matlab 伪彩色增强

合集下载

基于MatlabGUI的医学灰度图像伪彩色增强判读系统

基于MatlabGUI的医学灰度图像伪彩色增强判读系统

基于MatlabGUI的医学灰度图像伪彩色增强判读系统针对医学图像中灰度图像病灶细节难以快速准确判断的缺点,伪彩色化处理可显著提高图像的视觉阅读性,满足医学专业判读需求。

采用Matlab图形用户界面设计的灰度图像伪彩色增强判读系统,能够实时调节RGB三色通道参数,实现X光片、CT等医学灰度图像伪彩色处理,实验证明余弦灰度变换函数能够取得较好效果。

标签:伪彩色;Matlab GUI;图像增强;余弦算子1 引言目前B超成像、计算机断层扫描成像(CT)、X射线成像、磁共振成像(MRI)等医学领域获得的原始图像多为灰度图像,常用8位256个灰度级或16位65536个灰度级表示,分辨率已经相当高,但是人眼能够识别的灰度级数却仅几十个,这在灰度差别很小的情况下,图像判读人员无法快速准确地发现病灶或奇异点,信息识别量损失很大,而人眼对色彩的识别却多达上千种,因此,把一副灰度图像转换为一副彩色图像能够大大提高其信息识别率和判读乐趣,这种灰度图像伪彩色化的方法在医学领域有着极为重要的应用价值。

灰度图像伪彩色化增强方法主要有密度分割法、灰度-彩色变换法、频率域滤波法[1-4],本文基于Matlab图形用户界面GUI,采用灰度-彩色变换法设计了一种医学灰度图像伪彩色增强判读系统,该系统采用了余弦函数对色彩变量进行灰度调节,能够对获取的各类灰度图像进行变色增强,细节识别能力强,色彩效果好,而且实时可调。

2 系统总体设计Matlab凭借数据处理能力强、函数明了易用、模型构建方便等特点,在我国各大学院校和科研院所得到了广泛的应用,成为了本科生、研究生进行科研数据处理的有力工具,其图形用户界面GUI具有良好的界面程序开发能力,较V++和C++等传统程序编写直白,图像处理色彩效果好。

GUI界面设计有两种方案,可以采用M文件编写完成,也可以采用Matlab 自带的GUI(Graphical User Interface)图像用户界面设计向导完成,下面采用MatlabR2014a版本,选择第二种方案进行程序界面设计。

