测和边缘拟合两个主要部分。

- 边缘检测部分主要介绍了边缘检测的概念、常用方法和应用领域。

- 边缘拟合部分主要介绍了边缘拟合的概念、拟合方法和实际应用。

- 边缘检测与拟合的关系部分探讨了二者之间的相互影响,以及如何综合应用边缘检测和拟合方法,并给出了拓展研究方向的建议。

图像边缘检测中的微分算子法及其比较

图像边缘检测中的微分算子法及其比较

与区域( 包括不同色彩 ) 之间。 边缘表明一个特征 区域的终结和另一特征区域的开始 。边缘所分开区 域的内部特征或属性是一致的, 而不同的区域内部 特征或属性是不同的。边缘检测正是利用物体和背 景在某种图像特征上的差异来实现检测 , 这些差异 包括灰度、 颜色或纹理特征, 边缘检测实际上就是检 测图像特征发生变化的位置。 边缘的类型很多, 常见的有以下三种: 第一种是 阶梯形边缘, 其灰度从低跳跃到高; 第二种是屋顶形 边缘, 其灰度从低逐渐到高然后慢慢减小 ; 第三种是 线性边缘, 其灰度呈脉冲跳跃变化。如图 1 所示。
0
引言
边缘检测是图像分析与识别的第一步, 边缘检 测在计算机视觉、 图像分析等应用中起着重要作用 , 图像的其他特征都是由边缘和区域这些基本特征推 导出来的, 边缘检测的效果会直接影响图像的分割 和识别性能。边缘检测法的种类很多, 如微分算子 [1 ] 法、 样板匹配法、 小波检测法、 神经网络法等等 , 每一类检测法又有不同的具体方法。 目前, 微分算 Sobel, Prewitt, Canny, Laplacian, 子法 中 有 Roberts, Log 以及二阶方向导数等算子检测法, 本文仅将讨 论微分算子法中的几个常用算子法 。
图像边缘检测中的微分算子法及其比较
龙 清
( 重庆广播电视集团 ( 总台) ,重庆 401147 )

要: 边缘是图像最基本的特征, 边缘检测是图像分析与识别的重要环节。 基于微分算子的 边缘检测是目前较为常用的边缘检测方法 。通过对 Roberts,Sobel, Prewitt, Canny 和 Log 等几个
2 h( x, y) = [ y) ] * f( x, y) g( x, 2 y) = 其中, g( x,

【OpenCV】边缘检测:Sobel、拉普拉斯算子 .

【OpenCV】边缘检测:Sobel、拉普拉斯算子 .

【OpenCV】边缘检测:Sobel、拉普拉斯算子转自:/xiaowei_cqu/article/details/7829481边缘边缘(edge)是指图像局部强度变化最显著的部分。

主要存在于目标与目标、目标与背景、区域与区域(包括不同色彩)之间,是图像分割、纹理特征和形状特征等图像分析的重要基础。

图像强度的显著变化可分为:∙阶跃变化函数,即图像强度在不连续处的两边的像素灰度值有着显著的差异;∙线条(屋顶)变化函数,即图像强度突然从一个值变化到另一个值,保持一较小行程后又回到原来的值。

