单作用叶片泵工作原理(动画)
叶片泵工作原理及应用

(3)转子受到径向液压不平衡 作用力,故又称非平衡式泵
图1 双作用叶片泵工作原理
1-压油口 2-转子 3-定子 4-叶片 5—吸油口
1.单作用叶片泵的工作原理 单作用泵的结构特点: (4)改变转子和定子间的偏心 距,可以改变泵的排量。故单 作用叶片泵都是变量泵。
图3.3.2 外反馈限压式变量叶片泵工作原理
1-变量活塞 2-调节弹簧 3-压力调节螺钉 4-流量调节螺钉
3.外反馈限压式变量泵及其工作原理
当F<Ft,定子处于左极 限位置,偏心距最大,泵输
出流量最大。当泵的出口压
力p增大,定子将向着使偏
心减小的右方向移动。设位
移为x,则弹簧弹力增加到
Ft=k(x+x0).当弹簧弹力与 液压力平衡时,定子和转子
2 改善叶片受力状况 (1) 字母叶片方式 (2) 双叶片方式 (3) 柱销叶片方式
图3.3.4 双作用叶片泵工作原理
片泵
1-定子 2-压油口 3-转子 4-叶片 5-吸油口
(三).排量与流量计算
双作用叶片泵的排量为
Vp
2B(R
r)[(R
r)
SZ
cos
]
式中,R,r-分别为定子圆弧部分的长短半径 θ-叶片的倾角 S-叶片的厚度
(三).排量与流量计算 双作用叶片泵的实际流量为
q
2
三、提高叶片泵工作压力的方法
为了保证叶片与定子内表面可靠接触,形成密封容 积,使泵正常工作,叶片根部一般通以压力油。
当叶片处于排油区时,其顶部受高压作用,叶片靠 离心力被甩出贴向定子内表面;当处于吸油区时,顶部 为吸油压力,根部为排油压力,这一压差使叶片以很大 的压力压向定子内表面。随着运行,这一压差增大,加 速了定子内表面吸油区的磨损。
丹尼逊叶片泵工作原理

丹尼逊叶片泵工作原理
丹尼逊叶片泵的工作原理如下:
丹尼逊叶片泵由转子、定子、叶片和端盖等组成。
定子具有圆柱形内表面,定子和转子间有偏心距。
叶片装在转子槽中,并可在槽内滑动。
当转子回转时,由于离心力的作用,使叶片紧靠在定子内壁。
这样,在钉子、转子、叶片和两侧配油盘间就形成若干个密封的工作空间。
当转子按图示的方向回转时,在图的右部,叶片逐渐伸出,叶片间的工作空间逐渐增大,从吸油口吸油,这是吸油腔。
在图的左部,叶片被定子内壁逐渐压进槽内,工作空间逐渐缩小,将油液从压油口压出,这是压油腔。
在吸油腔和压油腔之间,有一段封油区,把吸油腔和压油腔隔开。
这种叶片泵在转子每转一周,每个工作空间完成一次吸油和压油。
因此称为单作用丹尼逊叶片泵。
如需了解更多关于丹尼逊叶片泵的工作原理,建议咨询专业技术人员获取帮助。
动画演示11种泵的工作原理,很直观易懂!

