材料力学性能第八章_2011
材料力学性能第八章 金属材料的高温力学性能

安徽工业大学 材料科学与工程学院
24
试验时,规定试验时间以机组的设计寿命为 依据。 对于设计某些在高温工作时不考虑变形量的 大小,只考虑在给定压力下使用寿命的机件, 如锅炉的过热蒸气管,持久强度极限是很重 要的性能指标。 金属材料的持久强度极限是通过做高温拉伸 持久试验测定的,一般不需要测定样品的伸 长量,只要测定试样在规定时间和应力作用 下至断裂的时间。
微观断口特征:
冰糖状花样的沿晶断裂形貌
4/17/2014
安徽工业大学 材料科学与工程学院
17
第三节 高温力学性能指标及其影响因素
一、蠕变极限 为保证高温长时载荷作用下的机件不会产生 过量蠕变,要求金属材料具有一定的蠕变极 限。 是材料在高温长时载荷作用下的塑性变形抗 力指标。
4/17/2014
4/17/2014
安徽工业大学 材料科学与工程学院
(2) 在规定温度(t)与试验时间(τ)内,使试样产生 的蠕变总伸长率(δ)不超过规定值的最大应力,用 σ δ/τt表示。
500 1/105
100MPa
材料在500℃、100000h后总伸长率为1%的蠕变极限 为100MPa
4/17/2014
4
随着温度的升高,金属断裂由常温下的穿晶断裂过渡 到沿晶断裂,这是由于温度升高时晶粒强度和晶界强 度都要降低,但晶界强度下降较快引起的
4/17/2014 安徽工业大学 材料科学与工程学院
5
金属材料在高温下的力学性能,不能只简单的用常温 短时拉伸的应力-应变曲线来评定,还需考虑温度与 时间两个因素 温度的“高”或“低”是相对于该金属的熔点来讲的, 一般采用“约比温度(T/Tm)”更为合理。 T/Tm>0.5,称为高温 T/Tm≤0.5,称为低温
材料力学性能课后思考题答案

第一章 单向静拉伸力学性能一、 解释下列名词。
1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b 的台阶。
8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变12.弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。
13.比例极限:应力—应变曲线上符合线性关系的最高应力。
14.解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。
晶体学平面--解理面,一般是低指数、表面能低的晶面。
15.解理面:在解理断裂中具有低指数,表面能低的晶体学平面。
16.静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。
材料力学性能(8)

8.2 材料的摩擦
按摩擦副运动状态:静摩擦(相对运动趋势)、 动摩擦(相对运动) 按摩擦副运动形式:滑动摩擦(相对滑动)、滚动摩擦(沿接触表面滚动) 按摩擦副表面的润滑状况: 纯净摩擦(表面没有任何吸附膜、如真空条件下)
干摩擦(大气条件下,没有润滑剂存在)
流体摩擦(表面完全被流体隔开,分液体摩擦和气体摩擦) 边界摩擦(极薄的润滑膜存在) 混合摩擦(同时有上面2种以上情形)
粘着坑
按照摩擦表面损伤程度可划分为五类粘着磨损,
√
涂抹
类型
损坏现象 剪切破坏发生在粘着结合面上,表面转移的材料较轻微
损坏原因 粘着结合强度比摩擦副的两基本金属 抗剪强度都弱 粘着结合强度大于较软金属的抗剪强 度,但小于较硬金属的抗剪强度 粘着结合强度比两基本金属的抗剪强 度都高
轻微磨损
剪切破坏发生在离粘着结合面不远的较软金属浅层内,软金 属涂抹在硬金属表面上 剪切主要发生在较软金属的亚表层内有是也发生在硬金属的 亚表层内;转移到硬金属上的粘着物又使软表面出现细而浅的 划痕,有时硬金属表面也有划伤
2、机理:交变剪应力作用,裂纹在最大剪应力处成核,扩展至表面剥落→凹坑 轻微时:麻点(麻点剥落形成凹坑) 较重时:浅层剥落 可利用疲劳磨 严重时:深层剥落(硬化层剥落,压碎性剥落) 损进行裂纹修 取决于——最大综合切应力/材料屈服强度、疲劳强度,之相关系
3、影响因素
复
凡影响最大综合切应力(最大剪应力+滑动的摩擦力)和材料强度、韧性的因素,均影响
Ws、 Wb分别为实际试样和标准试样的磨损率
8.3.2 磨损机理
8.3.2.1磨料(磨粒磨损)
√
1、定义:硬颗粒或硬突起物使材料产生迁移造成的磨损 2、机制: 微观切削——硬颗粒对表面切削形成切屑 微观犁沟——磨粒与塑性材料表面接触,表面受磨粒挤压向两侧隆起,形成犁沟 微观断裂——磨粒与脆性材料接触,材料受磨粒压入产生裂纹,裂纹交叉扩展剥落 实际中,往往几种机制同时存在,以一种为主。随工作条件而变化。
第8章复合材料力学性能

