激光器工作原理
激光器的工作原理及应用

激光器的工作原理及应用引言概述:激光器是一种利用激光原理产生并放大一束高度聚焦的光束的装置。
它的工作原理基于电子的激发和辐射过程。
激光器在众多领域中有着广泛的应用,包括医疗、通信、制造等。
本文将详细介绍激光器的工作原理及其在不同领域的应用。
一、激光器的工作原理1.1 激光的产生激光的产生是通过受激辐射的过程实现的。
当外界能量作用于激活物质(如激光介质)时,激活物质中的电子被激发到高能级,形成一个激发态。
当这些激发态的电子回到基态时,会释放出能量,产生光子。
这些光子经过放大和反射,最终形成一束高度聚焦的激光。
1.2 激光的放大激光的放大是通过激光介质中的光子与受激辐射的过程实现的。
在激光介质中,光子与激发态的电子发生相互作用,导致更多的电子从低能级跃迁到高能级。
这样,激发态的电子数量增加,从而产生更多的光子。
这个过程通过在激光介质中反复反射光子来实现,从而放大激光的强度。
1.3 激光的聚焦激光的聚焦是通过激光器中的光学元件实现的。
光学元件,如凸透镜或反射镜,可以改变激光光束的传播方向和聚焦程度。
通过调整这些光学元件的位置和形状,可以将激光束聚焦到非常小的尺寸,从而实现高度聚焦的激光束。
二、激光器在医疗领域的应用2.1 激光手术激光器在医疗领域中被广泛应用于各种手术操作,如激光眼科手术、激光皮肤修复等。
激光手术具有创伤小、恢复快的优势,可以精确地切割组织或疾病部位,减少手术风险。
2.2 激光治疗激光器还可以用于治疗一些疾病,如激光治疗癌症、激光治疗静脉曲张等。
激光的高能量可以破坏癌细胞或静脉曲张血管,从而达到治疗的效果。
2.3 激光诊断激光器还可以用于医学诊断,如激光扫描显微镜、激光断层扫描等。
激光的高分辨率和高灵敏度可以帮助医生观察和诊断微小的组织结构或病变。
三、激光器在通信领域的应用3.1 光纤通信激光器在光纤通信中扮演着重要的角色。
激光器产生的高度聚焦的激光束可以通过光纤传输信息,实现高速、远距离的通信。
激光器的工作原理及应用

激光器的工作原理及应用激光器是一种能够产生高度聚焦、单色、相干光的设备。
它的工作原理基于光的受激辐射过程,通过将激发态粒子转移到基态粒子,从而产生激光光束。
激光器的应用非常广泛,涵盖了科学研究、医疗、通信、材料加工等多个领域。
一、激光器的工作原理激光器的工作原理主要包括激发、增益和反射三个过程。
1. 激发:激光器的激发过程是通过能量输入来提高原子或分子的能级,使其处于激发态。
常见的激发方式有光激发、电子束激发和化学反应激发等。
2. 增益:在激发态的原子或分子中,有一部分会自发地返回基态,释放出光子。
这些光子经过增益介质时,会与其他激发态粒子发生受激辐射过程,导致光子数目的指数增加,形成光子增益。
3. 反射:激光器中的增益介质被放置在两个平行的反射镜之间,其中一个镜子具有较高的反射率,另一个镜子具有较低的反射率。
通过不断的反射,激光光束在增益介质中来回传播,形成光的正反馈放大效应。
二、激光器的应用1. 科学研究:激光器在科学研究中发挥着重要作用。
例如,激光器可用于光谱学研究,通过调节激光器的波长和功率,可以分析物质的组成和结构。
此外,激光器还可以用于激光干涉仪、激光测距仪、激光雷达等仪器的研发。
2. 医疗领域:激光器在医疗领域有广泛应用。
例如,激光手术可以用于眼科手术,如激光近视手术和激光白内障手术。
此外,激光器还可以用于皮肤美容、牙科治疗、肿瘤治疗等。
3. 通信技术:激光器在光通信技术中起到关键作用。
激光器可以产生高速、高效的光信号,用于传输和接收信息。
激光器的应用使得光纤通信具有较高的带宽和传输速度,广泛应用于电话、互联网和电视等通信领域。
