几种边缘检测算子的比较

合集下载

LOG与Canny边缘检测比较

LOG与Canny边缘检测比较
数字图像出技术的迅猛发展,使其应用前景的得到了不可限量的扩展。如今 各行各业都在积极发展与图像相关的技术,数字图像处理逐渐凸显出其魅力。其 应用如医学影像,航天航空,无人驾驶,自动导航,工业控制,导弹制导,文化 艺术等。 边缘检测技术在图像处理和计算机视觉等领域起着重要的作用,是图像 分析,模式识别,目标检测与分割等的前期处理。前期边缘检测的好坏,直接影 响后期更高级处理的精度。 一.图像边缘检测概述 1. 边缘的含义 在数字图像中, 边缘是指图像局部变化最显著的部分,边缘主要存在于目标 与目标,目标与背景之间,是图像局部特性的不连续性,如灰度的突变、纹理结 构的突变、颜色的突变等。尽管图像的边缘点产生的原因各不相同,但他们都是 图形上灰度不连续或灰度急剧变化的点, 图像边缘分为阶跃状、 斜坡状和屋顶状。 2. 边缘检测的基本方法 一般图像边缘检测方法主要有如下四个步骤: (1) 图像滤波: 传统边缘检测算法主要是基于图像强度的一阶和二阶导数, 但导数的计算对噪声很敏感, 因此必须使用滤波器来改善与噪声有关的边缘检测 器的性能。 需要指出的是, 大多数滤波器在降低噪声的同时也造成了边缘强度的 损失,因此,在增强边缘和降低噪声之间需要一个折衷的选择。 (2)图像增强:增强边缘的基础是确定图像各点邻域强度的变化值。增强 算法可以将邻域(或局部)强度值有显著变化的点突显出来。边缘增强一般是通过 计算梯度的幅值来完成的。 (3)图像检测:在图像中有许多点的梯度幅值比较大,而这些点在特定的 应用领域中并不都是边缘, 所以应该用某种方法来确定哪些点是边缘点。最简单 的边缘检测判断依据是梯度幅值。 (4)图像定位:如果某一应用场合要求确定边缘位置,则边缘的位置可在 子像素分辨率上来估计,边缘的方位也可以被估计出来。 3.边缘检测算子 边缘检测算子有许多种,在这里我们只讨论 LOG 边缘检测算子和 CANNY 边缘检测算子。 边缘检测算子是一组用于亮度函数中定位变化的非常重要的局部图像预处 理方法,边缘是亮度函数发生急剧变化的位置。 边缘是赋给单个像素的性质, 用图像函数在该像素一个邻域处的特性来计算。 它是一个具有幅值(强度)和方向的矢量。边缘的幅值是梯度的幅值,边缘的方 向是梯度方向旋转—90 度的方向。梯度方向是函数最大增长的方向。 (1)LOG 边缘检测算子 在 20 世纪 70 年代,Marr 理论根据神经生理学实验得出了以下结论:物体 的边界是将亮度图像与其解释连接起来的最重要线索。 边缘检测技术在当时是基 于很小邻域的卷积, 只对特殊图像效果好。这些边缘检测子的主要缺点是它们依

图像识别中的轮廓提取算法探索(七)

图像识别中的轮廓提取算法探索(七)