➢强度高,拉伸强度为3.62GPa; ➢模量高于GF,为125GPa; ➢韧性好,断裂伸长率为2.5%; ➢缺点:表面惰性大,与树脂界面粘结性能差,抗压、抗
扭曲性能差。
14
14
基体材料
① 基体材料选择三原则:
第一,基体材料本身力学性能较好,如有较高的内聚强 度、弹性模量;与增强纤维有相适应的断裂伸长率; 第二,对增强材料有较好的润湿能力和粘结力,保证良 好的界面粘结; 第三,工艺性优良,成型和固化方法与条件简单,固化 收缩率低。
Ⅱ型CF(高强型): 强度>3GPa; 模量为230~270GPa; 断裂伸长率为0.5~1%
联碳化合物公司P-140 型CF: 模量高达966GPa
东丽公司T1000型CF: 强度达到7.05GPa; 模量为295GPa;
13
13
③ 芳纶的力学特性
➢以Kevlar-49为代表的芳纶是一种高模量有机纤维; ➢密度小(1.44g/cm3,GF为2.54g/cm3,T300为
17
17
8.2.1 纵向拉伸性能 (1)纵向拉伸应力σL 、拉伸模量EL
单向纤维复合材料纵向拉伸加载示意图和单向板纵向拉伸 简化力学模型图如下: PL = Pf + Pm
Pf 、 Pm分别为纤维(fibre)和基体(matrix)承受的载荷
18
18
当用应力表示
PL = Pf + Pm
σL AL = σf Af + σm Am
单向(纤维增强)复合材料 双向(正交纤维)复合材料 多向(纤维增强)复合材料 三向(正交纤维增强)复合材料 短纤维增强复合材料
4
4
(1)单向(纤维增强)复合材料
材料力学性能知到章节答案智慧树2023年西安工业大学

参考答案:
越宽
35.典型疲劳断口具有3个特征区分别为()。
参考答案:
疲劳裂纹扩展区
;疲劳源
;瞬断区
36.疲劳条带和贝纹线均属于疲劳断口的微观特征形貌。()
参考答案:
错
37.同种材料不同应力状态下,表现出的应力~寿命曲线是不同的,相应的疲劳极限也不相同。一般而言,对称弯曲疲劳极限()对称拉压疲劳极限。
参考答案:
错
26.线弹性断裂力学研究方法之一是应力应变分析方法,与之相对应的是()判据。
参考答案:
K
27.要测量金属材料的断裂韧性(断裂韧度)KIC,中国国家标准中规定了四种试样,下列中不属于这四种试样的是()。
参考答案:
标准四点弯曲试样
28.奥氏体钢的KIC比马氏体钢的高。)
参考答案:
对
29.对于过共析钢而言,如果沿晶界析出二次渗碳体的数量逐渐增多,则该材料的KIC()。
参考答案:
晶粒大小
;金相组织
;加载速度
第四章测试
23.裂纹扩展的基本形式有()。
参考答案:
滑开型
;张开型
;撕开型
24.某材料的KIC=50MPa·m^-1/2,承受1000MPa的拉应力,假设K=1.2σ(πa)^1/2,该试样的临界裂纹尺寸是()。
参考答案:
1.1mm
25.应力场强度因子,综合反映了外加应力和裂纹长度、裂纹形状对裂纹尖端应力场强度影响,是材料本身固有的力学性能。()
参考答案:
错
59.两表面完全分开,形成液体与液体之间的摩擦是流体摩擦。()
参考答案:
工程材料力学性能各章节复习知识点