4. 材料加工:激光器在材料加工领域有着广泛的应用。
激光切割、激光焊接、激光打标等技术可以实现高精度、高效率的材料加工。
激光器可用于金属、塑料、陶瓷等材料的加工,广泛应用于汽车制造、电子制造、航空航天等行业。
5. 光存储技术:激光器在光存储技术中起到重要作用。
激光器的工作原理及应用

激光器的工作原理及应用激光器是一种能够产生高强度、高单色性、高方向性的光束的装置。
它的工作原理基于光的受激辐射过程,通过光的放大和反射来产生激光。
激光器在科学研究、医疗、通信、材料加工等领域有着广泛的应用。
一、激光器的工作原理激光器的工作原理主要包括以下几个步骤:1. 激发:激光器中通常使用激发源,如电流、光、化学反应等,来激发激光介质中的原子或分子。
激发源的能量会导致部分原子或分子跃迁到高能级。
2. 反射:激光介质中的原子或分子在高能级上停留的时间很短,会迅速跃迁到低能级。
在这个过程中,原子或分子会发射出一个光子,光子的能量与原子或分子跃迁的能级差有关。
3. 放大:发射出的光子在激光介质中被反射、折射和吸收,其中一部分光子被吸收并使激光介质中的更多原子或分子跃迁到高能级。
这样,光子的数目会逐渐增加,形成光子的放大效应。
4. 反馈:在激光器中,有一个光学腔用于反射光子。
光子在腔内来回反射,与激光介质中的原子或分子相互作用,从而增强光子的放大效应。
5. 输出:当光子的数目达到一定的阈值时,就会发生光的放大和放射,从而形成激光束。
激光束通过一个输出镜逃逸出激光器,成为可用的激光光束。
二、激光器的应用1. 科学研究:激光器在科学研究中有着广泛的应用。
例如,激光器可以用于光谱分析、原子物理实验、量子光学研究等。
激光器的高单色性和高方向性使得科学家能够更精确地测量和研究光的性质。
2. 医疗:激光器在医疗领域有着重要的应用。
例如,激光手术可以用于眼科手术、皮肤整形、癌症治疗等。
激光手术具有创伤小、恢复快、准确性高等优点。
3. 通信:激光器在光通信中起到了关键的作用。
激光器可以产生高纯度的光信号,通过光纤传输信号,实现高速、远距离的通信。
激光器的应用使得光纤通信得到了极大的发展。
4. 材料加工:激光器在材料加工中有着广泛的应用。
例如,激光切割可以用于金属、塑料、玻璃等材料的切割。
激光焊接可以用于金属的焊接和精密零件的组装。
激光器的工作原理及应用

激光器的工作原理及应用引言概述:激光器是一种能够产生高强度、高单色性和高直线度的光束的装置。
它的工作原理基于光的受激辐射,通过激活激光介质中的原子或者份子使其产生光子,然后通过光学共振腔放大和反射,最终形成一束高度聚焦的激光光束。
激光器的应用广泛,包括科学研究、医疗、通信、材料加工等领域。
一、激光器的工作原理1.1 激活激光介质激光介质可以是固体、液体或者气体。
通过光或者电的激活,激活激光介质中的原子或者份子,使其处于激发态。
1.2 受激辐射激活激光介质中的原子或者份子会发生受激辐射现象,即一个光子与一个激发态的原子或者份子相互作用,激发态的原子或者份子会释放出与激发光子相同的频率、相同相位和相同方向的光子。
1.3 光学共振腔放大和反射激光光子在光学共振腔中来回反射,经过放大和反射,形成高度聚焦的激光光束。
二、激光器的应用领域2.1 科学研究激光器在科学研究中有着广泛的应用,例如激光光谱学、激光干涉仪等。
激光器的高单色性和高直线度使其在科学实验中能够提供精确的测量和分析工具。
2.2 医疗激光器在医疗领域的应用包括激光手术、激光治疗和激光诊断等。
激光手术能够实现创伤更小、恢复更快的手术方式;激光治疗可以用于皮肤病、白内障等疾病的治疗;激光诊断则能够提供高分辨率的图象,匡助医生进行准确的诊断。