图像的边缘有方向和幅度两个属性,沿边缘方向像素变化平缓,垂直于边缘方向像素变化剧烈.边缘上的这种变化可以用微分算子检测出来,通常用一阶或二阶导数来检测边缘。

(a)(b)分别是阶跃函数和屋顶函数的二维图像;(c)(d)是阶跃和屋顶函数的函数图象;(e)(f)对应一阶倒数;(g)(h)是二阶倒数。

一阶导数法:梯度算子对于左图,左侧的边是正的(由暗到亮),右侧的边是负的(由亮到暗)。

对于右图,结论相反。

常数部分为零。

用来检测边是否存在。

梯度算子 Gradient operators 函数f(x,y)在(x,y)处的梯度为一个向量:计算这个向量的大小为:近似为:梯度的方向角为:Sobel算子sobel算子的表示:梯度幅值:用卷积模板来实现:【相关代码】接口[cpp]view plaincopyprint?1.CV_EXPORTS_W void Sobel( InputArray src, OutputArray dst, int ddepth,2.int dx, int dy, int ksize=3,3.double scale=1, double delta=0,4.int borderType=BORDER_DEFAULT );使用[cpp]view plaincopyprint?1./////////////////////////// Sobe l////////////////////////////////////2./// Generate grad_x and grad_y3.Mat grad_x, grad_y;4.Mat abs_grad_x, abs_grad_y;5./// Gradient X6.//Scharr( src_gray, grad_x, ddepth, 1, 0, scale, delta, BORDER_DEFAULT );7.//Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator.8.Sobel( src_gray, grad_x, ddepth, 1, 0, 3, scale, delta, BORDER_DEFAULT );9.convertScaleAbs( grad_x, abs_grad_x );10./// Gradient Y11.//Scharr( src_gray, grad_y, ddepth, 0, 1, scale, delta, BORDER_DEFAULT );12.Sobel( src_gray, grad_y, ddepth, 0, 1, 3, scale, delta, BORDER_DEFAULT );13.convertScaleAbs( grad_y, abs_grad_y );14./// Total Gradient (approximate)15.addWeighted( abs_grad_x, 0.5, abs_grad_y, 0.5, 0, grad );二阶微分法:拉普拉斯二阶微分在亮的一边是负的,在暗的一边是正的。