⼯程材料⼒学性能各章节复习知识点⼯程材料⼒学性能各个章节主要复习知识点第⼀章弹性⽐功:⼜称弹性⽐能,应变⽐能,表⽰⾦属材料吸收弹性变形功的能⼒。
滞弹性:对材料在弹性范围内快速加载或卸载后随时间延长附加弹性应变的现象。
包申格效应:⾦属材料经预先加载产⽣少量塑性变形(残余应变为1%~4%),卸载后再同向加载,规定残余伸长应⼒(弹性极限或屈服极限)增加,反向加载,规定残余伸长应⼒降低的现象。
塑性:指⾦属材料断裂前发⽣塑性变形的能⼒。
脆性:材料在外⼒作⽤下(如拉伸,冲击等)仅产⽣很⼩的变形及断裂破坏的性质。
韧性:是⾦属材料断裂前洗⼿塑性变形功和断裂功的能⼒,也指材料抵抗裂纹扩展的能⼒。
应⼒、应变;真应⼒,真应变概念。
穿晶断裂和沿晶断裂:多晶体材料断裂时,裂纹扩展的路径可能不同,穿晶断裂穿过晶内;沿晶断裂沿晶界扩展。
拉伸断⼝形貌特征?①韧性断裂:断裂⾯⼀般平⾏于最⼤切应⼒并与主应⼒成45度⾓。
⽤⾁眼或放⼤镜观察时,断⼝呈纤维状,灰暗⾊。
纤维状是塑性变形过程中微裂纹不断扩展和相互连接造成的,⽽灰暗⾊则是纤维断⼝便⾯对光反射能⼒很弱所致。
其断⼝宏观呈杯锥形,由纤维区、放射区、和剪切唇区三个区域组成。
②脆性断裂:断裂⾯⼀般与正应⼒垂直,断⼝平齐⽽光亮,常呈放射状或结晶状。
板状矩形拉伸试样断⼝呈⼈字形花样。
⼈字形花样的放射⽅向也与裂纹扩展⽅向平⾏,但其尖端指向裂纹源。
韧、脆性断裂区别?韧性断裂产⽣前会有明显的塑性变形,过程⽐较缓慢;脆性断裂则不会有明显的塑性变形产⽣,突然发⽣,难以发现征兆拉伸断⼝三要素?纤维区,放射区和剪切唇。
缺⼝试样静拉伸试验种类?轴向拉伸、偏斜拉伸材料失效有哪⼏种形式?磨损、腐蚀和断裂是材料的三种主要失效⽅式。
材料的形变强化规律是什么?层错能越低,n越⼤,形变强化增强效果越⼤退⽕态⾦属增强效果⽐冷加⼯态是好,且随⾦属强度等级降低⽽增加。
在某些合⾦中,增强效果随合⾦元素含量的增加⽽下降。
材料的晶粒变粗,增强效果提⾼。
材料力学性能教案