2.3 通信激光器在通信领域中被广泛应用于光纤通信系统。
激光器能够产生高强度的光束,并且可以通过光纤进行传输,从而实现高速、长距离的数据传输。
三、激光器的材料加工应用3.1 激光切割激光器通过高能量的激光束对材料进行切割。
激光切割可以实现高精度、高速度的切割过程,广泛应用于金属、塑料、纸张等材料的加工。
3.2 激光焊接激光器通过高能量的激光束将材料的表面熔化并连接在一起。
激光焊接具有高精度、低热影响区和无需接触等优点,被广泛应用于汽车、航空航天等领域。
3.3 激光打标激光器通过对材料表面进行脱色、脱漆或者氧化等处理,实现对材料进行标记。
激光器的工作原理及应用

激光器的工作原理及应用激光器是一种能够产生高强度、高单色性和高相干性的光束的装置。
它的工作原理基于光的受激辐射过程,通过在激发态粒子中引入外界能量,使这些粒子跃迁到较低能级,从而产生光子的放射。
激光器的应用非常广泛,包括科学研究、医学、通信、制造业等领域。
一、激光器的工作原理激光器的工作原理可以简单地描述为三个步骤:激发、放大和反馈。
1. 激发:激光器的激发过程通常通过电子束、光束或化学反应来实现。
当激发能量施加到激光介质中时,激光介质中的原子或分子将吸收能量并跃迁到一个高能级。
2. 放大:在激发态的原子或分子中,通过受激辐射的过程,一个光子会与一个激发态的原子或分子相互作用,从而导致原子或分子跃迁到较低能级,并释放出两个光子。
这个过程在激光介质中不断发生,光子的数量逐渐增加,形成一个光子数目巨大的光束。
3. 反馈:在激光器中,一个或多个反射镜被用于增强光的放大效果。
这些反射镜使得光在激光介质中来回反射,从而形成一个光学腔。
当光子在激光介质中来回反射时,它们会与其他激发态的原子或分子相互作用,进一步增强激光的放大效果。
最终,一个非常强大、高度相干的光束从激光器中产生。
二、激光器的应用1. 科学研究:激光器在科学研究中有着广泛的应用。
例如,激光器被用于实验室中的光谱学研究,用于测量物质的光谱特性。
此外,激光器还被用于原子物理学、量子力学和光学等领域的研究。
2. 医学:激光器在医学领域有着重要的应用。
例如,激光器被用于眼科手术中的激光角膜矫正术,可以纠正人眼的视力问题。
此外,激光器还被用于皮肤科手术、癌症治疗和牙科手术等。
3. 通信:激光器在光通信领域有着重要的应用。
激光器可以产生高强度的光束,可以通过光纤传输信息。
激光器被用于光纤通信系统中的光源,可以实现高速、高带宽的数据传输。
4. 制造业:激光器在制造业中有着广泛的应用。
例如,激光切割机可以通过激光束将金属或非金属材料切割成所需形状。
激光焊接机可以用于焊接金属零件。
激光器的基本工作原理

激光器的基本工作原理激光器是一种能产生高度相干、单色、高亮度的激光光束的装置。
激光器的基本工作原理可以分为三个步骤:增益介质激发、光放大和反馈。
首先,激光器的工作需要一个具有特殊能级结构的增益介质。
一般来说,固体激光器常用的增益介质是晶体,液体激光器常用的增益介质是染料溶液,气体激光器常用的增益介质是稀有气体混合物。
这些增益介质中,原子或分子的电子由低能级跃迁到高能级时会吸收外界的能量,使得电子在高能级积累。
当有足够多的电子积累在高能级上时,就可以进入激光器的第二个步骤。
第二步骤是光放大。
增益介质中积累的高能级电子会自发地跃迁回低能级,放出能量。
如果将增益介质置于两个平行的反射镜之间,其中一个镜子是部分透明的,光子就会在两个镜子之间多次往返。
当光子经过增益介质时,会与高能级电子相互作用,使得电子从高能级跃迁到低能级,放出能量。
这些能量会在光子的反射中得到增强,使得原本弱小的光信号得以放大。