动画演示11种泵的工作原理,很直观易懂!更多好内容:化工707网下载此文档:化工707论坛在化工生产中,泵是一种特别重要的设备,了解泵的工作原理不仅能够预防和减少流体泄漏事故、冒顶事故、错流或错配事故。
还能够在泵运行故障中快速诊断。
因此了解泵的工作原理是一件非常重要的事,今天小七就带领大家了解一下各种泵的工作原理,希望能够对大家有所帮助。
液压泵工作原理液压泵是靠密封容腔容积的变化来工作的。
上图是液压泵的工作原理图。
当凸轮1由原动机带动旋转时,柱塞2便在凸轮1和弹簧4的作用下在缸体3内往复运动。
缸体内孔与柱塞外圆之间有良好的配合精度,使柱塞在缸体孔内作往复运动时基本没有油液泄漏,即具有良好的密封性。
柱塞右移时,缸体中密封工作腔a的容积变大,产生真空,油箱中的油液便在大气压力作用下通过吸油单向阀5吸入缸体内,实现吸油;柱塞左移时,缸体中密封工作腔a的容积变小,油液受挤压,便通过压油单向阀6输送到系统中去,实现压油。
如果偏心轮不断地旋转,液压泵就会不断地完成吸油和压油动作,因此就会连续不断地向液压系统供油。
从上述液压泵的工作过程可以看出,其基本工作条件是:1.具有密封的工作容腔;2. 密封工作容腔的容积大小是交替变化的,变大、变小时分别对应吸油、压油过程;3. 吸、压油过程对应的区域不能连通。
基于上述工作原理的液压泵叫做容积式液压泵,液压传动中用到的都是容积式液压泵。
齿轮泵的工作原理上图是外啮合齿轮泵的工作原理图。
由图可见,这种泵的壳体内装有一对外啮合齿轮。
由于齿轮端面与壳体端盖之间的缝隙很小,齿轮齿顶与壳体内表面的间隙也很小,因此可以看成将齿轮泵壳体内分隔成左、右两个密封容腔。
当齿轮按图示方向旋转时,右侧的齿轮逐渐脱离啮合,露出齿间。
因此这一侧的密封容腔的体积逐渐增大,形成局部真空,油箱中的油液在大气压力的作用下经泵的吸油口进入这个腔体,因此这个容腔称为吸油腔。
随着齿轮的转动,每个齿间中的油液从右侧被带到了左侧。
第四章 液压泵动画PPT课件

柱塞式
外啮合式 内啮合式
单作用叶片式 双作用叶片式
轴向柱塞式 径向柱塞式
三、液压泵和马达 的主要参数
常用单位:MPa
四、液压泵的效率
输入机械功率Ppi Ppi=ωT =2πnT
机械损失
T-△T= Tt
理论功率Ppt Ppt=2πnTt =ppVpnp
=ppqpt
容积损失
qpt-△q= qp
输出功率Ppo Ppo=ppqp
五、液压马达的效率
输入液压功率PMi PMi= pMqM
容积损失
qM-△q= qM
理论功率PMt PMt=2πnMTMt
=pMVMnM =pMqMt
机械损失
TMt-△T= TM
输出机械功 率PM=ωTM
2πnMTM
泵和马达效率计算
举例
泵和马达效率计算
举例
4.2 齿轮泵
齿轮泵是液压泵中结构最简单的一种泵,它的抗 污染能力强,价格最便宜。但一般齿轮泵容积效率较 低,轴承上不平衡力大,工作压力不高。齿轮泵的另 一个重要缺点是流量脉动大,运行时噪声水平较高, 在高压下运行时尤为突出。
双作用叶片泵工作原理
当转子和叶片一起旋转时,由于离心力的作用,叶片紧 贴在定子内表面,把定子内表面、转子外表面和两个配流 盘形成的空间分割成八块密封容积。
随着转子的旋转,每一 块密封容积会周期性地变 大和缩小。一转内密封容 积变化两个循环。所以密 封容积每转内吸油、压油 两次,称为双作用泵。双 作用使流量增加一倍,流 量也相应增加。
单作用叶片泵的排量为: V=B[(R+e)2-(R-e)2]=4BRe=2BeD 理论流量为: qt=2BDen
实际流量为: qp 2DeBnv
叶片泵原理简介