医学图像处理中的边缘检测与分割算法

医学图像处理中的边缘检测与分割算法

医学图像处理中的边缘检测与分割算法边缘检测与分割是医学图像处理中的重要部分,被广泛应用于疾病诊断、医学影像分析和手术辅助等领域。

边缘检测算法用于提取图像中的边缘信息,而分割算法则可以将图像划分为不同的区域,有助于医生对图像进行进一步分析和诊断。

一、边缘检测算法在医学图像处理中,常用的边缘检测算法包括基于梯度的方法、基于模型的方法和基于机器学习的方法。

1. 基于梯度的方法基于梯度的边缘检测算法通过计算图像中像素点的梯度值来确定边缘位置。

常用的算法包括Sobel算子、Prewitt算子和Canny算子。

Sobel算子是一种常用的离散微分算子,通过在图像中对每个像素点应用Sobel算子矩阵,可以得到图像的x方向和y方向的梯度图像。

通过计算梯度幅值和方向,可以得到边缘的位置和方向。

Prewitt算子与Sobel算子类似,也是一种基于梯度的边缘检测算子。

它通过将图像中的每个像素点与Prewitt算子矩阵进行卷积运算,得到图像的x方向和y方向的梯度图像。

进一步计算梯度幅值和方向,可以确定边缘的位置和方向。

Canny算子是一种经典的边缘检测算法,它采用多步骤的方法来检测边缘。

首先,对图像进行高斯滤波来减少噪声。

然后,计算图像的梯度幅值和方向,进一步剔除非最大值的梯度。

最后,通过设置双阈值来确定真正的边缘。

2. 基于模型的方法基于模型的边缘检测算法借助数学模型来描述边缘的形状和特征。

常用的算法包括基于边缘模型的Snake算法和基于边缘模型的Active Contour算法。

Snake算法(也称为活动轮廓模型)是一种基于曲线的边缘检测算法。

它通过将一条初始曲线沿着图像中的边缘移动,使得曲线更好地贴合真实边缘。

Snake算法考虑了边缘的连续性、平滑性和能量最小化,可以获得较为准确的边缘。

Active Contour算法是Snake算法的进一步发展,引入了图像能量函数。

通过最小化能量函数,可以得到最佳的边缘位置。

Active Contour算法可以自动调整曲线的形状和位置,适应复杂的图像边缘。

边缘检测与梯度算子

边缘检测与梯度算子

边缘检测与梯度算⼦边缘检测边缘是指图象中灰度发⽣急剧变化的区域。

图象的变化情况可以⽤灰度分布的梯度来反映,给定连续图象f(x,y),其在边缘法线⽅向上取得局部最⼤值。

图象中⼀点的边缘被定义为⼀个⽮量,模为当前点最⼈的⽅向导数,⽅向为该⾓度代表的⽅向。

通常我们只考虑其模,⽽不关⼼⽅向。

梯度算⼦(⼀)梯度算⼦可分为3类:1、使⽤差分近似图像函数导数的算⼦。

有些是具有旋转不变性的(如:),因此只需要⼀个卷积掩模来计算。

其它近似的算⼦使⽤⼏个掩模。

2、基于图像函数⼆阶导数过零点的算⼦(如:M arr—Hild reth或Canny边缘检测算⼦。

3、试图将图像函数与边缘的参数模型相匹配的箅⼦。

(⼆)第⼀类梯度算⼦(Laplace)算⼦通常使⽤3×3的掩模,有时也使⽤强调中⼼象素或其邻接性的(这种近似不再具有旋转不变性)。

拉普拉斯算⼦的缺点:它对图像中的某些边缘产⽣双重响应。

图像锐化(shapeening)图像锐化的⽬的是图像的边缘更陡峭、清晰。

的输出图像f是根据下式从输⼊图像g得到的:f(i,j)=g(i,j)-c s(i,j),其中c是反映锐化程度的正系数,s(i,j)是图像函数锐化程度的度量,⽤梯度箅⼦来计算,Laplacian箅⼦常被⽤于这⼀⽬的。

Prewitt边缘检测算⼦Sobel边缘检测算⼦(三)第⼆类梯度算⼦--⼆阶导数过零点算⼦根据图象边缘处的⼀阶微分(梯度)应该是极值点的事实,图象边缘处的⼆阶微分应为零,确定过零点的位置要⽐确定极值点容易得多也⽐较精确。

右侧是Lena的过零点检测结果。

为抑制噪声,可先作平滑滤波然后再作⼆次微分,通常采⽤⾼斯函数作平滑滤波,故有LoG(Laplacian of Gaussian)算⼦。

⾼斯-拉普拉斯(LoG,Laplacian of Gaussian)算⼦。

噪声点对边缘检测有较⼤的影响,效果更好的边缘检测器是⾼斯-拉普拉斯(Lo G)算⼦。

它把⾼斯平滑滤波器和拉普拉斯滤波器结合起来,先平滑掉噪声,再进⾏,所以效果更好。

sobel算子、x方向边缘梯度

sobel算子、x方向边缘梯度

sobel算子、x方向边缘梯度Sobel算子是一种常用的边缘检测算法,用于提取图像中的边缘信息。

其中,x方向边缘梯度是Sobel算子在水平方向上的运算结果。

本文将介绍Sobel算子的原理及其在图像处理中的应用。

一、Sobel算子原理Sobel算子是一种离散的差分算子,通过计算图像中每个像素点的梯度值来检测边缘。

它利用了图像在边缘处的灰度值变化较大的特点,通过对图像进行卷积运算,得到图像中各个像素点的边缘梯度信息。

Sobel算子主要分为水平方向和垂直方向两个算子,分别用于检测图像中的水平和垂直边缘。

以x方向边缘梯度为例,x方向的Sobel算子模板如下:-1 0 1-2 0 2-1 0 1对于图像中的每个像素点,将其与周围的8个像素点进行卷积运算,即将每个像素点与模板进行乘积求和,得到该像素点的梯度值。

其中,模板中的九个元素分别与对应的像素点进行乘积,再将乘积结果相加,即可得到该像素点的梯度值。

二、Sobel算子在边缘检测中的应用Sobel算子广泛应用于图像边缘检测领域。

通过计算图像中每个像素点的梯度值,可以提取出图像中的边缘信息,从而实现图像的轮廓提取、物体识别等任务。

在实际应用中,一般先将彩色图像转换为灰度图像,然后使用Sobel算子对灰度图像进行卷积运算,得到图像中各个像素点的梯度值。

通过设定一个合适的阈值,就可以将梯度值大于阈值的像素点标记为边缘点,从而实现对图像中边缘的检测。

Sobel算子在边缘检测中有以下几个特点:1. 简单高效:Sobel算子是一种线性滤波算法,计算速度较快,适用于实时性要求较高的场景。

2. 方向性强:Sobel算子通过分别计算x方向和y方向的梯度值,可以区分出边缘的方向。

这对于一些需要检测特定方向边缘的任务非常有用,比如车道线检测。

3. 对噪声较敏感:由于Sobel算子是一种线性滤波算法,对噪声比较敏感。

在实际应用中,为了提高边缘检测的准确性,通常会在使用Sobel算子前对图像进行平滑处理,以减少噪声的影响。

图像边缘检测各种算子MATLAB实现以及实际应用

图像边缘检测各种算子MATLAB实现以及实际应用

《图像处理中的数学方法》实验报告学生姓名:***教师姓名:曾理学院:数学与统计学院专业:信息与计算科学学号:********联系方式:139****1645梯度和拉普拉斯算子在图像边缘检测中的应用一、数学方法边缘检测最通用的方法是检测灰度值的不连续性,这种不连续性用一阶和二阶导数来检测。