反射镜的存在保证了光子与高能级电子频繁相互作用,从而增强了光的强度。
第三步骤是反馈。
在增益介质的两端设置反射镜,其中一个镜子是完全反射的,另一个是部分透明的。
在激光器工作时,放大的光子在两个反射镜之间来回反射。
只有当光子与高能级电子相互作用时,才能够从增益介质中得到反馈加强,从而击穿上限,形成激光光束。
这个过程是自持拉锁过程,也就是说,无需外部刺激,只要增益介质中有足够的电子积累在高能级,激光器就能自发地工作。
总结起来,激光器的基本工作原理包括增益介质激发、光放大和反馈。
增益介质吸收能量,使得电子在高能级积累。
然后,这些能级的电子自发地跃迁回低能级,放出能量,经过多次反射和放大后形成激光光束。
反馈机制保证了光子与高能级电子频繁相互作用,从而增加光的强度。
这些工作原理的结合使得激光器成为一种非常重要的光学工具和应用装置。
激光器的工作原理及应用

激光器的工作原理及应用激光器是一种能够产生高度聚焦、高亮度、单色、相干性极强的光束的装置。
它的工作原理基于激光的放大过程,通过激发原子或者份子的能级跃迁来实现。
1. 工作原理激光器的工作原理主要包括以下几个步骤:激发、放大、反射和输出。
首先,通过能量输入的方式(如电子激发、光或者化学反应等),将激光介质中的原子或者份子激发到高能级。
这个过程可以通过光泵浦、电子束激发、化学反应等方式实现。
接下来,激发态的原子或者份子在经过一系列的非辐射跃迁后,会回到基态,并释放出光子。
这些光子会与其他激发态的原子或者份子发生受激辐射,产生更多的光子。
这个过程称为光放大。
然后,放大后的光经过光学谐振腔的反射,使光在谐振腔内来回多次反射,增强光的能量和相干性。
最后,经过一系列的光学元件(如输出镜、偏振器等)的处理,将激光束输出为一束高度聚焦、单色、相干性极强的光。
2. 应用领域激光器由于其独特的光学性质和精确的控制能力,在许多领域中得到广泛应用。
2.1 创造业激光器在创造业中有着广泛的应用。
例如,激光切割可以用于金属板材、塑料、纺织品等材料的切割,具有高效、精确、无接触等优点。
激光焊接可以用于汽车、航空航天、电子等行业的焊接,具有焊缝小、热影响区小、焊接速度快等优势。
激光打标可以用于产品标识、二维码、防伪标识等方面。
2.2 医疗领域激光器在医疗领域中有着广泛的应用。
例如,激光手术可以用于眼科手术、皮肤整形、癌症治疗等。
激光治疗可以用于减轻疼痛、促进伤口愈合、去除皮肤病变等。
激光诊断可以用于医学成像、激光扫描等方面。
2.3 通信领域激光器在通信领域中有着重要的应用。
激光器可以作为光纤通信系统中的光源,通过光的调制和解调来实现信息的传输。
激光器的单色性和相干性使得光信号能够在光纤中传输更远距离,并且具有更高的传输速率。
2.4 科学研究激光器在科学研究中有着广泛的应用。
例如,激光干涉仪可以用于测量长度、表面形貌等。
激光光谱仪可以用于分析物质的组成和结构。
激光器的工作原理及应用

激光器的工作原理及应用激光器是一种能够产生高度聚焦、单色、相干光束的装置,其工作原理基于激光的受激辐射过程。
激光器广泛应用于科学研究、医疗、通信、制造业等领域。
本文将详细介绍激光器的工作原理以及其在不同领域的应用。
一、激光器的工作原理激光器的工作原理基于激光的受激辐射过程,该过程包括三个基本要素:激发源、工作物质和光学腔。
1. 激发源:激发源是激光器中产生激发能量的部分。
常见的激发源包括闪光灯、半导体激光二极管、化学反应等。
激发源能够将能量输送到工作物质中,使其处于激发态。
2. 工作物质:工作物质是激光器中产生激光的介质。
常见的工作物质有气体(如二氧化碳、氦氖)、固体(如Nd:YAG晶体)和半导体材料等。