第三节 叶片泵(Vane Pump) 一、概述
单作用变量叶片泵
双作用叶片马达
第三节 叶片泵(Vane Pump) 二、单作用叶片泵
1. 工作原理
3 2 1 6 4
组成: 定子(3) 转子(2) 叶片(4) 配油盘(5) 端盖
5
压油口(1) 吸油口(6)
4-8.swf
第三节 叶片泵(Vane Pump) 二、单作用叶片泵
(4-15)
pc = k s ⋅ ( x0 + emax − e0 ) / Ax
第三节 叶片泵和叶片马达 四、限压式变量叶片泵
泵的实际输出流量
q = k q ⋅ e − kl ⋅ p
kq 泵的流量常数 kl 泵的泄漏常数 p 泵出口压力 e 实际偏心距
(4-19)
q
q
qt
0
p
pC
p < pc 时,定子未移动,偏心距e0
Fs
1
F
第三节 叶片泵和叶片马达 四、限压式变量叶片泵
柱塞面积Ax 定子转子最大偏心距 emax (流量调节螺钉全松开) 弹簧预压缩量 x0(弹簧调节螺钉预调位置) 定子转子实际初始偏心距 e0(流量调节螺钉预调位置) 弹簧刚度 ks 定子开始移动时的压力 pc 定子受力平衡
pc ⋅ Ax = k s ⋅ ( x0 + emax − e0 )
V = 2π b ( R 2 − r 2 ) q = 2π b ( R 2 − r 2 ) nηv
b-叶片宽度; R-定子长轴半径; r-定子短轴半径。 *忽略叶片厚度 流量的脉动性 σ q ≈ 0 (叶片厚度、加工精度、泄漏因素)
叶片数取12或16(4的倍数脉动小)
第三节 叶片泵和叶片马达 三、双作用叶片泵
叶片泵工作原理

叶片泵工作原理
叶片泵是一种通过叶轮叶片旋转来输送液体的泵。
它的工作原理基于离心力和压力的变化。
当叶片泵开始工作时,电动或机械驱动器将叶轮带动转动。
叶轮内部的叶片与泵壳之间形成一系列密封的腔室。
当叶轮转动时,液体进入泵的吸入管道并进入腔室。
随着叶轮的旋转,腔室逐渐变小。
由于液体的连续流入,液体在腔室中被困并受到离心力的作用。
这导致液体的压力升高。
当腔室的体积最小且压力最大时,位于腔室边缘的出口阀门打开,使压力高的液体被推出泵。
液体流经出口管道并输送到需要的位置。
随后,叶轮继续旋转,腔室体积逐渐增大,液体再次从吸入管道进入腔室。
如此循环,实现了连续的液体输送。
叶片泵的工作原理核心是利用叶轮叶片的旋转运动产生的离心力将液体推出泵。
由于叶片泵具有较高的工作效率和良好的流量控制性能,广泛应用于各种工业领域,如化工、石油、能源等。
第三章 液压泵与液压马达

(三)液压泵排量和流量
1.排量Vp (m3/r) 是指在不考虑泄漏的情况下,液压泵主轴每转一 周所排出的液体体积。 2.理论流量qt (m3/s) 是指在不考虑泄漏的情况下,单位时间内排出的 液体体积。 qt =Vn 3.实际流量qp 指液压泵工作时的输出流量。 qp= qt - △ q 4.额定流量qn 指在额定转速和额定压力下泵输出的流量。
(动画) 2、工作原理:
旋转一周,完成二次吸油,二次排油——双作用泵
径向力平衡——平衡式叶片泵(两个吸油区,两个排油区)
3、 流量计算
忽略叶片厚度:
V=2π(R2-r2)B q=Vnηv = 2π(R2-r2)Bn ηv
如考虑叶片厚度: V=2π(R2-r2)B -2BbZ(R-r)/cosθ q=Vnηv = 2π(R2-r2)Bn ηv -2BbZ(R-r)/cosθ nηv
2、液压泵进口压力 p 0 0MPa , 出口压力 pp 32MPa , 实际输出流量q 250 L min,泵输入转矩 T pi 1350N m , 输入转速 n 1000r min ,容积效率 0.96 。试求: (1)泵的输入功率 P i ,(2)泵的输出功率 P o ,(3) 泵的总效率 ,(4) 泵的机械效率 m
第三章 液压泵与液压马达
液压泵--动力元件: 将驱动电机的机械能转换成液体的压力能, 供液压系统使用,它是液压系统的能源。
3-1概
单作用叶片泵