图像识别中的轮廓提取算法探索引言:图像识别技术如今已经广泛应用于各个领域,其关键之一就是图像中的轮廓提取算法。

轮廓提取的准确与否直接影响到图像识别的效果。

本文将探索图像识别中常用的轮廓提取算法,并对其原理和优缺点进行分析。

一、边缘检测算法边缘检测是图像处理中最基础的一步,是进行轮廓提取的前提。

常用的边缘检测算法有Sobel算子、Laplacian算子和Canny算子等。

1. Sobel算子Sobel算子是一种基于梯度的边缘检测算法,其原理是通过计算每个像素点的梯度值来判断其是否为边缘点。

然后根据梯度值的大小确定边缘的强度,进而提取轮廓。

Sobel算子的优点是计算简单,对噪声鲁棒性强。

但其缺点也较为明显,容易产生边缘断裂的情况,并且对角线边缘检测效果较差。

2. Laplacian算子Laplacian算子是一种基于二阶导数的边缘检测算法,其原理是通过计算图像中每个像素点的二阶导数来判断其是否为边缘点。

Laplacian算子的优点是能够检测出边缘的交叉点,能够更精准地定位边缘。

但其缺点是对噪声比较敏感,容易产生误检。

3. Canny算子Canny算子是一种综合考虑多种因素的边缘检测算法,其原理是通过梯度计算、非极大值抑制和阈值处理来提取目标轮廓。

Canny算子的优点是能够提取清晰且连续的边缘,对噪声抑制效果好。

但其缺点是计算量较大,算法较为复杂。

二、区域生长算法区域生长算法是一种基于种子点的轮廓提取方法,其原理是在图像中选择若干个种子点,然后通过像素点之间的相似性判断来逐渐生长成为一个完整的区域。

区域生长算法的优点是能够提取出连续且相似的轮廓,适用于要求较高的图像识别任务。

但其缺点是对种子点的选择比较敏感,容易受到图像质量和噪声的影响。

三、边缘跟踪算法边缘跟踪算法是一种基于边缘连接的轮廓提取方法,其原理是通过追踪边缘点的连接关系,形成完整的轮廓。

边缘跟踪算法的优点是能够提取出精细的轮廓,并且对噪声抑制效果好。

几种常用边缘检测算法的比较

几种常用边缘检测算法的比较

几种常用边缘检测算法的比较边缘检测是在数字图像上寻找图像亮度变化的过程,它对于图像处理和计算机视觉任务非常重要。

常见的边缘检测算法有Sobel算子、Prewitt算子、Roberts算子和Canny边缘检测算法。

本文将对这几种算法进行比较。

1. Sobel算子:Sobel算子是一种常见的边缘检测算法,它通过计算图像像素点与其邻域像素点之间的差异来检测边缘。

Sobel算子具有简单、快速的优点,可以检测水平和垂直方向的边缘,但对于斜向边缘检测效果较差。

2. Prewitt算子:Prewitt算子也是一种常用的边缘检测算法,它类似于Sobel算子,通过计算图像像素点与其邻域像素点之间的差异来检测边缘。

Prewitt算子可以检测水平、垂直和斜向边缘,但对于斜向边缘的检测结果可能不够精确。

3. Roberts算子:Roberts算子是一种简单的边缘检测算法,它通过计算图像像素点与其对角线方向上的邻域像素点之间的差异来检测边缘。

Roberts算子计算简单,但对于噪声敏感,容易产生干扰边缘。

4. Canny边缘检测算法:Canny边缘检测算法是一种经典的边缘检测算法,它包含多个步骤:高斯滤波、计算梯度、非最大抑制和双阈值处理。

Canny算法具有良好的边缘定位能力,并且对于噪声和细节边缘具有较好的抑制效果。

但Canny算法计算复杂度较高,在处理大规模图像时可能较慢。

综上所述,不同的边缘检测算法具有各自的优缺点。

若要选择适合应用的算法,需要综合考虑图像特点、计算复杂度和应用需求等因素。

如果对图像边缘的方向要求不高,可以选择Sobel或Prewitt算子;如果对图像边缘的方向要求较高,可以选择Canny算法。

另外,为了获得更好的边缘检测结果,通常需要进行适当的预处理,如灰度化、滤波和阈值处理等。

最后,对于不同的应用场景,可能需要使用不同的算法或算法组合来满足特定需求。

Sobel边缘检测算子

Sobel边缘检测算子

经典边缘检测算子比较一各种经典边缘检测算子原理简介图像的边缘对人的视觉具有重要的意义,一般而言,当人们看一个有边缘的物体时,首先感觉到的便是边缘。

灰度或结构等信息的突变处称为边缘。

边缘是一个区域的结束,也是另一个区域的开始,利用该特征可以分割图像。

需要指出的是,检测出的边缘并不等同于实际目标的真实边缘。

由于图像数据时二维的,而实际物体是三维的,从三维到二维的投影必然会造成信息的丢失,再加上成像过程中的光照不均和噪声等因素的影响,使得有边缘的地方不一定能被检测出来,而检测出的边缘也不一定代表实际边缘。

图像的边缘有方向和幅度两个属性,沿边缘方向像素变化平缓,垂直于边缘方向像素变化剧烈。

边缘上的这种变化可以用微分算子检测出来,通常用一阶或两阶导数来检测边缘,如下图所以。

不同的是一阶导数认为最大值对应边缘位置,而二阶导数则以过零点对应边缘位置。

(a )图像灰度变化(b )一阶导数(c )二阶导数基于一阶导数的边缘检测算子包括Roberts 算子、Sobel 算子、Prewitt 算子等,在算法实现过程中,通过22⨯(Roberts 算子)或者33⨯模板作为核与图像中的每个像素点做卷积和运算,然后选取合适的阈值以提取边缘。

拉普拉斯边缘检测算子是基于二阶导数的边缘检测算子,该算子对噪声敏感。

一种改进方式是先对图像进行平滑处理,然后再应用二阶导数的边缘检测算子,其代表是LOG 算子。

前边介绍的边缘检测算子法是基于微分方法的,其依据是图像的边缘对应一阶导数的极大值点和二阶导数的过零点。

Canny 算子是另外一类边缘检测算子,它不是通过微分算子检测边缘,而是在满足一定约束条件下推导出的边缘检测最优化算子。

1 Roberts (罗伯特)边缘检测算子景物的边缘总是以图像中强度的突变形式出现的,所以景物边缘包含着大量的信息。

由于景物的边缘具有十分复杂的形态,因此,最常用的边缘检测方法是所谓的“梯度检测法”。

设(,)f x y 是图像灰度分布函数;(,)s x y 是图像边缘的梯度值;(,)x y ϕ是梯度的方向。

图像边缘检测中的微分算子法及其比较

图像边缘检测中的微分算子法及其比较

与区域( 包括不同色彩 ) 之间。 边缘表明一个特征 区域的终结和另一特征区域的开始 。边缘所分开区 域的内部特征或属性是一致的, 而不同的区域内部 特征或属性是不同的。边缘检测正是利用物体和背 景在某种图像特征上的差异来实现检测 , 这些差异 包括灰度、 颜色或纹理特征, 边缘检测实际上就是检 测图像特征发生变化的位置。 边缘的类型很多, 常见的有以下三种: 第一种是 阶梯形边缘, 其灰度从低跳跃到高; 第二种是屋顶形 边缘, 其灰度从低逐渐到高然后慢慢减小 ; 第三种是 线性边缘, 其灰度呈脉冲跳跃变化。如图 1 所示。
0
引言
边缘检测是图像分析与识别的第一步, 边缘检 测在计算机视觉、 图像分析等应用中起着重要作用 , 图像的其他特征都是由边缘和区域这些基本特征推 导出来的, 边缘检测的效果会直接影响图像的分割 和识别性能。边缘检测法的种类很多, 如微分算子 [1 ] 法、 样板匹配法、 小波检测法、 神经网络法等等 , 每一类检测法又有不同的具体方法。 目前, 微分算 Sobel, Prewitt, Canny, Laplacian, 子法 中 有 Roberts, Log 以及二阶方向导数等算子检测法, 本文仅将讨 论微分算子法中的几个常用算子法 。
图像边缘检测中的微分算子法及其比较
龙 清
( 重庆广播电视集团 ( 总台) ,重庆 401147 )

要: 边缘是图像最基本的特征, 边缘检测是图像分析与识别的重要环节。 基于微分算子的 边缘检测是目前较为常用的边缘检测方法 。通过对 Roberts,Sobel, Prewitt, Canny 和 Log 等几个
2 h( x, y) = [ y) ] * f( x, y) g( x, 2 y) = 其中, g( x,

【OpenCV】边缘检测:Sobel、拉普拉斯算子 .

【OpenCV】边缘检测:Sobel、拉普拉斯算子 .