基于MATLAB的图像增强处理

基于MATLAB的图像增强处理

灰度变换增强:像素的选择:>> rgb=imread('peppers.png'); >> c=[12 146 410];>> r=[104 156 129];>> pixels=impixel(rgb,c,r);62 34 63166 54 6059 28 47绘制像素灰度分布曲线:>> i=fitsread('solarspectra.fts'); >> imshow(i,[]);>> improfile>> i=imread('liftingbody.png'); >> subplot(1,2,1);imshow(i);>> x=[19 427 416 77];>> y=[96 462 37 33];>> subplot(1,2,2);improfile(i,x,y); >> grid on;绘制图像的等值线:>> i=imread('circuit.tif'); >> subplot(1,2,1);imshow(i); >> subplot(1,2,2);imcontour(i,3);直方图:>> i=imread('pout.tif');>> subplot(1,2,1);imshow(i); >> subplot(1,2,2);imhist(i);图像像素的统计特性:>> i=imread('pout.tif'); >> b=mean2(i)b =110.3037>> c=std2(i)c =23.1811>> j=medfilt2(i);>> r=corr2(i,j)r =0.9959图像的区域属性:>> bw=imread('text.png'); >> l=bwlabel(bw);>> stats=regionprops(l,'all');>> stats(23)ans =Area: 48Centroid: [121.3958 15.8750]BoundingBox: [118.5000 8.5000 6 14]SubarrayIdx: {[9 10 11 12 13 14 15 16 17 18 19 20 21 22] [119 120 121 122 123 124]}MajorAxisLength: 15.5413MinorAxisLength: 5.1684Eccentricity: 0.9431Orientation: -87.3848ConvexHull: [10x2 double]ConvexImage: [14x6 logical]ConvexArea: 67Image: [14x6 logical]FilledImage: [14x6 logical]FilledArea: 48EulerNumber: 1Extrema: [8x2 double]EquivDiameter: 7.8176Solidity: 0.7164Extent: 0.5714PixelIdxList: [48x1 double]PixelList: [48x2 double]灰度变换:线性变换:>> x=imread('forest.tif');>> f0=0;g0=0;>> f1=10;g1=10;>> f2=180;g2=1800;>> f3=255;g3=255;>> figure;plot([f0,f1,f2,f3],[g0,g1,g2,g3]);>> axis tight;>> r1=(g1-g0)/(f1-f0);>> b1=g0-r1*f0;>> r2=(g2-g1)/(f2-f1);>> b2=g1-r2*f1;>> r3=(g3-g2)/(f3-f2);>> b3=g2-r3*f2;>> [m,n]=size(x);>> x1=double(x);>> for i=1:mfor j=1:nf=x1(i,j);g(i,j)=0;if(f>=f1)&(f<=f2)g(i,j)=r1*f+b2;else if(f>=f2)&(f<=f3)g(i,j)=r3*f+b3;end;end;end;end;>> figure;imshow(mat2gray(g))分段线性变换:>> x=imread('forest.tif');>> f0=0;g0=0;>> f1=50;g1=50;>> f2=220;g2=250;>> f3=255;g3=255;>> subplot(1,2,1);plot([f0,f1,f2,f3],[g0,g1,g2,g3]); >> axis tight;>> r1=(g1-g0)/(f1-f0);>> b1=g0-r1*f0;>> r2=(g2-g1)/(f2-f1);>> b2=g1-r2*f1;>> r3=(g3-g2)/(f3-f2);>> b3=g2-r3*f2;>> [m,n]=size(x);>> x1=double(x);>> for i=1:mfor j=1:nf=x1(i,j);g(i,j)=0;if(f>=f1)&(f<=f2)g(i,j)=r1*f+b2;else if(f>=f2)&(f<=f3)g(i,j)=r3*f+b3;end;end;end;end;>> subplot(1,2,2);imshow(mat2gray(g));非线性灰度变换:>> x=imread('forest.tif');>> c=255/log(256);>> x=0:255;>> y=c*log(1+x);>> subplot(1,2,1);plot(x,y);axis tight; >> [m,n]=size(x);>> x1=double(x);>> for i=1:mfor j=1:ng(i,j)=0;g(i,j)=c*log(x1(i,j)+1);end;end;>> subplot(1,2,2);imshow(mat2gray(g));对灰度图像进行灰度值调整:>> p=imread('pout.tif');>> pj=imadjust(p);>> ph=histeq(p);>> pa=adapthisteq(p);>> subplot(1,2,1);imshow(p);>> subplot(1,2,2);imshow(pj);对索引图像进行灰度值调整:>> rgb1=imread('football.jpg');>> rgb2=imadjust(rgb1,[.2 .3 0;.6 .7 1],[]);>> subplot(1,2,1);imshow(rgb1);>> subplot(1,2,2);imshow(rgb2);增加图像的亮度:>> rgb1=imread('football.jpg');>> rgb2=imadjust(rgb1,[.2 .3 0;.6 .7 1],[]);>> subplot(1,2,1);imshow(rgb1);>> subplot(1,2,2);imshow(rgb2);>> clear;>> figure('Renderer','zbuffer');axesm bries;>> text(1.2,-1.8,'Briesemeister projection');>> framem('FlineWidth',1);>> load topo;>> geoshow(topo,topolegend,'DisplayType','texturemap'); >> demcmap(topo);>> set(gcf,'color','w');>> brighten(.5);直方图均衡化:>> i=imread('tire.tif');>> j=histeq(i);>> subplot(2,2,1);imshow(i); >> subplot(2,2,2);imshow(j); >> subplot(2,2,3);imhist(i,64); >> subplot(2,2,4);imhist(j,64);直方图的规定化:>> i=imread('forest.tif');>> h=0:255;>> subplot(2,2,1);imshow(i); >> j=histeq(i,h);>> subplot(2,2,2);imshow(j); >> subplot(2,2,3);imhist(i,64); >> subplot(2,2,4);imhist(j,64);空域滤波增强:平滑滤波器:>> i=imread('cameraman.tif'); >> subplot(2,2,1);imshow(i); >> h=fspecial('motion',20,45); >> mb=imfilter(i,h,'replicate'); >> subplot(2,2,2);imshow(mb); >> h=fspecial('disk',10);>> bl=imfilter(i,h,'replicate'); >> subplot(2,2,3);imshow(bl); >> h=fspecial('unsharp');>> sh=imfilter(i,h,'replicate'); >> subplot(2,2,4);imshow(sh);用各种尺寸的模板平滑图像:>> i=imread('eight.tif');>> j=imnoise(i,'salt & pepper',0.025); >> subplot(2,3,1);imshow(i);>> subplot(2,3,2);imshow(j);>> k1=filter2(fspecial('average',3),j); >> k2=filter2(fspecial('average',5),j); >> k3=filter2(fspecial('average',7),j); >> k4=filter2(fspecial('average',9),j); >> subplot(2,3,3);imshow(uint8(k1)); >> subplot(2,3,4);imshow(uint8(k2)); >> subplot(2,3,5);imshow(uint8(k3)); >> subplot(2,3,6);imshow(uint8(k4));中值滤波器:>> i=imread('cameraman.tif'); >> j1=imnoise(i,'salt & pepper',0.01); >> k1=medfilt2(j1);>> j2=imnoise(i,'gaussian',0.01); >> k2=medfilt2(j2);>> subplot(2,3,1);imshow(i);>> subplot(2,3,2);imshow(j1);>> subplot(2,3,3);imshow(k1);>> subplot(2,3,4);imshow(j2);>> subplot(2,3,5);imshow(k2);>> i=imread('cameraman.tif');>> j1=imnoise(i,'salt & pepper',0.01); >> k1=medfilt2(j1,[6,6]);>> j2=imnoise(i,'gaussian',0.01); >> k2=medfilt2(j2,[6,6]);>> subplot(2,3,1);imshow(i);>> subplot(2,3,2);imshow(j1);>> subplot(2,3,3);imshow(k1,[]); >> subplot(2,3,4);imshow(i);>> subplot(2,3,5);imshow(j2);>> subplot(2,3,6);imshow(k2,[]);带噪声的图像的最小值与最大值滤波图像:>> a=imread('eight.tif');>> b=imnoise(a,'salt & pepper',0.025);>> do=[0 0 1 0 0;0 1 0 1 0;1 0 1 0 1;0 1 0 1 0;0 0 1 0 0]; >> c=ordfilt2(b,1,do);>> d=ordfilt2(b,9,do);>> subplot(2,2,1);imshow(a);>> subplot(2,2,2);imshow(b);>> subplot(2,2,3);imshow(c);>> subplot(2,2,4);imshow(d);自适应滤波器:>> rgb=imread('saturn.png'); >> i=rgb2gray(rgb);>> j=imnoise(i,'gaussian',0,0.025); >> k=wiener2(j,[5 5]);>> subplot(1,3,1);imshow(i); >> subplot(1,3,2);imshow(j); >> subplot(1,3,3);imshow(k);锐化滤波器:线性锐化滤波器:>> i=imread('rice.png');>> h=fspecial('laplacian');>> i2=filter2(h,i);>> subplot(1,2,1);imshow(i); >> subplot(1,2,2);imshow(i2);非线性锐化滤波器:>> [i,map]=imread('eight.tif'); >> subplot(2,2,1);imshow(i,map); >> i=double(i);>> [ix,iy]=gradient(i);>> gm=sqrt(ix.*ix+iy.*iy);>> out1=gm;>> subplot(2,2,2);imshow(out1,map); >> out2=i;>> j=find(gm>=15);>> out2(j)=gm(j);>> subplot(2,2,3);imshow(out2,map); >> out3=i;>> j=find(gm>=20);>> out3(j)=255;>> q=find(gm<20);>> out3(q)=0;>> subplot(2,2,4);imshow(out3,map);>> i=imread('eight.tif');>> subplot(2,2,1);imshow(i); >> h1=fspecial('sobel');>> i1=filter2(h1,i);>> h2=fspecial('prewitt'); >> i2=filter2(h2,i);>> h3=fspecial('log');>> i3=filter2(h3,i);>> subplot(2,2,2);imshow(i1); >> subplot(2,2,3);imshow(i2); >> subplot(2,2,4);imshow(i3);频域滤波增强:低通滤波:>> i1=imread('eight.tif');>> i2=imnoise(i1,'salt & pepper'); >> f=double(i2);>> g=fft2(f);>> g=fftshift(g);>> [N1,N2]=size(g);>> n=2;>> d0=50;>> n1=fix(N1/2);>> n2=fix(N2/2);>> for i=1:N1for j=2:N2d=sqrt((i-n1)^2+(j-n2)^2);h=1/(1+0.414*(d/d0)^(2*n));s1(i,j)=h*g(i,j);if(g(i,j)>50)s2(i,j)=0;elses2(i,j)=g(i,j);end;end;end;>> s1=ifftshift(s1);>> s2=ifftshift(s2);>> x2=ifft2(s1);>> x3=uint8(real(x2));>> x4=ifft2(s2);>> x5=uint8(real(x4));>> subplot(2,2,1);imshow(i1); >> subplot(2,2,2);imshow(i2); >> subplot(2,2,3);imshow(x3); >> subplot(2,2,4);imshow(x5);高通滤波器:>> j=imread('rice.png');>> subplot(2,3,1);imshow(uint8(j)); >> j=double(j);>> f=fft2(j);>> g=fftshift(f);>> [M,N]=size(f);>> n1=floor(M/2);>> n2=floor(N/2);>> d0=20;>> for i=1:Mfor j=1:Nd=sqrt((i-n1)^2+(j-n2)^2);if d>=d0h1=1;h2=1+0.5;elseh1=0;h2=0.5;end;g1(i,j)=h1*g(i,j);g2(i,j)=h2*g(i,j);end;end;>> g1=ifftshift(g1);>> g1=uint8(real(ifft2(g1)));>> g2=ifftshift(g2);>> g2=uint8(real(ifft2(g2)));>> subplot(2,3,2);imshow(g1);>> subplot(2,3,3);imshow(g2);>> n=2;>> d0=20;>> for i=1:Mfor j=1:Nd=sqrt((i-n1)^2+(j-n2)^2);if d==0h1=0;h2=.5;elseh1=1/(1+(d0/d)^(2*n));h2=1/(1+(d0/d)^(2*n))+0.5;end;gg1(i,j)=h1*g(i,j);gg2(i,j)=h2*g(i,j);end;end;>> gg1=ifftshift(gg1);>> gg1=uint8(real(ifft2(gg1)));>> gg2=ifftshift(gg2);>> gg2=uint8(real(ifft2(gg2)));>> subplot(2,3,4);imshow(gg1);>> subplot(2,3,5);imshow(gg2);同态滤波器:>> i=imread('eight.tif');>> j=double(i);>> f=fft2(j);>> g=fftshift(f);>> [M,N]=size(f);>> d0=10;>> r1=0.5;>> rh=2;>> c=4;>> n1=floor(M/2);>> n2=floor(N/2);>> for i=1:Mfor j=1:Nd=sqrt((i-n1)^2+(j-n2)^2);h=(rh-r1)*(1-exp(-c*(d.^2/d0.^2)))+r1;end;end;>> g=ifftshift(g);>> g=uint8(real(ifft2(g)));>> subplot(1,2,1);imshow(i);>> subplot(1,2,2);imshow(g);彩色增强:利用密度分割法进行伪彩色增强:>> a=imread('eight.tif');>> subplot(1,2,1);imshow(a);>> c=zeros(size(a));>> pos=find(a<20);>> c(pos)=a(pos);>> b(:,:,3)=c;>> c=zeros(size(a));>> pos=find((a>20)&(a<40));>> c(pos)=a(pos);>> b(:,:,2)=c;>> c=zeros(size(a));>> pos=find(a>=40);>> c(pos)=a(pos);>> b(:,:,1)=c;>> b=uint8(b);>> subplot(1,2,2);imshow(b);真彩色增强:>> rgb=imread('peppers.png');>> subplot(2,2,1);imshow(rgb); >> subplot(2,2,2);imshow(rgb(:,:,1)); >> subplot(2,2,3);imshow(rgb(:,:,2)); >> subplot(2,2,4);imshow(rgb(:,:,3));。