材料力学性能教案第一章:材料力学性能概述教学目标:1. 理解材料力学性能的概念及其重要性。
2. 掌握材料力学性能的主要指标。
3. 了解不同材料的力学性能特点。
教学内容:1. 材料力学性能的概念:定义、重要性。
2. 材料力学性能的主要指标:弹性模量、屈服强度、抗拉强度、韧性、硬度等。
3. 不同材料的力学性能特点:金属材料、非金属材料、复合材料等。
教学活动:1. 引入讨论:为什么了解材料的力学性能很重要?2. 讲解材料力学性能的概念及其重要性。
3. 通过示例介绍不同材料的力学性能特点。
4. 练习计算材料力学性能指标。
作业:1. 复习材料力学性能的主要指标及其计算方法。
2. 选择一种材料,描述其力学性能特点,并解释其在实际应用中的作用。
第二章:弹性模量教学目标:1. 理解弹性模量的概念及其物理意义。
2. 掌握弹性模量的计算方法。
3. 了解弹性模量在不同材料中的变化规律。
教学内容:1. 弹性模量的概念:定义、物理意义。
2. 弹性模量的计算方法:胡克定律、应力-应变关系。
3. 弹性模量在不同材料中的变化规律:金属材料、非金属材料、复合材料等。
教学活动:1. 复习上一章的内容,引入弹性模量的概念。
2. 讲解弹性模量的计算方法,并通过示例进行演示。
3. 通过实验或示例观察不同材料的弹性模量变化规律。
作业:1. 复习弹性模量的概念及其计算方法。
2. 完成弹性模量的计算练习题。
第三章:屈服强度与抗拉强度教学目标:1. 理解屈服强度与抗拉强度的概念及其物理意义。
2. 掌握屈服强度与抗拉强度的计算方法。
3. 了解屈服强度与抗拉强度在不同材料中的变化规律。
教学内容:1. 屈服强度与抗拉强度的概念:定义、物理意义。
2. 屈服强度与抗拉强度的计算方法:应力-应变关系、极限状态方程。
3. 屈服强度与抗拉强度在不同材料中的变化规律:金属材料、非金属材料、复合材料等。
教学活动:1. 复习上一章的内容,引入屈服强度与抗拉强度的概念。
第八章聚合物的力学性能

3)聚合物的屈服应力对应变速率有依赖性,随应 变速率增加屈服应力增加;
4)聚合物的屈服应力随温度的增加而降低,到达 玻璃化温度时屈服应力降低为零; 5)聚合物可以产生两种形式屈服:银纹屈服和剪 切屈服;
一、银纹屈服——Craze 聚合物受到张应力作用后,
由于应力集中产生分子链局部取向和塑性变形,在材料表 面或内部垂直于应力方向上形成的长100、宽10、厚为微米 左右的微细凹槽或裂纹的现象。
可以向真应力—应 变曲线作出两条切 线,说明试样受力 会屈服并稳定发展, 直至所有试样都细 颈化。
§8-3 聚合物的屈服
1)聚合物材料的屈服应变比一般材料的屈服应变 大的多。金属材料的屈服应变一般为0.01或更小, 而高分子材料的屈服应变可达0.1~0.2左右;
2)许多聚合物屈服后随应变增加应力反而有一定 的下降——应变软化现象;
σ
在高拉伸速度下 σY >σB,导致试样在未发生屈 服就断裂。因此只有在较慢的拉伸速度下,玻璃态 聚合物的强迫高弹形变才可以发生。
3)分子结构 分子链柔性好的聚合物不容易在玻璃态下发生 强迫高弹形变,而刚性链聚合物却相对容易发生强 迫高弹形变。 1)柔性链聚合物形成玻璃态时分子链堆砌非常紧 密,链段活动空间很小,在玻璃态下链段运动非 常困难,需要很大外力才能使链段发生运动。所 以柔性链聚合物在玻璃态下难以发生强迫高弹形 变———Tb较高。 2)刚性链聚合物冷却成玻璃态时分子链之间堆砌 的比较松散,链段活动余地很大,施加不太大的 外力作用链段的运动就可以发生,容易出现强迫 高弹形变——Tb较低。
三、聚合物应力— 应变曲线的类型
五种应力-应变曲线的特征
类型
硬而脆 硬而强 强而韧 软而韧 软而弱
模量
材料力学第08章 动载荷与交变应力