【OpenCV】边缘检测:Sobel、拉普拉斯算子转自:/xiaowei_cqu/article/details/7829481边缘边缘(edge)是指图像局部强度变化最显著的部分。

主要存在于目标与目标、目标与背景、区域与区域(包括不同色彩)之间,是图像分割、纹理特征和形状特征等图像分析的重要基础。

图像强度的显著变化可分为:∙阶跃变化函数,即图像强度在不连续处的两边的像素灰度值有着显著的差异;∙线条(屋顶)变化函数,即图像强度突然从一个值变化到另一个值,保持一较小行程后又回到原来的值。

图像的边缘有方向和幅度两个属性,沿边缘方向像素变化平缓,垂直于边缘方向像素变化剧烈.边缘上的这种变化可以用微分算子检测出来,通常用一阶或二阶导数来检测边缘。

(a)(b)分别是阶跃函数和屋顶函数的二维图像;(c)(d)是阶跃和屋顶函数的函数图象;(e)(f)对应一阶倒数;(g)(h)是二阶倒数。

一阶导数法:梯度算子对于左图,左侧的边是正的(由暗到亮),右侧的边是负的(由亮到暗)。

对于右图,结论相反。

常数部分为零。

用来检测边是否存在。

梯度算子 Gradient operators 函数f(x,y)在(x,y)处的梯度为一个向量:计算这个向量的大小为:近似为:梯度的方向角为:Sobel算子sobel算子的表示:梯度幅值:用卷积模板来实现:【相关代码】接口[cpp]view plaincopyprint?1.CV_EXPORTS_W void Sobel( InputArray src, OutputArray dst, int ddepth,2.int dx, int dy, int ksize=3,3.double scale=1, double delta=0,4.int borderType=BORDER_DEFAULT );使用[cpp]view plaincopyprint?1./////////////////////////// Sobe l////////////////////////////////////2./// Generate grad_x and grad_y3.Mat grad_x, grad_y;4.Mat abs_grad_x, abs_grad_y;5./// Gradient X6.//Scharr( src_gray, grad_x, ddepth, 1, 0, scale, delta, BORDER_DEFAULT );7.//Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator.8.Sobel( src_gray, grad_x, ddepth, 1, 0, 3, scale, delta, BORDER_DEFAULT );9.convertScaleAbs( grad_x, abs_grad_x );10./// Gradient Y11.//Scharr( src_gray, grad_y, ddepth, 0, 1, scale, delta, BORDER_DEFAULT );12.Sobel( src_gray, grad_y, ddepth, 0, 1, 3, scale, delta, BORDER_DEFAULT );13.convertScaleAbs( grad_y, abs_grad_y );14./// Total Gradient (approximate)15.addWeighted( abs_grad_x, 0.5, abs_grad_y, 0.5, 0, grad );二阶微分法:拉普拉斯二阶微分在亮的一边是负的,在暗的一边是正的。

医学图像处理中的边缘检测与分割算法

医学图像处理中的边缘检测与分割算法

医学图像处理中的边缘检测与分割算法边缘检测与分割是医学图像处理中的重要部分,被广泛应用于疾病诊断、医学影像分析和手术辅助等领域。

边缘检测算法用于提取图像中的边缘信息,而分割算法则可以将图像划分为不同的区域,有助于医生对图像进行进一步分析和诊断。

一、边缘检测算法在医学图像处理中,常用的边缘检测算法包括基于梯度的方法、基于模型的方法和基于机器学习的方法。

1. 基于梯度的方法基于梯度的边缘检测算法通过计算图像中像素点的梯度值来确定边缘位置。

常用的算法包括Sobel算子、Prewitt算子和Canny算子。

Sobel算子是一种常用的离散微分算子,通过在图像中对每个像素点应用Sobel算子矩阵,可以得到图像的x方向和y方向的梯度图像。

通过计算梯度幅值和方向,可以得到边缘的位置和方向。

Prewitt算子与Sobel算子类似,也是一种基于梯度的边缘检测算子。

它通过将图像中的每个像素点与Prewitt算子矩阵进行卷积运算,得到图像的x方向和y方向的梯度图像。

进一步计算梯度幅值和方向,可以确定边缘的位置和方向。

Canny算子是一种经典的边缘检测算法,它采用多步骤的方法来检测边缘。

首先,对图像进行高斯滤波来减少噪声。

然后,计算图像的梯度幅值和方向,进一步剔除非最大值的梯度。

最后,通过设置双阈值来确定真正的边缘。

2. 基于模型的方法基于模型的边缘检测算法借助数学模型来描述边缘的形状和特征。

常用的算法包括基于边缘模型的Snake算法和基于边缘模型的Active Contour算法。

Snake算法(也称为活动轮廓模型)是一种基于曲线的边缘检测算法。

它通过将一条初始曲线沿着图像中的边缘移动,使得曲线更好地贴合真实边缘。

Snake算法考虑了边缘的连续性、平滑性和能量最小化,可以获得较为准确的边缘。

Active Contour算法是Snake算法的进一步发展,引入了图像能量函数。

通过最小化能量函数,可以得到最佳的边缘位置。

Active Contour算法可以自动调整曲线的形状和位置,适应复杂的图像边缘。

图像的边缘检测实验报告

图像的边缘检测实验报告

图像的边缘检测实验报告
《图像的边缘检测实验报告》
图像的边缘检测是计算机视觉领域中的重要技术之一,它可以帮助我们识别图
像中物体的边缘和轮廓,从而实现图像分割、特征提取和目标识别等应用。


本次实验中,我们将对几种常用的边缘检测算法进行比较和分析,以评估它们
在不同场景下的性能和适用性。

首先,我们使用了Sobel算子进行边缘检测。

Sobel算子是一种基于梯度的边缘检测方法,它通过对图像进行卷积操作来寻找像素值变化最大的地方,从而找
到图像中的边缘。

实验结果显示,Sobel算子在一些简单场景下表现良好,但
在复杂背景和噪声干扰较大的情况下效果不佳。

接着,我们尝试了Canny边缘检测算法。

Canny算法是一种多阶段的边缘检测
方法,它通过对图像进行高斯滤波、计算梯度、非极大值抑制和双阈值处理等
步骤来检测图像中的边缘。

实验结果显示,Canny算法在复杂场景下表现出色,能够有效地抑制噪声并找到图像中的真实边缘。

最后,我们还尝试了Laplacian算子和Prewitt算子等其他边缘检测算法,并对
它们的性能进行了比较和分析。

实验结果显示,不同的边缘检测算法在不同场
景下表现出各自的优势和劣势,需要根据具体的应用需求来选择合适的算法。

总的来说,本次实验对图像的边缘检测算法进行了全面的比较和分析,为我们
进一步深入理解和应用这些算法提供了重要的参考和指导。

希望通过这些实验
结果,我们能够更好地利用边缘检测技术来解决实际的图像处理问题,为计算
机视觉领域的发展做出更大的贡献。

基于Matlab的几种常用边缘检测算子的研究

基于Matlab的几种常用边缘检测算子的研究

基于Matlab的几种常用边缘检测算子的研究摘要:图像边缘检测一直以来都是图像处理与分析领域的研究热点,首先简单介绍了边缘检测的原理,重点对具有代表性的图像边缘提取方法进行了讨论,分析了这些算子进行边缘检测的优缺点,以及导致它们效果差异的具体原因。