利用MATLAB对图像进行处理

利用MATLAB对图像进行处理

光电图像处理2021年 4月(一)彩色图像的增强1.研究目的及意义人类传递的信息有70%是视觉信息.图像信息是传递信息的重要媒体和手段。

但是在生活中,常常由于光线不充足,在获得图像后会发现图像亮度不够,导致景物无法看清楚。

为了研究和分析图像,需对图像进行必要的处理。

对于数字图像常用的处理方法就是用图像增强技术来改善图像的像质。

图像增强是指按特定的需要突出一幅图像的某些信息,同时,削弱或去除某些不需要的信息的处理方法。

其主要目的是使处理后的图像对某种特定的应用来说,比原始图像更适用。

处理的结果使图像更适合于人的视觉特性或机器的识别系统。

图像增强技术主要是针对灰度图来作用。

其手段是修改直方图。

在图像处理中色彩的运用是很重要的,原因有两个:第一,在自动图像分析中色彩是一个有力的描述工具,它通常可使从一个场景中识别和抽取日标的处理得到简化;第二,人们对图像进行分析时,人眼区别的灰度层次大约只有二十几种,但却能够识别成千上万的色彩。

彩色图像中含有较大的信息量;而且人眼对色彩的识别和区分能力可以达到灰度辨别能力的百倍以上,所以彩色图像的增强对从图像中获得更多的信息有着非常重要的作用。

2.理论基础图像增强根据图像的模糊情况采用各种特殊的技术突出图像中的某些信息,削弱或消除无关信息达到强调图像的整体或局部特征的目的。

常用的图像增强技术有直方图修改、图像平滑滤波、图像锐化等。

图像增强技术主要分为两类:频域增强法和空域增强法。

频域增强法主要是利用各种频域滤波器进行图像平滑或锐化处理,然后进行变换域反变換来增强图像;空域增强法是直接针对图像中的像素,对图像的灰度进行处理。

空域法属于直接增强的方法,它包括扩展对比度的灰度变换和直方图变换.清除噪声的平滑法和增强边缘的锐化法。

图像增强原理:设原始图像在(x,y)处的灰度为f(x,y),而增强后的灰度为g(x,y),则图像的增强可表示为将在(x,y)处的灰度f(x,y)映射为g(x,y),可表示为g(x,y)=T[f(x,y)],针对灰度图像。