1.(1)一阶导数:一阶导数即为梯度,对于平面上的图像来说,我们只需用到二维函数的梯度,即:∇f=[g xg y]=[ðf ðxðfðy],该向量的幅值:∇f=mag(∇f)=[g x2+g y2]1/2= [(ðf/ðx)2+(ðf/ðy)2]1/2,为简化计算,省略上式平方根,得到近似值∇f≈g x2+g y2;或通过取绝对值来近似,得到:∇f≈|g x|+|g y|。

(2)二阶导数:二阶导数通常用拉普拉斯算子来计算,由二阶微分构成:∇2f(x,y)=ð2f(x,y)ðx2+ð2f(x,y)ðy22.边缘检测的基本思想:(1)寻找灰度的一阶导数的幅度大于某个指定阈值的位置;(2)寻找灰度的二阶导数有零交叉的位置。

3.几种方法简介(1)Sobel边缘检测器:以差分来代替一阶导数。

Sobel边缘检测器使用一个3×3邻域的行和列之间的离散差来计算梯度,其中,每行或每列的中心像素用2来加权,以提供平滑效果。

∇f=[g x2+g y2]1/2={[(z7+2z8+z9)−(z1+2z2+z3)]2+[(z3+2z6+z9)−(z1+2z4+z7)]2}1/2(2)Prewitt边缘检测器:使用下图所示模板来数字化地近似一阶导数。

与Sobel检测器相比,计算上简单一些,但产生的结果中噪声可能会稍微大一些。

g x=(z7+z8+z9)−(z1+z2+z3)g y=(z3+z6+z9)−(z1−z4−z7)(3)Roberts边缘检测器:使用下图所示模板来数字化地将一阶导数近似为相邻像素之间的差,它与前述检测器相比功能有限(非对称,且不能检测多种45°倍数的边缘)。

数字图像边缘检测算子的性能实验比较

数字图像边缘检测算子的性能实验比较
出 了各 自的 优 缺 点 和适 用 范 围。
关键 词 : 字 图像 ; 数 边缘 检 测 ; 算子
中图分类号 :N 1. T 91 3 7
文献标识码 : A
文章编 号 : 0 —0 4 063- 19 0 1 9 34 ( 0 )50 5 - 2 0 2
CHE M i g h N n —z i

: ; 一
3处理 步骤
22R bn 算 子 . oe s
我 们已经知道在点 F ,) , Ok处 梯度 G F ,) 【0k 的幅度为 】
G[(, 】 (F/ ( /k‘ F j =【 0)+ o ) ) a

为 了进 一 步 简化 计 算 , 以取 可


= 一,-), ( I . — 1 . + 1 ; + 一 + + l -+ r — + y1 笔 L +), L —) , . L 一3 一 ,
ofxj】lx( y 1 l fx , [( ,二A x )+ A ( j 1 ,) f , y ,)
数 图 梯 图u - _ 囊 字 像 度 、 可 中



8个 模 板组 成 . 别 记 为 K 、 I K 、3 K 、 5 K 分 0 K 、 2 K 、 4 K 、 6和 K 。 7图
缘部分集中 了图像的大部分信息 , 图像边缘 的确定与提取对于整 个 图像场景 的识别与理解是非常重要的 , 同时也是图像分割所依 赖的重要特 征 . 边缘 检测主要是 图像 的灰度变 化的度量 、 检测和 定位 。本文 主要讨论 了在边缘检测中几中边缘算子的性 能对比。 由于物体 的边缘是 由灰度不连续性所反映的 : 因此一般边缘检测 方法是考察 图像 的每个像素在某个领域内灰度的变化 , 利用边缘 邻近一阶或 二阶方 向导数变化规律来检测边缘 , 这种方法通常称