为了更清楚看出效果,针对标准例图,利用matlab软件,给出了这些算法的仿真实验效果,最后对实验结果进行了分析,这对进一步学习和寻找更好的熟悉图像边缘检测方法具有一定的指导意义。

关键词:边缘检测;robert算子;prewitt算子;sobel算子0 引言在数字图像中,边缘(edge)是指图像局部强度变化最显著的部分,主要存在于目标与背景之间,目标与目标之间和区域与区域(包括不同色彩)之间。

边缘是图像最基本的特征之一,通过对边缘的检测,大大了减少所要处理的图像信息,但是又保留了图像中的物体形状信息,因而边缘检测在图像处理和计算机视觉等领域中有着重要的作用,是图像分析、模式识别的重要部分。

1 边缘检测的原理边缘检测就是利用模板对图像矩阵进行卷积运算。

卷积运算:将用到的图像区域中的每个像素分别于模板(权矩阵)的每个元素对应相乘,所有乘积之和作为区域中心像素的新值。

反映到公式上就是:R=R\-1[]R\-2[]R\-3R\-4[]R\-6[]R\-6R\-7[]R\-8[]R\-9卷积G=G\-1[]G\-2[]G\-3G\-4[]G\-6[]G\-6G\-7[]G\-8[]G\-9图像矩阵模板R\-5(中心像素)=R\-1G\-1+R\-2G\-2+R\-3G\-3+R\-4G\-4+R\-5G\-5+R\-6G\-6+R\-7G\-7+R\-8G\-8+R\-9G\-9为了容易理解边缘检测的原理,本文利用的是一个模板,但对于一个连续图像函数f(x,y),它的一阶导数为两个:分别为沿x轴的Gx和沿y轴的Gy,因此在实际应用中通常利用两个模板来分别进行卷积运算,再取其最大值作为该像素点处的新值。

图像边缘检测各种算子MATLAB实现以及实际应用

图像边缘检测各种算子MATLAB实现以及实际应用

《图像处理中的数学方法》实验报告学生姓名:***教师姓名:曾理学院:数学与统计学院专业:信息与计算科学学号:********联系方式:139****1645梯度和拉普拉斯算子在图像边缘检测中的应用一、数学方法边缘检测最通用的方法是检测灰度值的不连续性,这种不连续性用一阶和二阶导数来检测。

1.(1)一阶导数:一阶导数即为梯度,对于平面上的图像来说,我们只需用到二维函数的梯度,即:∇f=[g xg y]=[ðf ðxðfðy],该向量的幅值:∇f=mag(∇f)=[g x2+g y2]1/2= [(ðf/ðx)2+(ðf/ðy)2]1/2,为简化计算,省略上式平方根,得到近似值∇f≈g x2+g y2;或通过取绝对值来近似,得到:∇f≈|g x|+|g y|。

(2)二阶导数:二阶导数通常用拉普拉斯算子来计算,由二阶微分构成:∇2f(x,y)=ð2f(x,y)ðx2+ð2f(x,y)ðy22.边缘检测的基本思想:(1)寻找灰度的一阶导数的幅度大于某个指定阈值的位置;(2)寻找灰度的二阶导数有零交叉的位置。

3.几种方法简介(1)Sobel边缘检测器:以差分来代替一阶导数。

Sobel边缘检测器使用一个3×3邻域的行和列之间的离散差来计算梯度,其中,每行或每列的中心像素用2来加权,以提供平滑效果。

∇f=[g x2+g y2]1/2={[(z7+2z8+z9)−(z1+2z2+z3)]2+[(z3+2z6+z9)−(z1+2z4+z7)]2}1/2(2)Prewitt边缘检测器:使用下图所示模板来数字化地近似一阶导数。

与Sobel检测器相比,计算上简单一些,但产生的结果中噪声可能会稍微大一些。

g x=(z7+z8+z9)−(z1+z2+z3)g y=(z3+z6+z9)−(z1−z4−z7)(3)Roberts边缘检测器:使用下图所示模板来数字化地将一阶导数近似为相邻像素之间的差,它与前述检测器相比功能有限(非对称,且不能检测多种45°倍数的边缘)。

数字图像边缘检测算子的性能实验比较

数字图像边缘检测算子的性能实验比较
出 了各 自的 优 缺 点 和适 用 范 围。
关键 词 : 字 图像 ; 数 边缘 检 测 ; 算子
中图分类号 :N 1. T 91 3 7
文献标识码 : A
文章编 号 : 0 —0 4 063- 19 0 1 9 34 ( 0 )50 5 - 2 0 2
CHE M i g h N n —z i

: ; 一
3处理 步骤
22R bn 算 子 . oe s
我 们已经知道在点 F ,) , Ok处 梯度 G F ,) 【0k 的幅度为 】
G[(, 】 (F/ ( /k‘ F j =【 0)+ o ) ) a

为 了进 一 步 简化 计 算 , 以取 可


= 一,-), ( I . — 1 . + 1 ; + 一 + + l -+ r — + y1 笔 L +), L —) , . L 一3 一 ,
ofxj】lx( y 1 l fx , [( ,二A x )+ A ( j 1 ,) f , y ,)
数 图 梯 图u - _ 囊 字 像 度 、 可 中



8个 模 板组 成 . 别 记 为 K 、 I K 、3 K 、 5 K 分 0 K 、 2 K 、 4 K 、 6和 K 。 7图
缘部分集中 了图像的大部分信息 , 图像边缘 的确定与提取对于整 个 图像场景 的识别与理解是非常重要的 , 同时也是图像分割所依 赖的重要特 征 . 边缘 检测主要是 图像 的灰度变 化的度量 、 检测和 定位 。本文 主要讨论 了在边缘检测中几中边缘算子的性 能对比。 由于物体 的边缘是 由灰度不连续性所反映的 : 因此一般边缘检测 方法是考察 图像 的每个像素在某个领域内灰度的变化 , 利用边缘 邻近一阶或 二阶方 向导数变化规律来检测边缘 , 这种方法通常称

边缘检测原理(内含三种算法)

边缘检测原理(内含三种算法)

边缘检测原理的论述摘要数字图像处理技术是信息科学中近几十年来发展最为迅速的学科之一。

图像边缘是图像最基本的一种特征,边缘在图像的分析中起着重要的作用。

边缘作为图像的一种基本特征,在图像识别、图像分割、图像增强以及图像压缩等的领域中有较为广泛的应用,其目的就是精确定位边缘,同时更好地抑制噪声。

目前,数字图像处理技术被广泛应用于航空航天、通信、医学及工业生产等领域中。

图像边缘提取的手段多种多样,本文主要通过MATLAB语言编程分别用不同的算子例如Roberts算子、Prewitt算子、Sobel算子、Kirsch算子、Laplacian算子、Log算子和Canny算子等来实现静态图像的边缘检测,并且和检测加入高斯噪声的图像进行对比。