Matlab图像处理工具箱使用简介

Matlab图像处理工具箱使用简介

三天三夜72小时:(2015.9.11~13)读懂题目-》查找文献资料-》选择题目-》重查找文献资料-》精读其中几篇-》查找资料的资料。

(资料查找+现学现用)要想竞赛获奖,所写论文中需要亮点和特色。

参考资料:《Matlab图像处理与应用》高成主编,2007.04 校超星数字图书馆可阅读。

Matlab图像处理工具箱使用简介基本概念:数字图像指的是一个被采样和量化后的二维函数,采用等距离矩形网格采样,对幅度进行等间量化而成。

至此,一幅数字图像是一个被量化的采样数值的二维矩阵。

将一幅二维的图像通过有限个离散点来表示就成为了数字图像,其中的每个点称为图像元素,即像素。

数字图像处理图像处理:图像输入→图像增强/复原/编码等→图像输出图像识别:图像输入→图像预处理→图像分割→特征提取→图像分类→识别结果输出图像理解:图像输入→图像预处理→图像描述→图像分析和理解→图像解释图像处理算法被认作数学建模十大算法之一。

学、信息论、控制论、物理学、心理学和生理学等学科的一门综合性边缘科学。

随着计算机科学的迅猛发展,以及与近代发展的新理论如小波分析、马尔柯夫随机场、分形学、数学形态学、人工智能和人工神经网络等的结合,计算机图像处理与分析近年来获得了长足的进展,呈现出强大的生命力。

已在科学研究、工农业生产、军事技术、医疗卫生、教育等许多领域得到广泛应用,产生了巨大的经济和社会效益,对推动社会发展,改善人们生活水平都起到了重要的作用。

计算机图像处理的应用领域计算机图像处理和计算机、多媒体、智能机器人、专家系统等技术的发展紧密相关。

近年来计算机识别、理解图像的技术发展很快,也就是图像处理的目的除了直接供人观看(如医学图像是为医生观看作诊断)外,还进一步发展了与计算机视觉有关的应用,如邮件自动分检,车辆自动驾驶等。

下面罗列—些典型应用实例,而实际应用更广。

1.在生物医学中的应用主要包括显微图像处理;DNA显示分析;红、白血球分析计数;虫卵及组织切片的分析;癌细胞识别;染色体分析;心血管数字减影及其他减影技术;内脏大小形状及异常检测;微循环的分析判断;心脏活动的动态分析;热像、红外像分析;x光照片增强、冻结及伪彩色增强;超声图像成像、冻结、增强及伪彩色处理;CT、MRI、γ射线照相机、正电子和质子CT的应用;专家2.遥感航天中的应用军事侦察、定位、导航、指挥等应用;多光谱卫星图像分析,地形、地图、国土普查;地质、矿藏勘探;森林资源探查、分类、防火;水利资源探查,洪水泛滥监测;海洋、渔业方面如温度、渔群的监测、预报;农业方面如谷物估产、病虫害调查;自然灾害、环境污染的监测,气象、天气预报图的合成分折预报;天文、太空星体的探测及分析;交通、空中管理、铁路选线等。

matlab图像增强_课件

matlab图像增强_课件

直接灰度变换
3. 对数变换
要消除这种因动态范围太大而引起的失真,一种 有效的方法是对原图像的动态范围进行压缩,最常用 的是借助对数形式对动态范围进行调整,其数学表达 式如下:
t C log(1 | s |)
a
b
c
d
18
直接灰度变换
4、灰度切割 目的:增强特定范围的对比度,用来突出图像中特定 灰度范围的亮度。 一种方法:是对感兴趣的灰度级以较大的灰度值t2 显示而对另外的灰度级则以较小的灰度值t1来显示。 s1 s s 2 t 2 t 其它 t1 另一种方法:对感兴趣的灰度级以较大的灰度值 进行显示而其他的灰度级则保持不变。
第五章 图像增强
1
5.1


2
图像增强方法
以图 像 “得 增 好到 强 ”对 的 具 , 基于像素的点处理 目 更体 的 应 “ 是 空域方法 有用 对 来 用 基于模板的空域滤波 图 ”说 像 的视 进 图觉 行 频域方法:高通、低通、带通 效 像 带阻、同态滤波 果加 更工 ,
概述
例:
3
a)原图
结果
原始直方图
规定直方图
结果直方图
44
直方图规定化
效果
原始图像
规定直方图
规定化后的图像
规定化后直方图
45
46
直方图修正的特点

直方图均衡化的特点是计算相对简单,能自动 的增强整个图像的对比度,但具体的增强效果 不易控制,处理的结果也是得到全局均衡化的 直方图。
直方图规定化的特点:计算量大,有选择的增 强图像特定灰度范围,更灵活、更有针对性, 若能正确选择规定化的增强函数,就可以得到 比直方图均衡化更好的效果。

伪彩色增强算法应用

伪彩色增强算法应用

数字图像处理课程设计学号:学生所在学院:学生姓名:任课教师:教师所在学院:2012年6月2011级伪彩色增强算法的应用南昌航空大学控制工程专业摘要:伪彩色增强是把黑白图像的各个不同灰度级按照线性或非线性的映射函数变换成不同的彩色,得到一幅彩色图像的技术。

使原图像细节更易辨认,目标更容易识别。

本文应用密度分割法和空间域灰度级一彩色变换法对灰度图像进行处理。

人眼一般能够区分的灰度级只有二十几个,而对不同亮度和色调的彩色图像分辨能力却可达到灰度分辨能力的百倍以上。

利用这个特性人们就可以把人眼不敏感的灰度信号映射为人眼灵敏的彩色信号,从而增强了人对图像中细微变化的分辨力。

【关键词】伪彩色;灰度分割;图像增强;彩色转换;1.伪彩色处理的原理伪彩色处理技术,处理的对象虽然是灰度图像,但生成的结果却是彩色图像,众所周知,人的视觉系统对色彩非常敏感,人眼一般能区分的灰度级只有二十多个,但能区分不同亮度、色度和饱和度的几千种颜色人的彩色。

根据人的这一特点,可将彩色用于增强中,以提高图像的可鉴别性。

因此,如果能将一幅灰度图像变成彩色图像,就可以达到增强图像的视觉效果。

常用的伪彩色处理技术的实现方法有多种,如灰度分割法、灰度级一彩色变换法等等。

密度分割法是把灰度图像的灰度级从黑到白分成N个区间,给每个区间指定一种彩色,这样便可以把一幅灰度图像变成一幅伪彩色图像。

该方法比较简单、直观。

缺点是变换出的彩色数目有限。

空间域灰度级-彩色变换法,与密度分割不同,空间域灰度级-彩色变换是一种更为常用,更为有效的伪彩色增强方法。

其根据色学原理,将原图像f(x,y)的灰度范围分段,经过红、绿、蓝三种不同变换,变成三基色分量R(x,y)、G(x,y)、B(x,y),然后用它们分别去控制彩色显示器的红、绿、蓝电子枪,便可以在彩色显示器的屏幕上合成一幅彩色图像。