医学图像处理中的边缘提取方法使用技巧分析

医学图像处理中的边缘提取方法使用技巧分析

医学图像处理中的边缘提取方法使用技巧分析在医学图像处理中,边缘提取是一项关键技术,它能够帮助医生和研究人员准确地检测和分析图像中的有关病变和解剖结构的边界。

本文将分析医学图像处理中常用的边缘提取方法,并介绍一些使用技巧。

边缘提取是医学图像处理中的重要任务之一,它可以通过检测图像中亮度变化的位置来确定物体的边界,并将其转化为黑白二值图像。

边缘提取不仅可以提供有关病变和解剖结构的定量信息,还可以帮助医生在图像中寻找感兴趣区域,从而辅助诊断和治疗。

在医学图像处理中,常用的边缘提取方法包括基于梯度的方法、基于模板的方法和基于模糊集理论的方法等。

基于梯度的方法是最常用的边缘提取方法之一,它通过计算图像灰度值的梯度来检测边缘。

常用的梯度算法包括Robert算子、Sobel算子和Canny 算子。

Robert算子和Sobel算子是一阶导数算子,通过对图像进行平滑和差分操作来提取边缘。

Canny算子是一种多阶段边缘检测算法,它通过计算梯度幅值和方向来确定边缘像素,并使用非极大值抑制和双阈值处理来提高边缘检测的准确性。

基于模板的方法是另一种常用的边缘提取方法,它通过定义一个特定的模板来检测边缘。

常用的模板包括拉普拉斯算子和高斯拉普拉斯算子。

拉普拉斯算子是二阶导数算子,通过计算图像灰度值的二阶导数来检测边缘。

高斯拉普拉斯算子是拉普拉斯算子和高斯滤波器的结合,它可以提高边缘检测的稳定性和准确性。

基于模糊集理论的方法是一种基于图像强度值和梯度信息的边缘提取方法,它通过将图像属性和边缘属性建模为模糊集来进行边缘检测。

基于模糊集理论的方法能够更好地处理图像中的噪声和模糊信息,并提高边缘检测的准确性。

在使用边缘提取方法时,有一些技巧可以帮助提高边缘检测的效果和准确性。

首先,选择合适的边缘提取方法和参数是至关重要的。

不同的边缘提取方法适用于不同类型的医学图像和应用场景。

根据具体的需求,选择合适的方法和参数可以提高边缘检测的效果。

《图像边缘检测》课件

《图像边缘检测》课件
1 Sobel算子
一种基于图像的梯度计算方法,可用于检测图像中的边缘。
2 Prewitt算子
另一种基于图像梯度的边缘检测算法,与Sbel算子类似。3 Canny算子
一种更复杂的边缘检测算法,能够检测到更细微的边缘。
边缘检测的应用
物体识别
边缘检测可以帮助识别图像中的物体,从而实现自动目标识别和分类。
图像增强
通过突出边缘,可以增强图像的清晰度和对比度,使图像更加生动。
计算机视觉
边缘检测是计算机视觉中基础且关键的技术,用于解决人机交互、图像分析等问题。
图像处理中的挑战
在图像处理中,边缘检测面临一些挑战,如噪声干扰、光照变化和边缘连接性等问题。需要采用合适的算法和 技术来克服这些挑战。
结论和要点
《图像边缘检测》PPT课 件
图像边缘检测是一种通过识别图像中物体边缘的技术。本课件将介绍边缘检 测的定义、常用的边缘检测算法以及边缘检测的应用。
图像边缘检测的定义
图像边缘检测是一种分析图像中不同区域之间的边界或过渡区域的技术。它对于物体检测、图像分割和目标识 别等任务非常重要。
常用的边缘检测算法
通过本课件的学习,你应该对图像边缘检测有了更深入的了解。边缘检测是图像处理中的重要步骤,它可以帮 助我们更好地理解和分析图像。

边缘检测原理(内含三种算法)

边缘检测原理(内含三种算法)

边缘检测原理的论述摘要数字图像处理技术是信息科学中近几十年来发展最为迅速的学科之一。

图像边缘是图像最基本的一种特征,边缘在图像的分析中起着重要的作用。

边缘作为图像的一种基本特征,在图像识别、图像分割、图像增强以及图像压缩等的领域中有较为广泛的应用,其目的就是精确定位边缘,同时更好地抑制噪声。

目前,数字图像处理技术被广泛应用于航空航天、通信、医学及工业生产等领域中。

图像边缘提取的手段多种多样,本文主要通过MATLAB语言编程分别用不同的算子例如Roberts算子、Prewitt算子、Sobel算子、Kirsch算子、Laplacian算子、Log算子和Canny算子等来实现静态图像的边缘检测,并且和检测加入高斯噪声的图像进行对比。