单作用叶片泵单作用叶片泵是一种常用的离心泵,具有简单结构、运行稳定、流量大等特点,广泛应用于工农业生产中的输送水、污水和其他液体的领域。
单作用叶片泵一般由泵体、叶轮、进出口管道、轴承等组成。
其工作原理是通过叶轮的旋转产生离心力,使液体从进口处注入泵体,经过叶轮转动后,液体受到离心力的作用从出口处排出。
泵体通常采用铸铁或不锈钢制造,能够承受一定的压力和温度。
叶轮由叶片固定在轴上,转动时产生离心力,驱动液体流动。
轴承则支撑叶轮轴,保证转动的平稳。
单作用叶片泵的优点之一是具有较大的流量能力。
由于叶轮旋转产生的离心力,使泵体内的液体被迫向出口方向移动,从而形成稳定的流动。
叶片泵的流量通常可达到几千升/分,能够满足大量液体输送的需求。
此外,单作用叶片泵还能够适应不同类型的液体输送。
因为叶片泵的叶轮是靠离心力推动液体流动的,对液体的性质要求较低。
它可以处理含有悬浮物、颗粒物或纤维物等杂质的液体,不会造成堵塞或损坏泵体。
因此,叶片泵适用于污水、河水、海水等各种液体输送。
另外,单作用叶片泵还可以自吸。
这意味着它能够从较低的液位处吸取液体,不需要外部吸入管道。
这对于液体位于较低位置或需要远距离输送时非常方便。
叶片泵的自吸能力通常较强,能够达到5-8米。
然而,单作用叶片泵也存在一些不足之处。
首先,由于叶轮只能产生单向流动,泵体内的液体在流动过程中会产生脉动,需要额外的减振设备来减少振动和噪音。
其次,叶片泵的效率较低,能量损失较大。
因为液体在流经叶轮时,不可避免地与叶片发生摩擦,消耗了一部分能量。
另外,叶轮运动也会带来一定的摩擦损失。
综上所述,单作用叶片泵是一种常用的离心泵,具有简单结构、运行稳定、流量大等特点。
它适用于各种液体输送,能够自吸,但也存在一些不足之处,需要在实际应用中加以注意和改进。
叶片泵的工作原理

叶片泵的工作原理
叶片泵是一种常见的离心泵,它通过旋转叶片来将液体从入口抽入并通过泵体
排出。
其工作原理主要包括离心力、动能转换和压力能转换三个方面。
首先,离心力是叶片泵工作的基础。
当泵转子旋转时,叶片受到离心力的作用,使液体产生离心运动,从而形成一个液体环。
这个液体环随着叶片的旋转而不断扩大,将液体从入口处抽入并通过泵体排出。
其次,动能转换也是叶片泵工作原理的重要组成部分。
液体在叶片泵内部经过
离心力的作用后,产生了一定的动能。
这时,叶片泵的设计使得动能转换成为压力能,使液体在排出口处产生一定的压力,从而实现了液体的输送。
最后,压力能转换是叶片泵工作原理的关键环节。
在叶片泵内部,液体经过动
能转换后,产生了一定的压力能。
这种压力能使得液体能够克服管道阻力和重力,顺利地从泵的排出口输送至需要的地方。
总的来说,叶片泵的工作原理是通过离心力、动能转换和压力能转换三个方面
相互作用,最终实现液体的抽入和输送。
这种工作原理使得叶片泵在工业生产和生活中得到了广泛的应用,为液体输送提供了便利和高效率的解决方案。
第三章—液压泵和液压马达