3个变换是独立的,彩色的含量由变换函数的形式决定。

2.图像处理过程本设计采用matlab实现,将图1进行伪彩色增强,得到增强后的彩色图像。

使用Matlab进行图像增强与图像修复的方法

使用Matlab进行图像增强与图像修复的方法

使用Matlab进行图像增强与图像修复的方法图像增强与图像修复是数字图像处理领域中的重要研究方向之一。

随着数字摄影和图像处理技术的快速发展,越来越多的应用需要对图像进行增强和修复,以提高图像的质量和视觉效果。

在本文中,我们将探讨使用Matlab进行图像增强和图像修复的方法。

一、图像增强方法图像增强是通过对图像进行处理,改善其质量,使其更加清晰、鲜明和易于观察。

下面将介绍几种常用的图像增强方法。

1. 灰度拉伸灰度拉伸是一种简单而有效的图像增强方法,通过拉伸图像的灰度范围,使得图像中的细节更加明确可见。

具体操作是将图像的最低灰度值映射到0,最高灰度值映射到255,中间的灰度值按比例映射到相应的范围。

在Matlab中,我们可以使用imadjust函数实现灰度拉伸。

2. 直方图均衡化直方图均衡化是一种常用的图像增强方法,通过对图像的灰度分布进行调整,使得图像的对比度得到增强。

具体操作是对图像的灰度直方图进行均衡化处理,将图像的灰度级分布均匀化。

在Matlab中,我们可以使用histeq函数实现直方图均衡化。

3. 锐化锐化是一种常用的图像增强方法,通过增强图像的边缘和细节,使得图像更加清晰和立体。

具体操作是对图像进行高通滤波,突出图像中的边缘信息。

在Matlab中,我们可以使用imsharpen函数实现图像锐化。

4. 去噪去噪是一种常用的图像增强方法,通过抑制图像中的噪声,提高图像的质量。

常见的去噪方法包括中值滤波、均值滤波和小波去噪等。

在Matlab中,我们可以使用medfilt2函数实现中值滤波。

二、图像修复方法图像修复是对图像中存在的缺陷或损坏进行补全或恢复的过程,以提高图像的可视化效果。

下面将介绍几种常用的图像修复方法。

1. 图像插值图像插值是一种常用的图像修复方法,通过根据已知的像素值推测缺失的像素值,从而补全图像中的缺失部分。

常见的插值方法包括最近邻插值、双线性插值和双立方插值等。

在Matlab中,我们可以使用interp2函数实现图像插值。

60数字图像的基本类型A灰度图像B二值图像C三原色图像D伪彩

60数字图像的基本类型A灰度图像B二值图像C三原色图像D伪彩

60数字图像的基本类型A灰度图像B二值图像C三原色图像D伪彩在计算机中,依照颜色和灰度的多少能够将图像分为灰度图像、二值图像、索引图像和RGB图像四种基本类型。

在计算机中,一般是以数组(或矩阵)的形式储存图像的。

1、灰度图像灰度图像矩阵元素的取值范围通常为[0,255]。

因此其数据类型一般为8位无符号整数的【unt3】,这就是人们经常提到的256灰度图像。

“0”表示纯黑色,“255”表示纯白色。

中间的数字从小到大表示由黑到白的过渡色。

然而。

在某些领域(比如医学成像),要求提供超出【uint8】的动态范围。

会探用【uint16】和【int16】数据类型。

针对计算灰度的操作(比如傅里叶变换〉。

会使用【double】和【single】类型,假设图像是【double】或【single】数据类型。

灰度图像的值通常被归一化标定位【0-1范围内,0代表黑色,1代表白色。

0到1之间的小数表示不同的灰度等级。

二值图像能够看成是灰度图像的一个特例。

(注意:图像的类型。

和图像的数据类型是全然不同的概念,前者代表图像的本身。

后者仅仅是图像在计算机上的存储方式而已)2、二值图像一幅二值图像的二维矩阵仅由0、1两个值构成,“0”代表黑色,“1”代白色。

因为每一像素〈矩阵中每一元素〉取值仅有0、1两种可能,所以计算机中二值图像的数据类型通常为1个二进制位。

在MATLAB中,二值图像具有很特殊的意义。

仅仅有逻辑数据类型【logical】才被觉得是二值图像,就算是仅仅包括0和1的数据类的数组《比如【uin8】),在MATLAB中都不觉得是二值图像。

能够使用logical将其它类型的数组转换为二值图像:B= logical(A)3、索引图像:索引图像包括一个数据矩阵X。

一个颜色映像矩阵Map。

当中Map 是一个包括三列、若干行的数据阵列。

当中每个元素的值均为[0,1]之间的双精度浮点型数据。

Map矩阵的每一行分别表示红色、绿色和蓝色的颜色值。

伪彩色图像处理

伪彩色图像处理

伪彩色图像处理一、伪彩色处理的原理伪彩色处理是指将黑白图像转化为彩色图像,或者是将单色图像变换成给定彩色分布图像。

由于人眼对彩色的分辨能力远远高于对灰度的分辨能力,所以将灰度图像转化成彩色表示,就可以提高对图像细节的辨别力。

因此,伪色彩处理的主要目的是为了提高人眼对图像细节的分辨能力,以达到图像增强的目的。

伪彩色处理的基本原理是将黑白图像或者单色图像的各个灰度级匹配到彩色空间中的一点,从而使单色图像映射成彩色图像。

对黑白图像中不同的灰度赋予不同的彩色。

设f(x,y)为一幅黑白图像,R(x,y),G(x,y),B(x,y)为f值得注意的是,伪彩色虽然能将黑白灰度转化为彩色,但这种彩色并不是真正表现图像的原始颜色,而仅仅是一种便于识别的伪彩色。