工作物质处于激发态时,其原子或分子之间的能级结构发生变化,形成能级间的粒子聚集。
3. 光学腔:光学腔是激光器中光线的传输通道。
光学腔由两个反射镜构成,其中一个是半透明的,称为输出镜。
当激发源激发工作物质时,工作物质中的粒子会通过受激辐射过程发射出光子。
这些光子在光学腔中来回反射,逐渐增强,形成激光束。
最后,一部分光子通过输出镜逸出,形成激光输出。
二、激光器的应用激光器由于其独特的特性,在各个领域都有广泛的应用。
以下将介绍激光器在科学研究、医疗、通信和制造业等领域的应用。
1. 科学研究:激光器在科学研究中发挥着重要的作用。
例如,激光器被用于原子物理学研究中的光谱分析,通过测量物质发射或吸收的特定波长的光谱线,可以了解物质的性质和组成。
此外,激光器还被应用于等离子体物理学、光学相干断层扫描(OCT)等领域。
2. 医疗:激光器在医疗领域有广泛的应用。
例如,激光手术技术被广泛应用于眼科手术,如近视手术和白内障手术。
激光器的高度聚焦能力可以精确切割组织,减少手术创伤。
此外,激光器还可用于皮肤美容、激光治疗、激光疗法等。
3. 通信:激光器在通信领域的应用主要体现在光纤通信技术中。
激光器产生的激光光束可以通过光纤进行传输,实现高速、大容量的信息传输。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
激光器工作原理1. 1. 引言2. 2. 原子基础知识3. 3. 原子形成激光的核心原理4. 4. 激光器与原子的关系5. 5. 激光6. 6. 红宝石激光器7.7. 三级激光器8.8. 激光器类型9.9. 激光器的波长10.10. 激光器分类11.11. 了解更多信息12.12. 阅读所有物理学类文章激光器广泛用于各种产品和技术,其种类之多令人惊叹。
从CD播放机、牙钻、高速金属切割机到测量系统,似乎所有东西都有激光器的影子,它们都需要用到激光器。
但是,到底什么是激光器呢?激光光束和手电筒光束的区别何在呢?NASA供图美国国家航空航天管理局兰利研究中心(Langley Research Center)的光学损伤阀值测试装置有三部激光器:高能脉冲钕-钇铝石榴石激光器、钛-蓝宝石激光器和谐振氦氖激光器。
原子基础知识整个宇宙中大约只有100多种不同的原子。
我们看到的所有东西都是由这100多种原子以穷极无限的方式组合而成。
这些原子之间排列组合的方式决定了构成的物体是一杯水、一块金属或是汽水瓶中的泡沫!原子是永恒运动着的。
它们不停地振动、移动和旋转,就连构成我们座椅的原子也是不断运动着的。
固体实际上也在运动!原子有几种不同的激发状态,换言之,它们具有不同的能量。
如果赋予原子足够的能量,它就可以从基态能量层级上升到激发态能量层级。
激发态能量层级的高低取决于通过热能、光能、电能等形式赋予原子的能量有多少。
下图可以很好地阐释原子的结构:最简单的原子模型由原子核和沿轨道旋转的电子组成。
简单原子由原子核(含有质子和中子)和电子云组成。
我们可以把电子云中的电子想象成沿多个不同轨道环绕原子核运动。
原子形成激光的核心原理想一想上一页中的原子结构图。
即便以现代技术观察原子,我们也无法看到电子的离散轨道,但把这些轨道设想成原子不同的能级会对我们的理解有所帮助。
换言之,如果我们对原子加热,处于低能量轨道上的部分电子可能受激发而跃迁到距离原子核更远的高能量轨道。
能量吸收:原子可以吸收热能、光能、电能等形式的能量。
然后电子可以从低能量轨道跃迁至高能量轨道。
尽管这种描述很简单,但它确实揭示了原子形成激光的核心原理。
电子跃迁至更高能轨道后,最终仍要回到基态。
在此过程中,电子以光子(一种光线粒子)的形式释放能量。