第三章 液压泵和液压马达
该泵配油盘上的吸油窗口和压油窗口对泵的中心线是对称的 。如图所示,泵工作时,油泵出口压力经泵内通道作用在小柱塞 面积上,这样柱塞上的作用力 F PA与弹簧的作用力方向相反。 当PA=KSX0时,柱塞上所受的液压力与弹簧初始力相平衡,此时的 压力P称为泵的限定压力,用PB表示则: PB=KSX0/A 系统的压力P< PB 时,则:PA<KSX0 这表明定子不动,最大偏心距保持不变,泵也保持最大流量。 当系统的压力P> PB 时,则: PA>KSX0 这表明压力油的作用力大于弹簧的作用力,使定子向右移动, 弹簧被压缩,偏心距e减小,泵的流量也随之减小。
第三章 液压泵和液压马达
3.5 柱塞式液压泵
柱塞式液压泵按柱塞在转子内排列方式不同,分为径 向柱塞泵和轴向柱塞泵,轴向柱塞泵又可分为斜盘和斜轴两 大类。柱塞泵由于间隙泄露小、构件受力合理,所以可在高、 超高压力下满意地工作,广泛用于高压、大功率的液压传动 系统中。
第三章 液压泵和液压马达
柱塞泵的优点: 1.参数高:额定压力高,转速高,泵 的驱动功率大; 2.效率高,容积效率为95%左右,总效率为90%左 右; 3.寿命长; 4.变量方便,形式多; 5.单位功率的重量轻; 6.柱塞泵主要零件均受压应力,材料强度性能可得 以充分利用;
第三章 液压泵和液压马达
应用举例 限压式变量叶片泵对既要实现快速行 程,又要实现工作进给(慢速移动)的执行元件来说 是一种合适的油源;快速行程需要大的流量,负载压 力较低,正好使用其AB段曲线部分;工作进给时负载 压力升高,需要流量减小,正好使用其BC段曲线部分。 例如组合机床动力滑台的进给系统、定位和加紧系统 等。 机床加工件:未加工之前或回程要求快;加工时 流量小、速度慢。
单作用叶片泵工作原理图

卸荷槽
泄漏的途径
通过齿轮啮合线处间隙 通过泵体和齿顶圆间的径向间隙 通过齿轮两侧和侧盖板间的端面间隙
径向不平 衡力分析
压油腔
2
1
1
主动
2
2
2'
1
1'
吸油腔
'
图3-7 齿轮泵径向受力图
齿轮泵的特点及应用
结构简单,价低,可靠性好,抗污染能力 强。
密闭容积变化不均匀,输出油有脉动,压 力变化不均匀。
可变量 可变量
螺杆泵
马达分类
齿轮马达
高速小转矩马达叶 轴片 向马 柱达 塞马达斜 斜轴 盘式 式轴 轴向 向柱 柱塞 塞马 马达 达可 可变 变速 速
液压马达低速大转矩马达径向柱塞马达曲 内静轴 曲力连 线平杆 马衡式 达式马 马可达达变可 速可变 变速速
3、液压泵的功率W和效率
4、转速 n 5、自吸能力
流量公式
Q QtV
Qt nq
液压泵的功率和效率
(1)输入功率
Pi
pQ
(2)效率
P0 Pi VmV Nhomakorabea
Q Qt
Qt Q Qt
1 Q Qt
m
Tt T
液压泵理论转矩的推导
TtW pQt
提高外啮合齿轮泵压力的措施
轴套
轴套
{
g
d
{
f= 2 m
=1 g
图3-8 轴向间隙补偿原理
四、齿轮液压马达
工作原理 结构特点
工作原理图
32
3′ 4′
第6讲 叶片泵

单作用叶片泵的流量
理论流量: 2π 理论流量: qt = vn = 2πB e D n 实际流量: 2πBeDnη 实际流量: q = qtηv = 2πBeDnηv 结论: f(几何参数 几何参数、 结论:1) qT = f(几何参数、 n、e) 2)∵ n = c e变化 q ≠ C e变化 ∴变量泵 e = 0 q = 0 大小变化, 大小变化,流量大小变化 e< 方向变化, 方向变化,输油方向变化 故 单作用叶片泵可做双向变量泵
流 量
双作用叶片泵排量
∵ 叶片每伸缩一次,每两叶片间油 叶片每伸缩一次, 液的排出量为 : V密max-V密min ∴ (V密max-V密min)Z即一转压出油 液的体积,即等于一环形体积。 液的体积,即等于一环形体积。
双作用叶片泵排量
又∵ 双作用式 ∴ 应为两倍的环形体积 即 Vt = 2π(R2-r2)B 还∵ 叶片有一定厚度 ∴ 叶片所占体积为 V’=2BSZ(R-r)/COSθ =2BSZ( 故 双作用叶片泵的实际排量为 V = Vt – V = 2B[π(R2-r2)-(R-r)Z/COSθ]
外反馈限压式变量叶片泵
组 成
工作原理
外反馈限压式变量叶片泵组成
组成:变量泵主体、限压弹簧、 组成:变量泵主体、限压弹簧、 调节机构(螺钉)、反 调节机构(螺钉)、反 )、 馈液压缸。 馈液压缸。 结构动画图
外反馈限压式变量叶片泵工作原理
当pA < ksx0时,定子不动,e=e0,q= qmax 定子不动, 当pA = ksx0时,定子即将移动, 定子即将移动, p = pB,即为限定压力。 即为限定压力。 定子右移, 当pA > ksx0时,定子右移, e↓ ,q↓
限压式变量叶片泵的特点 限压式变量叶片泵的特点
2.3 叶片泵