伪彩色处理技术的实现方法有多种,如密度分层法、灰度级-彩色变换法、频域滤波法等等。

其中灰度级-彩色变换伪色彩处理技术可以将灰度图像变为具有多种颜色渐变的连续彩色图像。

该方法先将灰度图像送入具有不同变换特性的红、绿、蓝三个变换器,然后再将三个变换器的不同输出分别送到彩色显像管的红、绿、蓝枪,再合成某种颜色。

同一灰度由三个变换器对其实施不同变换,使三个变换器输出不同,从而不同大小灰度级可以合成不同颜色。

这种方法变换后的图像视觉效果好。

二、伪彩色处理之灰度级-彩色变换法以上是一组典型的灰度级-彩色变换的传递函数。

其中图(a )、(b )、(c )分别表示红色、绿色、蓝色的传递函数,图(d )是三种彩色传递函数组合在一起的情况。

由图(a )可见,凡灰度级小于L/2的像素将被转变为尽可能的暗红色,而灰度级位于L/2到3L/4之间的像素则取红色从暗到亮的线性变换。

凡灰度级大于3L/4的像素均被转变成最亮的红色。

其他的颜色以此类推。

三、灰度级-彩色变换法的Matlab 实现,其程序如下:I=imread(' F:\yyu\happy\DSC01015.jpeg'); %读入灰度图像image2g.jpg I=double(I);[M,N]=size(I);L=256;for i=1:Mfor j=1:Nif I(i,j)<L/4R(i,j)=0;G(i,j)=4*I(i,j);B(i,j)=L;else if I(i,j)<=L/2R(i,j)=0;G(i,j)=L;;B(i,j)=-4*i(i,j)+2*L;else if I(i,j)<=3*L/4R(i,j)=4*I(i,j)-2*L;G(i,j)=L;B(i,j)=0;elseR(i,j)=L;G(i,j)=-4*I(i,j)+4*L;B(i,j)=0;endendendendendfor i=1:Mfor j=1:NG2C(i,j,1)=R(i,j);G2C(i,j,2)=R(i,j);G2C(i,j,3)=R(i,j);endendG2C=G2C/256;Figure;Inshow(G2C);四、总结伪彩色处理不改变像素的几何位置,而仅仅改变其显示的颜色。

matlab伪彩色处理代码

matlab伪彩色处理代码

伪彩色处理是一种将灰度图像映射到彩色图像的方法,使得图像更易于理解和分析。

在Matlab中,可以使用以下步骤进行伪彩色处理。

1. 导入图像:首先,需要导入要进行伪彩色处理的灰度图像。

可以使用`imread`函数读取图像文件,并存储为一个矩阵。

```matlabgray_image = imread('gray_image.jpg');```2. 灰度图像增强(可选):如果原始灰度图像对比度较低或者需要增强图像的细节,可以在进行伪彩色处理之前应用一些图像增强算法,例如直方图均衡化或对比度拉伸等。

```matlabenhanced_image = histeq(gray_image);```3. 伪彩色映射:伪彩色处理的关键步骤是将灰度值映射到一个彩色空间。

常用的方法有灰度级别映射和伪彩色映射表两种。

- 灰度级别映射:使用colormap函数将灰度图像转换为彩色图像。

Matlab提供了许多内置的colormap函数,例如jet、hot、cool等。

可以根据需要选择合适的colormap函数。

```matlabcolor_image = ind2rgb(gray_image, jet(256));```- 伪彩色映射表:可以自定义一个伪彩色映射表,用于将灰度值映射到RGB颜色空间。

伪彩色映射表是一个256x3的矩阵,每一行对应一个灰度级别和相应的RGB颜色值。

```matlab% 创建伪彩色映射表color_map = zeros(256, 3);color_map(:, 1) = linspace(0, 1, 256); % 红色通道color_map(:, 2) = linspace(0, 1, 256); % 绿色通道color_map(:, 3) = linspace(0, 1, 256); % 蓝色通道% 使用伪彩色映射表进行映射color_image = ind2rgb(gray_image, color_map);```4. 图像显示:最后,使用`imshow`函数显示伪彩色图像。

图像增强技术(MATLAB)—毕业论文——【Matlab算法】

图像增强技术(MATLAB)—毕业论文——【Matlab算法】

1 图像增强概述1.1 图像增强背景及意义在一般情况下,经过图像的传送和转换,如成像、复制、扫描、传输和显示等,经常会造成图像质量的下降,即图像失真。

在摄影时由于光照条件不足或过度,会使图像过暗或过亮;光学系统的失真、相对运动、大气流动等都会使图像模糊,传输过程中会引入各种类型的噪声。

总之输入的图像在视觉效果和识别方便性等方面可能存在诸多问题,这类问题不妨统称为质量问题。

图像增强是指根据特定的需要突出图像中的重要信息,同时减弱或去除不需要的信息。

从不同的途径获取的图像,通过进行适当的增强处理,可以将原本模糊不清甚至根本无法分辨的原始图像处理成清晰的富含大量有用信息的可使用图像,有效地去除图像中的噪声、增强图像中的边缘或其他感兴趣的区域,从而更加容易对图像中感兴趣的目标进行检测和测量。

处理后的图像是否保持原状已经是无关紧要的了,不会因为考虑到图像的一些理想形式而去有意识的努力重现图像的真实度。

图像增强的目的是增强图像的视觉效果,将原图像转换成一种更适合于人眼观察和计算机分析处理的形式。

它一般要借助人眼的视觉特性,以取得看起来较好地视觉效果,很少涉及客观和统一的评价标准。

增强的效果通常都与具体的图像有关系,靠人的主观感觉加以评价。

1.2 图像增强的应用目前图像增强处理的应用已经渗透到医学诊断、航空航天、军事侦察、指纹识别、无损探伤、卫星图片的处理等领域。

如对x射线图片、CT影像、内窥镜图像进行增强,使医生更容易从中确定病变区域,从图像细节区域中发现问题;对不同时间拍摄的同一地区的遥感图片进行增强处理,侦查是否有敌人军事调动或军事装备及建筑出现;在煤矿工业电视系统中采用增强处理来提高工业电视图像的清晰度,克服因光线不足、灰尘等原因带来的图像模糊、偏差等现象,减少电视系统维护的工作量。

图像增强技术的快速发展同它的广泛应用是1分不开的,发展的动力来自稳定涌现的新的应用,我们可以预料,在未来社会中图像增强技术将会发挥更为重要的作用。

基于matlab伪彩色图像处理研究与实现

基于matlab伪彩色图像处理研究与实现

基于matlab伪彩色图像处理研究与实现作者:陈燕凤来源:《大东方》2015年第08期摘要:图像处理是一门很有价值的学科,在科学技术不断发展的今天它的技术已趋于成熟。

同时图像之间的处理,在实际应用中也显的越来越重要。

本文主要讲述数字图像处理中伪彩色处理,因为人眼对彩色的分辨能力远远大于黑白灰度分辨率,因此伪彩色处理能增强观察者对图像信息的检测能力。

关键词:伪彩色处理;直方图均衡化;彩色图像一、引言伪彩色处理是用彩色来代替像素灰度值的一种技术,因人眼对彩色的分辨率远高于对灰度差的分辨率,我们可用来识别灰度差较小的像素。