您会发现,原子不断地以光子形式释出能量。
例如,烤箱中的加热元件变成亮红色,其中的红色就是由于原子受热激发而释放的红色光子。
观看电视屏幕上的图像时,您看到的其实是磷原子受高速电子激发所释放的各种不同颜色的光线。
任何发光物体,包括荧光灯、煤气灯、白炽灯,都是通过改变电子轨道并释放光子来发光的。
激光器与原子的关系激光器是控制受激原子的光子释放方式的设备。
“Laser”是light amplification by stimulated emission of radiation(受激辐射光放大)的简称。
这一名称简要的描述了激光器的工作原理。
虽然激光器种类繁多,但它们都有一些基本特征。
激光器中,激光介质须经过泵激使原子处于激发状态。
一般来说,高强度闪光或放电可以泵激介质,进而产生大量激发状态的原子(含高能电子的原子)。
而激光器要有效运行就必须要有大量处于激发状态的原子。
一般来说,原子必须受激上升到基态以上两到三个能量层级。
这就提高了粒子数反转的程度。
粒子数反转是指处于激发态的原子和处于基态的原子之间的数量比。
激光介质受到泵激后,其中就包括一批带有激发态电子的原子。
受激电子所含能量比低层级电子的能量高。
就像电子可以吸收一定能量达到激发态一样,电子也可以释放这种能量。
如下图所示,电子只要向低层级跃迁,就会释放部分能量。
释放的能量转化为光子(光能)的形式。
发射出的光子具有特定的波长(颜色),这取决于释出光子时电子的能量状态。
两颗拥有相同电子状态的原子会释放出相同波长的光子。
激光激光和普通光区别很大。
它具有以下特性:发射的激光具有单色性。
激光含有一种特定波长(即特定颜色)的光线。
光线的波长由电子回到低能轨道时释放的能量决定。
发射的激光具有良好的相干性。
激光的组织结构较好,每个光子都紧跟其他光子运动。
也就是说,所有光子的波前完全一致。
激光具有良好的指向性。
激光光束紧密、集中且能量极高。
相反,手电筒发出的光线朝多个方向散射,光线能量弱,集中度低。
为了实现以上三个特性,需要经过一个称为受激发射的过程。
这种现象不可能在普通手电筒中出现,因为它的原子是随机释放光子。
而受激发射时,原子是有组织地发射光子。
原子释放的光子具有特定的波长,此波长取决于激发态和基态之间的能量差。
如果光子(拥有一定能量和相位)碰到另一个原子,且该原子拥有处于相同激发状态的电子,即可引起受激发射。
第一个光子可以激发或引导原子发射光子,而后发射的光子(即第二个原子发射的光子)按与进入光子相同的频率和方向振荡。
激光器的另一个关键部件是一对反光镜,分别位于激光介质的两端。
特定波长和相位的光子通过两端反光镜的反射,在激光介质之间来回穿行。
在此过程中,它们会激发更多的电子由高能轨道向低能轨道跳跃,从而发射出更多相同波长和相位的光子,随后将产生“瀑布”效应,进而在激光器内迅速聚集起大量相同波长和相位的光子。
激光介质某一端的镜面采用“半反射”镀层,也就是说它只会反射部分光线,而其他光线则可以穿透。
穿透的光线就是激光。
红宝石激光器您可在下一页旨在介绍简易红宝石激光器工作原理的插图中,了解所有这些激光器组件。
红宝石激光器包括类似相机闪光灯的闪光管、红宝石棒和两面反射镜(其中一面为半反射镜面)。
红宝石棒是激光介质,闪光管是泵激源。
1. 未发射状态的激光器2. 闪光管闪光并将光线射入红宝石棒。
光线激发红宝石内的原子。
3. 其中的部分原子释放出光子。
4. 部分光子沿红宝石轴的平行方向运动,因而在两块反光镜之间来回反弹。
它们经过红宝石晶体时,还会继续激发其他原子。
5. 单色、单相柱状光线通过半反射镜射出红宝石棒,形成激光!三级激光器以下是真实的三级激光器的工作原理示意图。