阐述了不同算子在进行图像边缘提取的特点,并在此基础上提出利用小波变换来实现静态图像的边缘检测。

【关键字】图像边缘数字图像边缘检测小波变换背景图像处理就是对图像信息加工以满足人的视觉心理或应用需求的方法。

图像处理方法有光学方法和电子学方法。

从20世纪60年代起随着电子计算机和计算技术的不断提高和普及,数字图像处理进入了高速发展时期,而数字图像处理就是利用数字计算机或其它的硬件设备对图像信息转换而得到的电信号进行某些数学处理以提高图像的实用性。

计算机进行图像处理一般有两个目的:(1)产生更适合人观察和识别的图像。

(2)希望能由计算机自动识别和理解图像。

数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。

边缘是图象最基本的特征.边缘检测在计算机视觉、图象分析等应用中起着重要的作用,是图象分析与识别的重要环节,这是因为子图象的边缘包含了用于识别的有用信息.所以边缘检测是图像分析和模式识别的主要特征提取手段。

所谓边缘是指其周围像素灰度后阶变化或屋顶状变化的那些像素的集合,它存在于目标与背景、目标与目标、区域与区域,基元与基元之间。

基于Matlab的图像边缘检测算法的实现及应用

基于Matlab的图像边缘检测算法的实现及应用

目录摘要 (1)引言 (2)第一章绪论 (3)1.1 课程设计选题的背景及意义 (3)1.2 图像边缘检测的发展现状 (4)第二章边缘检测的基本原理 (5)2.1 基于一阶导数的边缘检测 (8)2.2 基于二阶导的边缘检测 (9)第三章边缘检测算子 (10)3.1 Canny算子 (10)3.2 Roberts梯度算子 (11)3.3 Prewitt算子 (12)3.4 Sobel算子 (13)3.5 Log算子 (14)第四章MATLAB简介 (15)4.1 基本功能 (15)4.2应用领域 (16)第五章编程和调试 (17)5.1 edge函数 (17)5.2 边缘检测的编程实现 (17)第六章总结与体会 (20)参考文献 (21)附录 (22)附录A:程序代码 (22)附录B:各种边缘检测算子得到的边缘图像效果 (23)摘要边缘是图像最基本的特征,包含图像中用于识别的有用信息,边缘检测是数字图像处理中基础而又重要的内容。

该课程设计具体考察了5种经典常用的边缘检测算子,并运用Matlab进行图像处理结果比较。

梯度算子简单有效,LOG算法和Canny边缘检测器能产生较细的边缘。

边缘检测的目的是标识数字图像中灰度变化明显的点,而导函数正好能反映图像灰度变化的显著程度,因而许多方法利用导数来检测边缘。

在分析其算法思想和流程的基础上,利用MATLAB对这5种算法进行了仿真实验,分析了各自的性能和算法特点,比较边缘检测效果并给出了各自的适用范围。

关键词:边缘检测;图像处理;MATLAB仿真如需程序/Word版本,请访问: 嵌入式软件院。

引言边缘检测在图像处理系统中占有重要的作用,其效果直接影响着后续图像处理效果的好坏。

许多数字图像处理直接或间接地依靠边缘检测算法的性能,并且在模式识别、机器人视觉、图像分割、特征提取、图像压缩等方面都把边缘检测作为最基本的工具。

但实际图像中的边缘往往是各种类型的边缘以及它们模糊化后结果的组合,并且在实际图像中存在着不同程度的噪声,各种类型的图像边缘检测算法不断涌现。

图像边缘检测实验报告

图像边缘检测实验报告

图像边缘检测实验报告图像边缘检测实验报告引言:图像边缘检测是计算机视觉领域中一项重要的任务,它在许多应用中都起到关键作用。

边缘是图像中不同区域之间的分界线,它们包含了图像中物体的轮廓和形状信息。

因此,准确地检测和提取图像边缘对于目标识别、图像分割和特征提取等任务至关重要。

实验目的:本实验旨在通过实践探索和理解常用的图像边缘检测算法,并对其性能进行评估。

我们将使用不同的算法对一组测试图像进行边缘检测,并比较它们的结果,以了解它们的优缺点和适用场景。

实验方法:1. 数据准备:我们从公开的图像数据库中选择了一组具有不同特征和复杂度的测试图像。

这些图像包括自然风景、人物肖像和建筑物等多种场景,以覆盖不同的应用场景。

2. 算法选择:我们选择了三种常用的图像边缘检测算法进行实验:Sobel算子、Canny算子和Laplacian算子。

这三种算法在实践中被广泛应用,并且具有不同的特点和适用范围。

3. 实验步骤:a) Sobel算子:我们首先将测试图像转换为灰度图像,然后使用Sobel算子对其进行边缘检测。

Sobel算子是一种基于梯度的算法,它通过计算图像中每个像素点的梯度值来检测边缘。

b) Canny算子:接下来,我们使用Canny算子对同一组测试图像进行边缘检测。

Canny算子是一种基于多阶段处理的算法,它首先使用高斯滤波器对图像进行平滑处理,然后计算梯度和非最大抑制,最后进行边缘连接和阈值处理。

c) Laplacian算子:最后,我们使用Laplacian算子对测试图像进行边缘检测。

Laplacian算子是一种基于二阶导数的算法,它通过计算图像中每个像素点的二阶导数值来检测边缘。

实验结果:通过对实验图像的边缘检测,我们得到了以下结果:1. Sobel算子产生了较为明显的边缘线,但在一些复杂场景下容易产生噪声,并且边缘线有时会断裂。

2. Canny算子在平滑处理后能够准确地检测到图像中的边缘,并且能够消除噪声和断裂的边缘线。

图像处理中各种边缘检测的微分算子简单比较(Sobel,Robert, Prewitt,Laplacian,Canny)