9
10
由定子内环、转子外圆和左右配流盘组 成的密闭工作容积被叶片分割为四部分, 传动轴带动转子旋转,叶片在离心力作 用下紧贴定子内表面,因定子与转子之 间有偏心,故有一部分密闭容积将减小, 受挤压的油液经配流窗口排出,一部分 密闭容积将增大形成真空,经配流窗口 从油箱吸油。
11
• 由于该种泵的转子每转动一周,每 两个叶片间的吸、压油作用各一次, 故称单作用叶片泵。又因吸、压油 区相对,泵的转子所受径向液压力 不平衡,因而又称非平衡式叶片泵 或非卸荷式叶片泵。因为支撑转子 的轴和轴承上承受的径向液压力随 工作压力的提高而增大,所以这种 泵压力的提高受到了限制。
26
• 当两相邻叶片同时进入大半径圆弧区时, 工作容腔脱离吸油窗口而又未与排油窗口 相通,容积最大,吸油过程结束;叶片继 续转动便进入过渡区向小半径圆弧滑动, 由于定子的强制作用叶片向槽内缩回,两 相邻叶片所形成的工作容腔容积不断变小, 液压油被强迫通过排油配流窗口、排油口 进入液压系统,实现排油;
40
• 2 解决低压区磨损的措施 • (1)双叶片结构 • 如图2-12所示,在转子的每一槽内装有
两个叶片,叶片的顶端及两侧边加工有 倒角,倒角相对形成V形通道,叶片根部 的压力油经V形通道进入顶部,使叶片顶 部和根部的液压力基本相等。
41
• 合理设计叶片顶部倒棱的宽度,使叶片 顶部的承压面积小于根部的承压面积, 达到既可保证叶片与定子内表面贴紧, 又不产生过大的压紧力,避免了泵在高 压下运转而造成定子内表面的过度磨损。
34
• 一般双作用叶片泵为了保证叶片和定 子内表面紧密接触,叶片底部都通压 力油腔。但当叶片处于吸油腔时,叶 片底部作用着压油腔的压力,顶部作 用着吸油腔的压力,这一压差使叶片 以很大的力压向定子内表面,加速了 吸油腔定子内表面的磨损。降低了泵 的寿命,因此这一问题是影响叶片泵 压力提高的主要因素。
叶片泵的原理