阐述了不同算子在进行图像边缘提取的特点,并在此基础上提出利用小波变换来实现静态图像的边缘检测。

【关键字】图像边缘数字图像边缘检测小波变换背景图像处理就是对图像信息加工以满足人的视觉心理或应用需求的方法。

图像处理方法有光学方法和电子学方法。

从20世纪60年代起随着电子计算机和计算技术的不断提高和普及,数字图像处理进入了高速发展时期,而数字图像处理就是利用数字计算机或其它的硬件设备对图像信息转换而得到的电信号进行某些数学处理以提高图像的实用性。

计算机进行图像处理一般有两个目的:(1)产生更适合人观察和识别的图像。

(2)希望能由计算机自动识别和理解图像。

数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。

边缘是图象最基本的特征.边缘检测在计算机视觉、图象分析等应用中起着重要的作用,是图象分析与识别的重要环节,这是因为子图象的边缘包含了用于识别的有用信息.所以边缘检测是图像分析和模式识别的主要特征提取手段。

所谓边缘是指其周围像素灰度后阶变化或屋顶状变化的那些像素的集合,它存在于目标与背景、目标与目标、区域与区域,基元与基元之间。

图像处理中各种边缘检测的微分算子简单比较(Sobel,Robert, Prewitt,Laplacian,Canny)

图像处理中各种边缘检测的微分算子简单比较(Sobel,Robert, Prewitt,Laplacian,Canny)
delete iGradY;
for(i=0;i<iHeight;i++)
delete []*(iExtent+i);
delete iExtent;
}
void Canny::GaussionSmooth()
{
int i,j,k; //循环变量
int iWindowSize; //记录模板大小的变量
int iHalfLen; //模板大小的一半
下面算法是基于的算法不可能直接运行,只是我把Canny的具体实现步骤写了出来,若需用还要自己写。
该算子具体实现方法:
// anny.cpp: implementation of the Canny class.
//
//////////////////////////////////////////////////////////////////////
dTemp[i]=new double[iWidth];
//获得模板长度和模板的各个权值
MakeGauss(&pdKernel,&iWindowSize);
//得到模板的一半长度
iHalfLen=iWindowSize/2;
//对图像对水方向根据模板进行平滑
for(i=0;i<iHeight;i++)
//对原图象进行滤波
GaussionSmooth();
//计算X,Y方向上的方向导数
DirGrad(iGradX,iGradY);
//计算梯度的幅度
GradExtent(iGradX,iGradY,iExtent);
//应用non-maximum抑制
NonMaxSuppress(iExtent,iGradX,iGradY,iEdgePoint);

边缘检测算子(sobel and roberts)

边缘检测算子(sobel and roberts)

Sobel 边缘检测算子%sobel 边缘检测 clc;clear all ; close all ;[filename, pathname] = uigetfile({'*.jpg','jpg file(*.jpg)';'*.bmp','bmp file(*.bmp)';'*.*','All file(*.*)'},'pick a file'); if isequal(filename,0)disp('User selected Cancel') elsef ilename=fullfile(pathname, filename);I=imread(filename); [row,col,p]=size(I); I=double(I(:,:,1)); g1=zeros(row,col); g2=zeros(row,col); g =zeros(row,col);for i=2:row-1 for j=2:col-1g1(i,j) = I(i-1,j-1)+2*I(i,j-1)+I(i+1,j-1) - I(i-1,j+1)-2*I(i,j+1)-I(i+1,j+1); g2(i,j) = I(i-1,j-1)+2*I(i-1,j)+I(i-1,j+1) - I(i+1,j-1)-2*I(i+1,j)-I(i+1,j+1); end endg1=abs(g1); g2=abs(g2); % g=g1+g2;(c) sobel 算子检测结果 (a) 原图 (b) 竖直方向算子检测结果(d) 水平方向算子检测结果1 0 -12 0 -2 1-11 2 1 0 0 0 -1-2-1(a) 竖直方向检测算子 (b) 水平方向检测算子for i=1:row for j=1:colif g1(i,j) > g2(i,j) g(i,j) = g1(i,j); elseg(i,j) = g2(i,j); end end endfigure,imshow(uint8(I));figure,imshow(uint8(g1));title('竖直方向'); figure,imshow(uint8(g2));title('水平方向'); figure,imshow(uint8(g)); endsobel 算子可以提供较精确的边缘方向估计Roberts 算子Roberts 算子实现简单,定位精度较准确。