图像处理中各种边缘检测的微分算子简单比较(Sobel,Robert, Prewitt,Laplacian,Canny)
delete iGradY;
for(i=0;i<iHeight;i++)
delete []*(iExtent+i);
delete iExtent;
}
void Canny::GaussionSmooth()
{
int i,j,k; //循环变量
int iWindowSize; //记录模板大小的变量
int iHalfLen; //模板大小的一半
下面算法是基于的算法不可能直接运行,只是我把Canny的具体实现步骤写了出来,若需用还要自己写。
该算子具体实现方法:
// anny.cpp: implementation of the Canny class.
//
//////////////////////////////////////////////////////////////////////
dTemp[i]=new double[iWidth];
//获得模板长度和模板的各个权值
MakeGauss(&pdKernel,&iWindowSize);
//得到模板的一半长度
iHalfLen=iWindowSize/2;
//对图像对水方向根据模板进行平滑
for(i=0;i<iHeight;i++)
//对原图象进行滤波
GaussionSmooth();
//计算X,Y方向上的方向导数
DirGrad(iGradX,iGradY);
//计算梯度的幅度
GradExtent(iGradX,iGradY,iExtent);
//应用non-maximum抑制
NonMaxSuppress(iExtent,iGradX,iGradY,iEdgePoint);

边缘检测 常用 算法

边缘检测 常用 算法

边缘检测是计算机视觉和图像处理中的一项重要任务,它用于识别图像中物体的边界或不同区域之间的边缘。

边缘检测算法通过检测图像中像素强度的快速变化来工作。

以下是一些常用的边缘检测算法:Sobel算子:Sobel边缘检测算法是一种基于一阶导数的离散微分算子,它结合了高斯平滑和微分求导。

Sobel算子对噪声具有平滑作用,提供较为精确的边缘方向信息,但边缘定位精度不够高。

当对精度要求不是很高时,是一种较为常用的边缘检测方法。

Prewitt算子:Prewitt算子是一种一阶微分算子的边缘检测,利用像素点上下、左右邻点的灰度差,在边缘处达到极值检测边缘,去掉部分伪边缘,对噪声具有平滑作用。

其原理是在图像空间利用两个方向模板与图像进行邻域卷积来完成的,这两个方向模板一个检测水平边缘,一个检测垂直边缘。

Canny算子:Canny边缘检测算法是John F. Canny于1986年开发出来的一个多级边缘检测算法。

Canny的目标是找到一个最优的边缘检测算法,最优边缘检测的含义是:好的检测- 算法能够尽可能多地标识出图像中的实际边缘,漏检真实边缘的情况和误检非边缘轮廓的情况都最少。

Laplacian算子:Laplacian算子是一种二阶导数算子,具有旋转不变性,可以满足不同走向的图像边缘锐化要求。

通常其算子的系数之和需要为零。

由于拉普拉斯算子对噪声比较敏感,所以图像一般先经过平滑处理,因为平滑处理会用到拉普拉斯算子,所以通常将平滑处理的过程和拉普拉斯锐化处理的过程合并在一起做,此时平滑处理的滤波器又称为掩模。

Roberts算子:Roberts算子又称为交叉微分算法,它是基于2x2的邻域计算差分的方法。

Roberts算子采用对角线方向相邻两像素之差近似梯度幅值检测边缘。

这些算法各有优缺点,选择哪种算法取决于具体的应用场景和需求。

例如,Canny算子通常被认为是边缘检测的最优算法,但它在计算上可能比Sobel或Prewitt算子更复杂。

图像处理中的边缘检测算法及其应用

图像处理中的边缘检测算法及其应用

图像处理中的边缘检测算法及其应用一、引言图像处理是指利用计算机对数字图像进行编辑、处理和分析的过程,具有广泛的应用领域。

在图像处理中,边缘检测是一项最为基础的任务,其目的是通过识别图像区域中像素强度突变处的变化来提取出图像中的边缘信息。

本文将介绍边缘检测算法的基本原理及其应用。

二、基本原理边缘是图像中像素值发生跳变的位置,例如黑色区域与白色区域的交界处就可以看作是一条边缘。

边缘检测的主要任务是将这些边缘信息提取出来。

边缘检测算法一般可以分为基于梯度的算法和基于二阶导数的算法。

其中基于梯度的算法主要包括Sobel算子、Prewitt算子和Canny算子;而基于二阶导数的算法主要包括Laplacian算子、LoG(Laplacian of Gaussian)算子和DoG(Difference of Gaussian)算子。

1.Sobel算子Sobel算子是一种常用的边缘检测算法,是一种基于梯度的算法。

该算法在x方向和y方向上都使用了3x3的卷积核,它们分别是:Kx = |-2 0 2|-1 0 1-1 -2 -1Ky = | 0 0 0|1 2 1Sobel算子的实现可以通过以下步骤:①将输入图像转为灰度图像;②根据以上卷积核计算x方向和y方向的梯度;③根据以下公式计算梯度幅值和方向:G = sqrt(Gx^2 + Gy^2) (梯度幅值)θ = atan(Gy/Gx) (梯度方向)其中Gx和Gy分别为x方向和y方向上的梯度。

可以看到,Sobel算子比较简单,对噪声具有一定的抑制作用,但是在边缘细节处理上不够精细。

2.Prewitt算子Prewitt算子也是一种基于梯度的边缘检测算法。

其卷积核如下: -1 0 1-1 0 1-1 -1 -1Ky = | 0 0 0|1 1 1实现方法与Sobel算子类似。

3.Canny算子Canny算子是一种基于梯度的边缘检测算法,是目前应用最广泛的边缘检测算法之一。

基于边缘检测的各种算子及其特点

基于边缘检测的各种算子及其特点

g = [ , I , y ) - f ( + 1 , Y ) ] + [ , I , Y ) - f ( , Y + 1 ) ]
( 4 )
t a n =
, c o
G: I :
, Y ) I ’
为了简化计算 , 一般用 以下式 ( 5 ) 来近似代替

要: 图像最基本的特征之 一就是 图像 的边缘 , 它在 图像 的分析、 识 别、 重建中都具有重要 的作
用 。文 中总 结 了基 于边缘检 测 的各 种算 子及 其特 点 , 为 图像 的 分割 、 特征提取、 目标 识 别 等 奠 定 了
良好 的基 础 。
关键词: 图像 ; 边缘检测 ; 算子
2 基 于边缘检 测的算子
边缘检测算子即边缘检测器 , 它是指从图像 中 抽取边缘 ( 边缘点或者是边缘段 ) 集 合的算法。下
面就 分别 介绍 常用 的几 种算 子 。 2 . 1 梯度 算子 图像 的边 缘是 灰 度 值 不 连续 的结 果 , 这 种 不 连
1 边缘检测 的概念
烈变化的像素点 。对 图像进行研究的过程 中, 人们 往往会对某个部分或者特 征感兴趣 , 图像 的边缘作 为图像分析的一种最基本 的依据有着重要 的作用 , 图像边缘检测 的好坏直接关系着图像分 析、 特征提 取、 目 标识别的精确性。通过对 图像 的边缘进行检 测, 可以使感兴趣的目标与背景分离 , 便于分析研究 。