灰度图像中,如果相邻像素点的灰度相差不大,人眼将无法从图像中提取相应的信息,因为人眼只能辨别一幅图像中的四到五种灰度级,却能辨别近千种的彩色,为了挥发人眼对颜色的辨别能力,用不同的颜色代表不同的灰度,这样将黑白图像转换为彩色图像后,人眼可以提取更多的信息量。

二、伪彩色图像处理基本原理伪彩色图像处理是指基于一种指定的规则对灰度值赋以颜色的处理,主要应用于人目视观察和解释单幅图像或序列图像中的灰度级事件。

由于人眼对彩色的分辨率远高于对灰度差的分辨率,所以这种技术可用来识别灰度差较小的像素。

这是一种视觉效果明显而技术又不是很复杂的图像增强技术。

灰度图像中,如果相邻像素点的灰度相差不大,人眼将无法从图像中提取相应的信息,因为人眼可以辨别几千种色调和强度,而相比之下只能辨别几十种灰度,这样将黑白图像转换为彩色图像后,人眼可以提取更多的信息量。

伪彩色处理主要依靠三基色RGB 混合出所需要的颜色,对规定的灰度级范围做对应的RGB分量0-255色调变换即可使对应的灰度范围变为彩色。

例如R(X,Y)和G(X,Y)分量叠加可以得出Y(X,Y),调节R (X,Y)和G(X,Y)在0-255之间变化又可以得出不同强度的Y(X,Y)。

三、伪彩色图像处理的方法与实现1.真实景物图像的像素逐个地映射为另一种颜色,使目标在原图像中更突出例如把景物映射成奇异彩色,比本色更引人注目,这样适应人眼对颜色的灵敏度,提高鉴别能力,用遥感多光谱图象处理成假彩色,以获得更多信息。

在Matlab中进行图像增强的常用方法和技巧

在Matlab中进行图像增强的常用方法和技巧

在Matlab中进行图像增强的常用方法和技巧引言:图像增强是图像处理中的一项重要工作,它可以使图像更加清晰、亮度更加均匀,从而更好地展示图像的细节和特征。

而Matlab作为一款功能强大的数学计算软件,提供了许多图像处理的函数和工具箱,可以帮助用户实现图像增强。

本文将介绍一些在Matlab中常用的图像增强方法和技巧。

一、直方图均衡化直方图均衡化是一种常用的图像增强方法,它可以通过调整图像的像素亮度分布,使得图像的对比度更加明显。

在Matlab中,可以使用histeq函数来实现直方图均衡化。

以下是一个示例:```image = imread('image.jpg');enhanced_image = histeq(image);```通过对图像的直方图进行统计分析,histeq函数可以将图像的像素值重新映射到一个更广的像素值范围内,从而增强图像的对比度。

二、图像滤波图像滤波是另一种常用的图像增强方法,它可以通过去除图像中的噪声和干扰,使得图像更加清晰和平滑。

在Matlab中,可以使用imfilter函数来实现各种滤波操作。

以下是一些常用的图像滤波方法:1. 均值滤波:使用imfilter函数的fspecial参数可以创建一个均值滤波器,然后通过imfilter函数的'conv'选项来对图像进行滤波。

```image = imread('image.jpg');filter = fspecial('average', [3, 3]);filtered_image = imfilter(image, filter, 'conv');```2. 中值滤波:使用medfilt2函数可以对图像进行中值滤波,该函数对图像中的每个像素取相邻像素的中值作为滤波结果。

```image = imread('image.jpg');filtered_image = medfilt2(image);```3. 高斯滤波:使用imfilter函数的fspecial参数可以创建一个高斯滤波器,然后通过imfilter函数的'conv'选项来对图像进行滤波。

基于MATLAB彩色图像及增强处理设计方法资料

基于MATLAB彩色图像及增强处理设计方法资料

课程设计题目基于MATLAB彩色图像及增强处理设计方法学生姓名曹刘惠子学号 1110064087 所在院(系)物电学院专业班级电子信息科学与技术1103指导教师蒋媛完成地点博源楼1102教室基于MATLAB彩色图像及增强处理设计方法曹刘惠子(陕西理工学院物电学院电子信息科学与技术专业1103班级,陕西汉中 723000)指导老师:蒋媛[摘要]图像增强是指依据图像所存在的问题,按特定的需要突出一幅图像中的某一些信息,同时,削弱或去除某些冗余信息的处理方法。

其主要目的是使得处理后的图像对给定的应用比原来的图像更加有效同时可以有效的改善图像质量。

图像增强单纯从技术上可分成两大类:一类是频域处理法;一类是空域处理法。

大多数是以灰度映射变换为基础的,所用的映射变换取决于增强的目的。

彩色图像比灰度图像包含更多的信息,无论是对人们的视觉感受,还是后续的图像理解与分析,彩色图像都具有灰度图像无可比拟的优越性。

本文主要研究基于MATLAB彩色图像的增强方法。

不同原理产生的彩色图像有不同的处理方法,故在本文中主要论述彩色图像增强用法之间以及仿真结果的比较。

运用MATLAB 软件实现彩色图像增强仿真,比较处理方法。

[关键词]彩色图像图像增强时域频域MATLAB目录1绪论 (5)1.1课题研究目的及意义 (5)1.2本课题的研究内容 (5)2彩色图像及其增强处理设计方法 (5)2.1基本概念 (5)2.2图像处理工具 (5)2.3伪彩色增强 (6)2.4真彩色增强 (8)2.5假彩色增强 (10)3 程序实现及比较 (10)3.1伪彩色图像增强 (10)3.2真彩色图像增强 (11)3.3假彩色图像增强 (13)1绪论1.1课题研究目的及意义人类传递的信息有70%是视觉信息,图像信息是传递信息的重要手段和媒体。

但是在生活中,由于光线不合适,在获得图像后会发现图像亮不够或对比度不强,导致景物无法看清。

彩色图像比灰度图像包含更多的信息,无论是对人们的视觉感受,还是后续的图像理解与分析,彩色图像都具有灰度图像无可比拟的优越性。

基于MATLAB彩色图像及增强处理设计方法

基于MATLAB彩色图像及增强处理设计方法

课程设计题目基于MATLAB彩色图像及增强处理设计方法学生姓名曹刘惠子学号 1110064087 所在院(系)物电学院专业班级电子信息科学与技术1103指导教师蒋媛完成地点博源楼1102教室基于MATLAB彩色图像及增强处理设计方法曹刘惠子(陕西理工学院物电学院电子信息科学与技术专业1103班级,陕西汉中 723000)指导老师:蒋媛[摘要]图像增强是指依据图像所存在的问题,按特定的需要突出一幅图像中的某一些信息,同时,削弱或去除某些冗余信息的处理方法。