opencv——边缘检测算法(总结)

opencv——边缘检测算法(总结)

opencv——边缘检测算法(总结)前⾔耐⼼看完⼀定会有收获的,⼤部分内容也会在代码中体现,结合理论知识和代码进⾏理解会更有效。

代码⽤opencv4.5.1(c++)版实现⼀、边缘检测算法边缘检测算法是指利⽤灰度值的不连续性质,以灰度突变为基础分割出⽬标区域。

对铝铸件表⾯进⾏成像后会产⽣⼀些带缺陷的区域,这些区域的灰度值⽐较低,与背景图像相⽐在灰度上会有突变,这是由于这些区域对光线产⽣散射所引起的。

因此边缘检测算⼦可以⽤来对特征的提取。

1、⼀阶算⼦⼀种是基于⼀阶微分的算⼦,也称基于搜索的算⼦,⾸先通过⼀阶导数计算边缘强度,然后采⽤梯度的⽅向来对边缘的局部⽅向进⾏寻找,同时根据该⽅向来寻找出局部梯度模的最⼤值,由此定位边缘,如Roberts Cross算⼦,Prewitt算⼦Sobel算⼦,Kirsch算⼦,Canny算⼦,罗盘算⼦等;图像中的边缘区域,像素值会发⽣“跳跃”,对这些像素求导,在其⼀阶导数在边缘位置为极值,这就是Sobel算⼦使⽤的原理——极值处就是边缘。

2、⼆阶算⼦另⼀种是基于⼆阶微分的算⼦,也称基于零交叉的算⼦,通过寻找由图像得到的⼆阶导数的过零点来定位检测边缘,如Marr-Hildreth算⼦,Laplacian算⼦,LOG算⼦等。

如果对像素值求⼆阶导数,会发现边缘处的导数值为0。

⼆、⼀阶算⼦分析⼀阶微分算⼦进⾏边缘检测的思路⼤致就是通过指定⼤⼩的核(kernal)(也称为算⼦)与图像进⾏卷积,将得到的梯度进⾏平⽅和或者最⼤值作为新的梯度赋值给对应的像素点,不同的⼀阶微分算⼦主要的不同在于其算⼦即核的元素不同以及核的⼤⼩不⼀样以下是连续函数的⼀阶导数求导公式:因为图像是⼀个⾯,就相当于是灰度值关于x,y两个⽅向的函数,要求某⼀点的导数,则是各个⽅向的偏导数的平⽅和再进⾏开⽅运算。

离散函数的⼀阶导数公式:y'=[y(x0+h)-y(x0-h)]/(2h);这是⼀维函数的⼀阶求导,h是步长,在图像处理中⼀般为1⾸先复习⼀下什么是卷积?卷积就是对应的元素相乘再进⾏累加的过程实例图⽚:1、Roberts算⼦Robert算⼦是⽤于求解对⾓线⽅向的梯度,因为根据算⼦GX和GY的元素设置可以看到,只有对⾓线上的元素⾮零,其本质就是以对⾓线作为差分的⽅向来检测。

几种边缘检测算子比较

几种边缘检测算子比较

常用的检测算子有:(1)微分算子(2)拉普拉斯高斯算子(3)canny算子微分算子Sobel算子, Robert算子,prewitt算子比拟Sobel算子是滤波算子的形式来提取边缘。