x
r Ag r Aa
x
FNd FNst d Kd K d st A A
st为静荷载下绳索中的静应力
强度条件为 d K d st [ ]
P
P P a g
△d表示动变形 △st表示静变形
当材料中的应力不超过比 例极限时荷载与变形成正比
m
FNst
m
FNd
rAg
x
rAg rAa
2 st 42st 8h st 2h d st (1 1 ) 2 st 2h d st ( 1 1 ) K d st
2
st
2h 为动荷因数 其中 K d 1 1
st
Fd d Kd P st
Fd K d P
第八章
动载荷与交变应力
中北大学理学院力学系
第一节 第二节 第三节 第四节
概述 构件受加速度作用时的动应力 构件受冲击时的动应力计算 疲劳破坏及其特点
第五节
第六节 第七节
材料的持久极限
影响构件持久极限的因素 构件疲劳强度计算
总结与讨论
第一节 概述
一、基本概念
1、静荷载:荷载由零缓慢增长至最终值,然后保持不变.构件内各 质点加速度很小,可略去不计. 2、动荷载: 荷载作用过程中随时间快速变化,或其本身不稳定 (包括大小、方向),构件内各质点加速度较大. 3、交变应力:构件内的应力随时间作交替变化。 4、疲劳失效:构件长期在交变应力作用下,虽然最大工作应力 远低于材料的屈服极限,且无明显的塑性变形,却往往发生突 然断裂。
(The point changes his location periodically with time under an unchangeable load)
材料的力学性能

第一章 材料单向拉伸力学性能
1.引言 2.拉伸试验 3.脆性材料的拉伸曲线与拉伸性能 4. 引言 5.弹性变形 6.弹性极限与弹性比功 7. 弹性不完善性 8.脆性断裂 9.理论断裂强度和脆断强度理论 10.延性断裂
第二章 材料在其他静载下的力学 性能以及硬度
• 1.引言 2.扭转试验 3.弯曲试验 4.压缩试验 5.剪切试验 6.布氏硬度 7.洛氏硬度 8.维氏硬度 9.显微硬度
第七章 金属在高温下的力学行为
• 1 引言 2 金属的高温拉伸性能 3 蠕变极限与持久强度 4 蠕变过程中合金组织的变化及变形和断裂 机制 5 应力松弛 6 金属在高温下的疲劳行为
第八章 应力腐蚀与氢脆
• 1 引言 2 应力腐蚀断裂 3 氢脆 4 腐蚀疲劳
• 第九章 高分子材料的力学行为
1 引言 2 线性非晶态高分子材料的力学行为 3 结晶高分子材料的力学行为 4 高分子材料的粘弹性 5 高分子材料的强度 6 高分子材料的的断裂韧性 7 高分子材料的的疲劳A(2学时)10
1.2 金属材料的弹性变形
• 弹性的定义:是指材料在外力作用下保持 固有形状和尺寸的能力,在外力去除后恢 复固有形状和尺寸的能力。弹性模量E、剪 切模量G、比例极限和弹性极限等。
1.2.1 广义虎克定律
已知在单向应力状态下应力和应变的关系为:
一般应力状态下各向同性材料的广义虎克定 律为:
•
其中:
第三章 材料的冲击韧性与低温脆 性
• 1.前言 2.切口冲击韧性 3.低温脆性 4.脆性—韧性转变
第四章 断裂韧性
• 1 引言 2 裂纹的应力分析 3 裂纹扩展力或裂纹扩展的能量释放率 4 平面应变断裂韧性 5 裂纹尖端塑性区* 6 平面应变断裂韧性KIC的测定 7 断裂韧性的工程应用
材料力学性能试题及答案