在边缘检测 中, 梯度的大小非常重要。通常将
梯度 的幅度 大小 简称梯 度 , 用 g表示 VG:
( 7 )
Vg = m a g ( v f ) =

( 2 )
上式 中, 是 方 向矢 量 , G是梯 度矢 量 。

[转]几种图像边缘检测算子的比较

[转]几种图像边缘检测算子的比较

[转]⼏种图像边缘检测算⼦的⽐较 不同图像灰度不同,边界处⼀般会有明显的边缘,利⽤此特征可以分割图像。

需要说明的是:边缘和物体间的边界并不等同,边缘指的是图像中像素的值有突变的地⽅,⽽物体间的边界指的是现实场景中的存在于物体之间的边界。

有可能有边缘的地⽅并⾮边界,也有可能边界的地⽅并⽆边缘,因为现实世界中的物体是三维的,⽽图像只具有⼆维信息,从三维到⼆维的投影成像不可避免的会丢失⼀部分信息;另外,成像过程中的光照和噪声也是不可避免的重要因素。

正是因为这些原因,基于边缘的图像分割仍然是当前图像研究中的世界级难题,⽬前研究者正在试图在边缘提取中加⼊⾼层的语义信息。

在实际的图像分割中,往往只⽤到⼀阶和⼆阶导数,虽然,原理上,可以⽤更⾼阶的导数,但是,因为噪声的影响,在纯粹⼆阶的导数操作中就会出现对噪声的敏感现象,三阶以上的导数信息往往失去了应⽤价值。

⼆阶导数还可以说明灰度突变的类型。

在有些情况下,如灰度变化均匀的图像,只利⽤⼀阶导数可能找不到边界,此时⼆阶导数就能提供很有⽤的信息。

⼆阶导数对噪声也⽐较敏感,解决的⽅法是先对图像进⾏平滑滤波,消除部分噪声,再进⾏边缘检测。

不过,利⽤⼆阶导数信息的是基于过零检测的,因此得到的边缘点数⽐较少,有利于后继的处理和识别⼯作。

各种算⼦的存在就是对这种导数分割原理进⾏的实例化计算,是为了在计算过程中直接使⽤的⼀种计算单位。

1.Sobel算⼦其主要⽤于边缘检测,在技术上它是以离散型的差分算⼦,⽤来运算图像亮度函数的梯度的近似值, Sobel算⼦是典型的基于⼀阶导数的边缘检测算⼦,由于该算⼦中引⼊了类似局部平均的运算,因此对噪声具有平滑作⽤,能很好的消除噪声的影响。

Sobel算⼦对于象素的位置的影响做了加权,与Prewitt算⼦、Roberts算⼦相⽐因此效果更好。

Sobel算⼦包含两组3x3的矩阵,分别为横向及纵向模板,将之与图像作平⾯卷积,即可分别得出横向及纵向的亮度差分近似值。

几种边缘检测算子比较

几种边缘检测算子比较

常用的检测算子有:(1)微分算子(2)拉普拉斯高斯算子(3)canny算子微分算子Sobel算子, Robert算子,prewitt算子比拟Sobel算子是滤波算子的形式来提取边缘。

X,Y方向各用一个模板,两个模板组合起来构成1个梯度算子。

X方向模板对垂直边缘影响最大,Y方向模板对水平边缘影响最大。

Robert算子是一种梯度算子,它用穿插的差分表示梯度,是一种利用局部差分算子寻找边缘的算子,对具有陡峭的低噪声的图像效果最好。

prewitt算子是加权平均算子,对噪声有抑制作用,但是像素平均相当于对图像进展地同滤波,所以prewitt算子对边缘的定位不如robert算子。

源程序:i=imread('tanke.jpg');i2=im2double(i);ihd=rgb2gray(i2);[thr,sorh,keepapp]=ddencmp('den','wv',ihd);ixc=wdencmp('gbl',ihd,'sym4',2,thr,sorh,keepapp);figure,imshow(ixc),title('消噪后图像');k2=medfilt2(ixc,[7 7]);figure,imshow(k2),title('中值滤波');isuo=imresize(k2,0.25,'bicubic');%sobert、robert和prewitt算子检测图像边缘esobel=edge(isuo,'sobel');erob=edge(isuo,'roberts');eprew=edge(isuo,'prewitt');subplot(2,2,1);imshow(isuo);title('前期处理图像');subplot(2,2,2);imshow(esobel);title('sobel算子提取');subplot(2,2,3);imshow(erob);title('roberts算子提取');subplot(2,2,4);imshow(eprew);title('prewitt 算子提取'); 程序运行结果:拉普拉斯高斯算子拉普拉斯高斯算子是一种二阶导数算子,将在边缘处产生一个陡峭的零穿插。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