①.外反馈限压式变量叶片泵
。结构例Βιβλιοθήκη .内反馈YBX型限压式变量叶片泵的结构:转子3固定在传动轴7上,轴.7支承在 两个滚针轴承上作逆时针方向回转。定子4可以左右移动,在左端限压弹 簧13的作用下,定子被推向右端,靠紧在活塞21左端面上,使定子中心 O2和转子中心01之间有一原始偏心距eo,它决定了泵的最大流量。转动 流量调节螺钉23,通过柱塞22来调节活塞21的位置,从而调节eo的大小。 在泵体8上钻有斜孔C,压油腔b中的压力油通过孔C流人d腔,作用在活 寒21的右端面上,当此作用力大于左端限压弹簧13的预调力时,推动定
4.叶片的修理
❖ 叶片泵按作用方式(每转中吸排油次数)分为单作用(变 量、内外反馈)和双作用(定量)叶片泵;按级数分为单级和 双级叶片泵;按连接形式分为单联泵和双联泵;按工作压力 分有中低压((6. 3MPa)、中高压(6. 3-16MPa)和高压(> 16MPa)叶片泵等。
一。定量叶片泵
1定量叶片泵的工作原理
§2-3叶片泵
❖ 叶片泵的优点是结构紧凑、体积小(单位体积的排量较 大)、运转平稳、输出流量均匀、噪声小;既可做成定量泵 也可制成变量泵。定量泵(双作用或多作用) 轴向受力平衡, 使用寿命较长,变量泵变量方式可以多种方式,且结构简 单(如压力补偿变量泵)。
❖ 叶片泵的缺点是吸油能力稍差,对油液污染较敏感, 叶片受离心力外伸,所以转速不能太低,而叶片
Ps也增大,一直到泵的出口压力 •达到恒压阀所调定的压力为止,
从而达到恒压的目的.
如果P1降低时输出流量可不变:阀芯右移,大控制活塞腔与回 油相通,泵偏心量减小,泵输出流量也减少,维持出口流量不 变
P1增大时输出流量也可不变
❖ 负载感应控制变量叶片泵的功能回路图
叶片泵和叶片马达

2、叶片旳安放角
当叶片在压油腔工作时,叶片从过渡曲线 上由大半径R圆弧向小半径r圆弧滑动,定 子旳内表面强行将叶片压入转子槽内。若 叶片在转子内径向安放,定子内表面对叶 片旳反作用力F旳方向与叶片成一夹角β′ (即压力角),如图3-18所示 。这个力能 够分解成两个力,一是使叶片径向运动旳 分力Fn,另一种是与叶片垂直旳分力Ft。
2、子母叶片构造
子母叶片又称复合叶片,如图3-23所示。
图3-23 子母叶片构造 1-母叶片,2-转子,3-顶子,4-子叶片
母叶片旳根部L腔经转子2上虚线所示旳油 孔一直和顶部油腔相通,而子叶片4和母 叶片间旳小腔C经过配流盘经K槽总与压力 油接通。在吸油区工作时,母叶片顶部和 根部L腔均为低压油,推动母叶片压向定 子3旳力仅为小腔C旳液压力,因为C腔旳 面积较小,故压紧力也不大,但能确保叶 片与定子间旳密封。
(三) 双作用叶片泵主要零件旳特点
1、定子旳过渡曲线 定子旳内表面旳曲线是由四段圆弧和四段
过渡曲线构成旳。理想旳过渡曲线不但使 叶片在槽内滑动时旳径向速度和加速度变 化均匀,而且使叶片在过渡曲线与圆弧旳 交接点处旳径向速度无突变、径向加速度 无大旳突变。
假如径向速度有突变,则径向加速度为无 穷大,径向惯性力也会无穷大,这么便发 生“硬冲”或脱空现象;假如径向加速度 突变不大,则径向力也会发生突变但不大, 这种情况称为“软冲”。
而在吸油区,只有叶片根部受高压油旳作 用,这一作用力使叶片压向定子,而且随 工作压力旳提升压向定子内表面旳力也在 增大,在高速运转下加速了叶片和定子内 表面旳磨损,降低了泵旳寿命,所以这一 问题是影响叶片泵压力提升旳主要原因。 为了提升叶片泵旳压力,除了对有关零件 旳材料选用和热处理等方面采用措施外, 在叶片旳构造上也采用了多种卸荷形式。 常见高压叶片泵旳叶片有下列几种形式:
第三章 液压泵

