数学建模国赛国家二等奖优秀论文

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

承诺书

我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模

竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建

模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮

件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问

题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的

成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表

述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行

公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表

等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的参赛报名号为(如果赛区设置报名号的话):

所属学校(请填写完整的全名):

参赛队员(打印并签名) :1.刘冲

2.

3.

指导教师或指导教师组负责人(打印并签名)

日期: 2013 年 9 月 16 日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页

赛区评阅编号(由赛区组委会评阅前进行编号):

全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

车道被占用对城市道路通行能力的研究

摘要

本文就交通事故对通行能力的影响进行分析研究,主要对实际通行能力的变化、排队长度、事故持续时间、交通流量等问题建立相应的数学模型,并运用、等软件工具对模型求解。

SPSS MATLAB

针对问题一,首先对视频一进行数据采集和提取,利用插值法对缺失数据进行补充。然后以基本通行能力、可能通行能力为基础,综合考虑外界动态因素,构建出“合流难度系数”模型,进而得出实际通行能力的函数式,由此详细地描述出事故横断面处实际通行能力的变化过程。

针对问题二,首先应用配对样本t检验法得出所占车道不同对通行能力的确存在显著性差异的结论。然后构建出视频二中的实际通行能力函数,与问题一的函数进行对比分析。再结合综合分析模型,从不同车道的车流量、拥堵车道的车流容量以及拥堵时间比例等角度进行对比,分析出差异产生原因在于:各车道车流辆不同导致合流密度不同,合流密度越大,换道难度越大,通行能力下降越多。

针对问题三,首先构建理想条件下的“到达—离开模型”,构建出车辆排队长度与实际通行能力、事故持续时间、路段上游车流量之间的关系;其次,引入交通波理论,构建出“车流波动理论模型”;最后结合交通信号灯对交通流有周期性影响的实际情况,建立“基于二流理论的动态排队模型”,得到在一个周期内对长的相对增量,再通过累加得出车队长的表达式。

针对问题四,考虑小区进出车辆的影响,以及在更高车流量下合流系数的改变,对上述模型参数做出修正,估算出排队时间大约为7.3分钟。接着应用“基于元胞自动机的交通模型”进行仿真模拟,得出误差在接受的范围之内,证明了模型的合理性。

最后,针对模型的优缺点进行评价,并提出了进一步改进的优化方向及在其它方面的推广应用。

关键词:实际通行能力、到达—离开模型、交通波、二流理论动态排队模型

对于问题二,在问题一函数的基础上,再结合视频二中的有用信息,写出实际通行能力的表达式2212()C C f t =⨯。然后利用SPSS 软件对两组实际通行能力值进行配对样本t 检验,得出两者间确实存在显著性差异。接下来为体现两者间的明显差异,把两个函数图象画到同一坐标系中进行比较。最后,根据统计得到的数据分析此差异形成的原因。

对于问题三,以问题一、二为基础,首先说明车辆排队长度与实际通行能力、事故持续时间、路段上游车流量确实存在某种关系。然后先构建理想化的模型体现四个量之间的关系;其次,把模型的影响因素考虑进去,对模型进逐渐修正,得到更为精确的模型。

对于问题四,观察附件五,当排队距离变为140米时,交通事故正好发生在小区门口,所以此时应考虑小区进出车辆的影响。接着对问题三中的模型参数做微型修正。再结合已知的排队长度、上游车流量估算出相应时间。

三、模型假设

1. 在研究路段内,路边停车现象对通行能力的影响忽略不计。

2. 假定具有良好的气候条件和路面条件下的通行能力。

3. 该段时间内分析的道路及道路上的基础设施不发生变化。

4. 假设司机反应时间相同且遵守交通规则。

5. 假设上游汽车当量服从离散型随机分布。

四、符号说明

C -- 通行能力;

a Q --规定时间周期内驶出交通事故横断面的车辆数;

b Q --规定时间周期内驶入标准路段长度内的车辆总数;

i K --各汽车代表车型与车辆折算系数,(1,2)i =;

()f t θ--交通事故中车辆改道对通行能力的合流难度系数;

()g LN -- 不同车道编号机器组合;

0t --平均车头时距。

五、数据处理

5.1数据量化

对从视频中的提取的车流数据,均要进行标准当量化处理[1],折算系数如下表1:

表1 车型及折算系数

经过处理得到标准当量车流量,这样就把不同车型的车辆数转化为可同一比较的当量车流 ,方便后面函数计算。

5.2数据无量纲化处理

在利用SPSS 统计软件对数据进行聚类分析的时候,因为单位不统一需要进行无量纲化处理,我们采用均值化方法,即每一个变量除以该变量的平均值,即

i i X X X

= 标准化以后各变量的平均值都为1,标准差为原始变量的变异系数。该方法在消除量纲和数量级影响的同时,保留了各变量取值差异程度上的信息,差异程度越大的变量对综合分析的影响也越大。

六、模型分析、建立与求解

6.1 问题一分析与建模

6.1.1 模型准备

因为视频一中采集到的数据中间有缺失,所以先采用插值法,用MATLAB 编程,预测出中间缺失的数据值,如表2所示。

相关文档
最新文档