!(",#)$[!%(",#)& !%("’!,#’!)]"’ [!%("’!,#)& !%(",#’!)]" (!)
其 中 %(",#)、%("H!,#)、%(",#H!)和 %("H!,#H!)分别为$领域的坐标,且是具有整数 像素坐标的输入图象;其中的平方根运算使得该处
理类似于人类视觉系统中发生的过程。
234 滤波器有无限长的拖尾,若取得 很 大 尺
寸,将使得计算不堪重负。但随着+@""+C#+的
增加,234滤波器幅值迅速下降,当+ 大于一定程 度时,可以忽略模板的作用,这就为节省计算量创造
了条件。实际计算时,常常取,A, 大小的 234 滤 波器,,#/!。另外,234 滤波器可以近似为两个 指数函数之差,即 D34(D%EE#"#?F#3E&$(4=6>>%6? E=?F&%(?>) 万:方数据
图象的边缘是图象的重要特征,是计算机视觉、 模式识别等的基础,因此边缘检测是图象处理中一 个重要的环节。然而,边缘检测又是图象处理中的 一个难题,由于实际景物图象的边缘往往是各种类 型的边缘及它们模糊化后结果的组合,且实际图象 信号存在着噪声。噪声和边缘都属于高频信号,很 难用频带做取舍。
% 边缘检测
D34(!,,!+)%+!,!+,#;<(’"++!&+,#+)’
卷积,取最大值作为输出值。!"#$%&&算子也产 生 ,幅边缘幅度图象。
+!,!++#;<(’"++!&++#+)
(G)
-, . ,
,,,
-, . ,
...
-, . ,
-, -, -,
图/ !"#$%&&算子
,01 234滤波器
当!,/!+@,0G时,D34 最逼近 234 滤波器。 随着! 的增加,用 D34代替 234减少了计算量。 ,0B H6??I算子
H6??I算子是一阶算子。其方法的实质是用,个 准高斯函数作平滑运算(>@((",#)A$(",#),然后 以带方向的一阶微分算子定位导数最大值。
234滤波器又称 56""78%*9"#&:模板或算子。
$(",#)%
!+$ !"+
&!!+#$+
% !,!1("+!&+#+’,)#;<(’"++!&+#+)
第!期
工矿自动化
425!
"##$年"月
%&’()*+,-&’./&01(*23-*/2&
6075"##$
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
文章编号:!89!:";!<("##$)#!:##;$:#=
几种边缘检测算子的比较
中图分类号:!"#$%
文献标识码:&
’ 引言
人类视觉系统认识目标的过程分为两步:首先, 把图象边缘与背景分离出来;然后,才能知觉到图象 的细节,辨认出图象的轮廓。计算机视觉正是模仿 人类视觉的这个过程。因此在检测物体边缘时,先 对其轮廓点进行粗略检测,然后通过链接规则把原 来检测到的轮廓点连接起来,同时也检测和连接遗 漏的边界点及去除虚假的边界点。
图" D270E算子
!5= F+0G/**算子
F+0G/**算子由下式给出:
(J $()""’)#")!/"
(=)
F+0G/**算子是=I=算子模板。图=所示的"
+..1年第,期
马 艳等:几种边缘检测算子的比较
·BB·
个卷积核!"、!# 形成了 !"#$%&&算子。与 ’()#*算 子的方法一样,图象中的每个点都用这+个核进行
研究[;]6电脑开发与应用,8998,5?(59):5!=6 [1] 竺子民6光电图象处理[7]6武汉:华中理工大学出版
社,89956:5!:=6
(B)
即先对图象平滑,后拉氏变换求二阶微分,等效
平滑后((> ",#)的梯度可以使用+A+一阶有 限差分近似式:
-[.,/]#(([>.,/&,]’([>.,/]& ([>.&,,/&,]’([>.&,,/])/+
0[.,/]#(([>.,/]’([>.&,,/]& ([>.,/&,]’([>.&,,/&,])/+ (J)
理论上很接近1个指数函数的线性组合形成的最佳 边缘算子。在实际工作应用中编程较为复杂且运算
较慢。

(+)若用其它微分法,需要计算不同方向的微 分,而它无方向性,因此可以节省计算量;
(/)它定位精度高,边缘连续性好,可以提取对 比度较弱的边缘点。
234 滤波器也有它的缺点:当边 缘 的 宽 度 小 于 算子宽度时,由于过零点的斜坡融合将会丢失细节。
边缘检测的基本算法有很多,有梯度算子、方向 算子、拉 普 拉 斯 算 子 和 坎 尼(A-&&,)算 子 等 等。 几 种常用的边缘检测方法有属于梯度算子的 C270+*) 算子、D270E算子和 F+0G/**算子、高斯偏导滤波器 (>?@)以及 A-&&,边缘检测器等。 !5! C270+*)算子
张红苹5, 朱 佳8, 齐本胜5, 吴昊旻5, 朱昌平5
(56河海大学计算机及信息工程学院(常州),江苏 常州 85=988; 86河海大学计算机及信息工程学院,江苏 南京 8599:I)
摘要:在煤矿的大门,识别进出运煤的货车是关键。针对人工看管与统计的诸多不便,就智能车牌识别
系统的图象识别提出一些见解,主要是车牌二值化、中值滤波,从而为后续处理提供方便。
智能车牌识别系统是一个对车辆自动检测和识 别的专用计算机视觉系统,该系统能从5幅图象中 自动提取车牌图象,自动分割字符,进而对字符进行 识别。它运用模式识别、人工智能技术,对采集到的 汽车图象进行处理,能够实时准确地自动识别出车 牌的数字、字母及汉字字符,并用计算机可直接运行 的数据形式给出识别结果,使得车辆的电脑化监控 和管理成为现实。
马 艳, 张治辉
(浙江工业大学信息学院,浙江 杭州 =!##!$)
摘要:边缘检测是图象处理中重要的一个环节。文章具体考察了;种常用的检测算子,并加以实现,并 对其特点进行了讨论和比较。梯度算子简单有效,>?@滤波器和 A-&&,算子能产生较细的边缘。实践时要 根据具体情况和要求选择合适的算子。
关键词:图象处理;边缘检测;检测算子;比较
! 几种算子的比较
L()#"&>算 子 定 位 比 较 精 确,但 由 于 不 包 括 平 滑,所以对于噪声比较敏感。!"#$%&&算子和 ’()#* 算子都是一阶的微分算子,而前者是平均滤波,后者 是加权平均滤波且检测的图象边缘可能大于+个像 素。这两者对灰度渐变低噪声的图象有较好的检测 效果,但是对于混合多复杂噪声的图象,处理效果就 不理想了。234 滤波器方法通过检测二阶导数过 零点来判断边缘点。234 滤波器中的! 正比于低 通滤波器的宽度,! 越大,平滑作用越显著,去除噪 声越好,但图象的细节也损失越大,边缘精度也就越 低。所以在边缘定位精度和消除噪声级间存在着矛 盾,应该根据具体问题对噪声水平和边缘点定位精 度 要 求 适 当 选 取!。而 且234方 法 没 有 解 决 如 何
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
组织不同尺度滤波器输出的边缘图为单一的、正确 的边缘图的具体方法。!"##$方法则以一阶导数为
! 结语
基础来判断边缘点。它是一阶传统微分中检测阶跃
型边缘效果最好的算子之一。它比 %&’()*+算子、 ,&’(-算子和 .)(/0**算子极小值算法的去噪能力都 要强,但它也容易平滑掉一些边缘信息。文献[1]以 小波分析来证明 !"##$方法比 234 方法具有更好 的边缘检测效果。
C270+*)算子是 "I" 算子模板。图 ! 所示的 "个卷积核形成了 C270+*)算子。图象中的每一个 点都用这"个核做卷积。
!
#
#
!
#
:!
:!
#
图! C270+*)算子
!5" D270E算子
相关文档
最新文档