其主要目的是使得处理后的图像对给定的应用比原来的图像更加有效同时可以有效的改善图像质量。

图像增强单纯从技术上可分成两大类:一类是频域处理法;一类是空域处理法。

大多数是以灰度映射变换为基础的,所用的映射变换取决于增强的目的。

彩色图像比灰度图像包含更多的信息,无论是对人们的视觉感受,还是后续的图像理解与分析,彩色图像都具有灰度图像无可比拟的优越性。

本文主要研究基于MATLAB彩色图像的增强方法。

不同原理产生的彩色图像有不同的处理方法,故在本文中主要论述彩色图像增强用法之间以及仿真结果的比较。

运用MATLAB 软件实现彩色图像增强仿真,比较处理方法。

[关键词]彩色图像图像增强时域频域MATLAB目录1绪论 (5)1.1课题研究目的及意义 (5)1.2本课题的研究内容 (5)2彩色图像及其增强处理设计方法 (5)2.1基本概念 (5)2.2图像处理工具 (5)2.3伪彩色增强 (6)2.4真彩色增强 (8)2.5假彩色增强 (10)3 程序实现及比较 (10)3.1伪彩色图像增强 (10)3.2真彩色图像增强 (11)3.3假彩色图像增强 (13)1绪论1.1课题研究目的及意义人类传递的信息有70%是视觉信息,图像信息是传递信息的重要手段和媒体。

但是在生活中,由于光线不合适,在获得图像后会发现图像亮不够或对比度不强,导致景物无法看清。

彩色图像比灰度图像包含更多的信息,无论是对人们的视觉感受,还是后续的图像理解与分析,彩色图像都具有灰度图像无可比拟的优越性。

数字图像处理及应用(MATLAB)第3章

数字图像处理及应用(MATLAB)第3章
反 转 后 图 像
程序运行结果如图(c)所示。
4.灰度非线性变换 当用某些非线性函数,例如平方、对数、指数函数等作为 映射函数时,可实现图像灰度的非线性变换。灰度的非线性 变换简称非线性变换,是指由这样一个非线性单值函数所确 定的灰度变换。 (1)对数变换 对数变换常用来扩展低值灰度,压缩高值灰度,这样可以使低值灰 度的图像细节更容易看清,从而达到增强的效果。对数非线性变换
[例] 假设一个图像由一个4×4大小的二维数值矩阵构成,如图(a)
所示,试写出图像的灰度分布,并画出图像的直方图。
灰度直方图计算示意图
经过统计图像中灰度值为0的像素有1个,灰度值为1的 像素有1个,…,灰度值为6的像素有1个。由此得到图像的 灰度分布如表所示,由表可得灰度直方图如图(b)所示。 图像的灰度分布
3.1.2 (rk)代表概 率密度函数,并且有下式成立:
nk Pr (rk ) 0 rk 1 n k 0,1,2,l 1
式中nk为图像中出现rk这种灰度的像素数,n是图像中像素 总数,nk/n就是概率论中的频数,l是灰度级的总数目。在直 角坐标系中作出rk与P(rk)的关系图形,就得到直方图
图 不同的图像其直方图却是相同的
图 直方图的叠加性质
由以上可知,尽管直方图不能表示出某灰度级的像素在什么位
置,更不能直接反映出图像内容,但是却能描述该图像的灰度分布
特性,使人们从中得到诸如图像的明亮程度、对比度等,成为一些 处理方法的重要依据。通常一幅均匀量化的自然图像由于其灰度直
方图分布集中在较窄的低值灰度区间,引起图像的细节看不清楚,
(a)反变换关系
(b) 原图 图像反转的效果
(c)变换后的图像
由直线方程截斜式可知当k =-1,b=L-1时,其表达式为:

图像处理作业(MATLAB的数字图像增强应用)

图像处理作业(MATLAB的数字图像增强应用)

图像处理作业(MATLAB的数字图像增强应用)目录MATLAB的数字图像增强应用 (2)前言 (2)一、数字图像处理的历史与发展应用 (2)二、MATLAB与数字图像处理 (3)(一)MATLAB简介 (3)(二)MATLAB用于数字图像增强的优势 (4)(三)基于MATLAB的图像增强方法和算法 (4)三、图像增强应用 (6)(一)直方图增强 (6)(二)直方图均衡化 (9)(三)图像二值化 (12)(四)对比度增强 (13)1.伪彩色增强 (16)2.真色彩增强 (17)四、实训总结 (18)MATLAB的数字图像增强应用前言基于数字图像增强对图像处理的重要性,将计算软件MATLAB应用于数字图像增强中,使用这一软件完成图像的对比度增强、直方图均衡化、平滑滤波、锐化、彩色增强等操作,并给出了处理前后的对照图像。

同时论述了MATLAB在进行图像处理试验时简洁、高效的特点。

关键词:图像增强,MATLAB,直方图均衡化,平滑滤波,锐化,彩色。

一、数字图像处理的历史与发展应用数字图像处理是20世纪60年代发展起来的一门新兴学科。

随着微型计算机性能的提高,数字图像处理技术也得到了广泛的普及,当前图像处理技术在工业自动化、工业检测、医学、遥感探测等各个方面都发挥着十分重要的作用。

对于图像处理系统来说,处理流程基本可以划分为三个阶段,首先是对获得的原始图像进行预处理;其次是抽取图像特征;最后是识别分析。

其中图像预处理阶段即图像增强阶段极为重要,如果此阶段选择的处理方式不当,后面的工作将很难得成功。

在具体的应用过程中,获取的原始图像未必是最适合处理的,例如由于光照、移动、噪声等原因,导致了图像的质量不高。

但是受条件所限又不能再次取样,这就需要对采集的图像进行增强,使其比原始图像更适合于特定的应用。

因为针对的具体应用并不相同,因此图像增强并没有通用的理论。

其具体的方法分为两大类:空间域方法和频域方法。

“空间域”一词是指图像平面自身,这类方法是以对图像的像素点直接处理为基础的,通过点运算处理将产生一幅新的图像,是一种既简单又重要的图像处理技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档