下一节,我们将了解不同类型的激光器。
激光器类型激光器分为许多不同种类。
激光介质可以是固体、气体、液体或半导体。
我们通常按照用于发出激光的介质对其进行分类:固态激光器的发光材料分布在固态基质中(如红宝石激光或钕-钇铝石榴石激光)。
钕-钇铝石榴石激光器可以发出波长为1064纳米(nm)的红外激光,其中1纳米等于1x10-9米。
气态激光器主要输出红色的可见光束,最常见的气态激光器包括:氦激光器和氦氖激光器。
CO2激光器可以发射远红外能量,用于切割高硬度物质。
准分子(Excimer)激光器使用由氯、氟等活性气体和氩、氪、氙等惰性气体组成的混合物,其英语名称取自“excited”(受激发的)和“dimers”(二聚体)两个单词。
通电激发时,可产生准分子(即二聚体)。
发射激光后,二聚体可产生紫外波段的光线。
染料激光器使用罗丹明6G等合成有机染料的溶液或悬浊液作为激光介质。
染料激光器具有极为宽广的波长调节范围。
半导体激光器,有时也称为二极管激光器,属非固态激光器。
这种电子设备通常体积小、功率低。
它们可以内置到大型激光二极管阵列(如激光打印机或CD播放机的写入源)中。
激光器的波长1. 1. 引言2. 2. 原子基础知识3. 3. 原子形成激光的核心原理4. 4. 激光器与原子的关系5. 5. 激光6. 6. 红宝石激光器7.7. 三级激光器8.8. 激光器类型9.9. 激光器的波长10.10. 激光器分类11.11. 了解更多信息12.12. 阅读所有物理学类文章红宝石激光器(如前所述)属固态激光器,其释放的波长为694纳米。
根据所需发射的波长(参阅下表)、功率、脉冲持续时间,可以选择其他激光介质。
有些激光器功能非常强大,例如二氧化碳(CO2)激光器可以切割钢板。
二氧化碳激光器如此危险的原因在于其发射的激光处于光谱的红外和微波区域。
红外辐射就是热量,因此二氧化碳激光器基本上可以熔化其对准的所有物体。
其他激光器,如二极管激光器,功率较弱,通常用于现在的便携式激光指示器。
这些激光器通常能发出波长在630纳米至680纳米之间的红色光束。
激光器广泛应用于工业和科研领域,例如,使用强激光激发其他分子,以观察其反应。
以下是一些常见的激光器及其激光波长:罗丹明6G染料(可调光)570-650红宝石(CrAlO3)(红光)694钕-钇铝石榴石(近红外光)1064二氧化碳(远红外光)10600激光器分类1. 1. 引言2. 2. 原子基础知识3. 3. 原子形成激光的核心原理4. 4. 激光器与原子的关系5. 5. 激光6. 6. 红宝石激光器7.7. 三级激光器8.8. 激光器类型9.9. 激光器的波长10.10. 激光器分类11.11. 了解更多信息12.12. 阅读所有物理学类文章根据可能造成的生理伤害,激光器可分为四个广泛的种类。
每套激光设备都应具有以下四种标志之一:I级:这种激光器不会构成任何已知程度的伤害。
I.A.级:这是一个特殊的级别,指“不适宜用眼睛直接观看”的激光器,比如超市使用的激光扫描器。
此级别激光器的最高限定功率为4.0毫瓦。
II级:指低功率可见光激光器,其发射功率比I级高,但是辐射功率不高于1毫瓦。
人类对强光的自动防御反应可以保护人类不受伤害。
激光警示标志IIIA级:指中低功率激光器(连续波:1-5 mW),只有光束内视的情况下才会构成危险。
多数的笔状激光指示器都属于该级别。
IIIB级:指普通功率的激光器。
IV级:指高功率激光器(连续波:500毫瓦,脉冲波:10 J/cm2或漫反射极限值),任何情况下,无论直接还是间接观测都有危险,而且可能引发火灾或灼伤皮肤。
IV级激光设备必须接受严格的控制。