X,Y方向各用一个模板,两个模板组合起来构成1个梯度算子。

X方向模板对垂直边缘影响最大,Y方向模板对水平边缘影响最大。

Robert算子是一种梯度算子,它用穿插的差分表示梯度,是一种利用局部差分算子寻找边缘的算子,对具有陡峭的低噪声的图像效果最好。

prewitt算子是加权平均算子,对噪声有抑制作用,但是像素平均相当于对图像进展地同滤波,所以prewitt算子对边缘的定位不如robert算子。

源程序:i=imread('tanke.jpg');i2=im2double(i);ihd=rgb2gray(i2);[thr,sorh,keepapp]=ddencmp('den','wv',ihd);ixc=wdencmp('gbl',ihd,'sym4',2,thr,sorh,keepapp);figure,imshow(ixc),title('消噪后图像');k2=medfilt2(ixc,[7 7]);figure,imshow(k2),title('中值滤波');isuo=imresize(k2,0.25,'bicubic');%sobert、robert和prewitt算子检测图像边缘esobel=edge(isuo,'sobel');erob=edge(isuo,'roberts');eprew=edge(isuo,'prewitt');subplot(2,2,1);imshow(isuo);title('前期处理图像');subplot(2,2,2);imshow(esobel);title('sobel算子提取');subplot(2,2,3);imshow(erob);title('roberts算子提取');subplot(2,2,4);imshow(eprew);title('prewitt 算子提取'); 程序运行结果:拉普拉斯高斯算子拉普拉斯高斯算子是一种二阶导数算子,将在边缘处产生一个陡峭的零穿插。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用的检测算子有:
(1)微分算子
(2)拉普拉斯高斯算子
(3)canny算子
微分算子
Sobel算子, Robert算子,prewitt算子比较
Sobel算子是滤波算子的形式来提取边缘。

X,Y方向各用一个模板,两个模板组合起来构成1个梯度算子。

X方向模板对垂直边缘影响最大,Y方向模板对水平边缘影响最大。

Robert算子是一种梯度算子,它用交叉的差分表示梯度,是一种利用局部差分算子寻找边缘的算子,对具有陡峭的低噪声的图像效果最好。

prewitt算子是加权平均算子,对噪声有抑制作用,但是像素平均相当于对图像进行地同滤波,所以prewitt算子对边缘的定位不如robert算子。

源程序:
i=imread('tanke.jpg');
i2=im2double(i);
ihd=rgb2gray(i2);
[thr,sorh,keepapp]=ddencmp('den','wv',ihd);
ixc=wdencmp('gbl',ihd,'sym4',2,thr,sorh,keepapp);
figure,imshow(ixc),title('消噪后图像');
k2=medfilt2(ixc,[7 7]);
figure,imshow(k2),title('中值滤波');
isuo=imresize(k2,0.25,'bicubic');
%sobert、robert和prewitt算子检测图像边缘
esobel=edge(isuo,'sobel');
erob=edge(isuo,'roberts');
eprew=edge(isuo,'prewitt');
subplot(2,2,1);
imshow(isuo);title('前期处理图像');
subplot(2,2,2);
imshow(esobel);title('sobel算子提取');
subplot(2,2,3);
imshow(erob);title('roberts算子提取');
subplot(2,2,4);
imshow(eprew);title('prewitt 算子提取'); 程序运行结果:
拉普拉斯高斯算子
拉普拉斯高斯算子是一种二阶导数算子,将在边缘处产生一个陡峭的零交叉。

前面介绍的几种梯度法具有方向性,不能对各种走向的边缘都具有相同的增强效果。

但是Laplacian
算子是各向同性的,能对任何走向的界线和线条进行锐化,无方向性。

这是拉普拉斯算子区别于其他算法的最大优点。

源程序:

期处理图像
sobel 算子提取
roberts 算子提取prewitt 算子提取
elog=edge(isuo,'log');
imshow(elog);title('log算子提取');
运行结果:
canny算子
Canny边缘检测是一种比较新的边缘检测算子,具有很好的边缘监测性能,在图像处理中得到了越来越广泛的应用。

源程序:
ecanny=edge(isuo,'canny');
imshow(ecanny);title('canny算子提取');
程序运行结果:
边缘检测结果比较
Roberts算子检测方法对具有陡峭的低噪声的图像处理效果较好,但是利用roberts算子提取边缘的结果是边缘比较粗,因此边缘的定位不是很准确。

Sobel算子检测方法对灰度渐变和噪声较多的图像处理效果较好,sobel 算子对边缘定位不是很准确,图像的边缘不止一个像素。

Prewitt算子检测方法对灰度渐变和噪声较多的图像处理效果较好。

但边缘较宽,而且间断点多。

Laplacian算子法对噪声比较敏感,所以很少用该算子检测边缘,而是用来判断边缘像素视为与图像的明区还是暗区。

Canny方法不容易受噪声干扰,能够检测到真正的弱边缘。

优点在于,使用两种不同的阈值分别检测强边缘和弱边缘,并且当弱边缘和强边缘相连时,才将弱边缘包含在输出图像中。

相关文档
最新文档