转子受有不平衡的径向液压力,且径向不平 衡力随泵的工作压力提高而提高,因此这种 泵的工作压力不能太高。
应用最多的油泵,主要用于丰田自动变 速器车
NBT系列液压泵(直齿共轭高压内齿轮泵)
是一种设计新颖的液压动力元件。它采用了直线(齿 轮)-直线共轭线(齿圈)齿形,按工作时无困油设计, NBT系列泵具有高压力、低噪音、长寿命、稳定可靠 等优点,广泛适用于各种领域。 直线共轭内啮合齿轮泵在液压界被 誉为“永不磨损的液压泵”,用于 高,精,专液压系统。 NBT系列齿轮泵聚集了柱塞泵的 压力高,螺杆泵的低噪音,压力脉动 小和普通齿轮泵的工作可靠,长寿命 等主要的优点于一身,广泛用于锻压 机,叉车,压砖机,注塑机,船舶,摩天轮 及航空航天事业等。
qt=n0Vt(L/min)
n0—液压泵输出压力为零时的主轴转(r/min)
实际流量q:计泄露,泄漏量为△q。
q=qt- △q 同时:q=n V
理论流量qt:不计泄露量
容积效率ηv :液压泵的实际排量与理论排量之比 值称为容积效率,一般用ηv表示。
精确测量用调速电机,否则用一般普通交流电机 驱动主轴转速不变 n0=n,则液压泵实际流量的计算 q qt q 公式为:
汽蚀现象
外部齿轮泵是 容积式泵2个并 排联锁齿轮集。 当齿轮转动时, 不同的牙齿创 建一个扩展卷 在流体了。然 后运送流体在 外围和驱逐牙 齿合并。
3.径向不平衡力
在齿轮泵中,作用在齿轮外圆 上的压力是不相等的,在压油 腔和吸油腔齿轮外圆和齿廓表 面承受工作压力(高压)和吸 油腔压力(低压) 可以认为压力由压油腔压力逐 渐分级下降到吸油腔压力,这些油 液压力综合作用下,相当于给齿轮 一个径向的作用力,使齿轮和轴承 受载。
单作用叶片泵的变量原理

单作用叶片泵的变量原理单作用叶片泵的关键部件包括泵体、叶轮、轴承、密封件等。
泵体通常由铸铁或不锈钢材料制成,具有耐腐蚀性和耐磨性。
叶轮是泵的核心部件,通常采用铸钢或不锈钢材料制成,具有良好的强度和耐磨性。
轴承用于支撑和引导转子的旋转,通常由合金钢或陶瓷制成,具有较高的硬度和耐磨性。
密封件用于防止泵体与叶轮之间的液体泄漏,常见的密封方式包括填料密封、机械密封等。
在单作用叶片泵的工作过程中,首先电动机将泵的叶轮转动起来。
当叶轮旋转后,液体被离心力强烈推动产生向外流动的过程。
而叶轮叶片由于受到回复力的作用弯曲过程会引起流道区的体积变化。
当液体进入泵体后,通过叶轮的高速旋转,液体将被强制推向离心机外,形成压力。
随着泵的工作,泵体内的压力逐渐升高,达到一定的压力后,液体将被排出泵体。
单作用叶片泵的工作过程中,液体的流动方向和流速主要由叶轮的旋转方向和叶片的形状决定。
叶轮旋转时,由于离心力的作用,液体将在叶轮叶片与泵体之间形成一个流道,流道的形状和尺寸直接影响到液体的流速和流向。
通常情况下,叶轮叶片呈曲线形状,以便把液体从进口处吸入,然后通过叶轮的旋转将液体推向出口处。
在单作用叶片泵的工作过程中,泵体内的压力变化是通过离心力实现的。
当叶轮旋转时,液体将被离心力强行从进口处吸入,然后被夹带到流道中,并被离心力推向出口处。
随着泵体内压力的升高,液体将被迫被排出泵体。
由于单作用叶片泵只具有单向泵送功能,因此在工作过程中不同的叶片轴位置将产生不同的压力变化。
因此,在叶轮的设计和制造中需要考虑叶片的材料选择、叶片形状的合理性和叶轮与泵体的配合情况,以确保泵的工作效果和泵的寿命。
总的来说,单作用叶片泵的工作原理是通过离心力将液体吸入并推出,其流量和压力主要受叶轮的形状和旋转速度的影响。
在设计和制造过程中,需要考虑到叶轮与泵体的配合度、叶轮叶片的形状和材料、泵体的材料和制造工艺等因素,以确保泵的性能和可靠性。