材料力学性能试题及答案一、单项选择题(每题2分,共20分)1. 材料在拉伸过程中,当应力达到某一点时,应力不再增加而应变继续增加,这种现象称为()。
A. 弹性变形B. 塑性变形C. 蠕变D. 断裂答案:B2. 材料的屈服强度是指()。
A. 材料开始发生塑性变形时的应力B. 材料发生断裂时的应力C. 材料发生弹性变形时的应力D. 材料发生蠕变时的应力答案:A3. 材料的硬度是指()。
A. 材料抵抗外力作用的能力B. 材料抵抗塑性变形的能力C. 材料抵抗弹性变形的能力D. 材料抵抗断裂的能力答案:B4. 材料的疲劳是指()。
A. 材料在循环应力作用下逐渐产生裂纹并最终断裂的现象B. 材料在恒定应力作用下逐渐产生裂纹并最终断裂的现象C. 材料在高温下逐渐产生裂纹并最终断裂的现象D. 材料在低温下逐渐产生裂纹并最终断裂的现象答案:A5. 材料的冲击韧性是指()。
A. 材料在冲击载荷作用下吸收能量的能力B. 材料在拉伸载荷作用下吸收能量的能力C. 材料在压缩载荷作用下吸收能量的能力D. 材料在剪切载荷作用下吸收能量的能力答案:A6. 材料的断裂韧性是指()。
A. 材料在拉伸载荷作用下吸收能量的能力B. 材料在压缩载荷作用下吸收能量的能力C. 材料在冲击载荷作用下吸收能量的能力D. 材料在断裂过程中吸收能量的能力答案:D7. 材料的疲劳强度是指()。
A. 材料在循环应力作用下发生断裂时的应力B. 材料在拉伸载荷作用下发生断裂时的应力C. 材料在压缩载荷作用下发生断裂时的应力D. 材料在冲击载荷作用下发生断裂时的应力答案:A8. 材料的蠕变是指()。
A. 材料在循环应力作用下逐渐产生裂纹并最终断裂的现象B. 材料在恒定应力作用下逐渐产生裂纹并最终断裂的现象C. 材料在高温下逐渐产生裂纹并最终断裂的现象D. 材料在低温下逐渐产生裂纹并最终断裂的现象答案:B9. 材料的弹性模量是指()。
A. 材料在拉伸载荷作用下吸收能量的能力B. 材料在压缩载荷作用下吸收能量的能力C. 材料在拉伸或压缩载荷作用下应力与应变的比值D. 材料在剪切载荷作用下吸收能量的能力答案:C10. 材料的泊松比是指()。
《材料的力学性能》西北工业大学出版社--复习资料

《材料的力学性能》第一章 材料的拉伸性能名词解释:比例极限P σ,弹性极限e σ,屈服极限s σ,屈服强度0.2σ,抗拉强度b σ,延伸率k δ,断面收缩率k ψ(P7-8),断裂强度f σ(k σ),韧度(P10)1、拉伸试验可以测定那些力学性能?对拉伸试件有什么基本要求? 答:拉伸试验可以测定的力学性能为:弹性模量E ,屈服强度σs ,抗拉强度σb ,延伸率δ,断面收缩率ψ。
2、拉伸图和工程应力-应变曲线有什么区别?试验机上记录的是拉伸图还是工程应力-应变曲线?答:拉伸图和工程应力—应变曲线具有相似的形状,但坐标物理含义不同,单位也不同。
拉伸图横坐标为伸长量(单位mm ),纵坐标为载荷(单位N );工程应力-应变曲线横坐标为工程应力(单位MPa ),纵坐标为工程应变(单位无)。
试验机记录的是拉伸图。
3、脆性材料与塑性材料的应力-应变曲线有什么区别?脆性材料的力学性能可以用哪两个指标表征?答:如下图所示,左图近似为一直线,只有弹性变形阶段,没有塑性变形阶段,在弹性变形阶段断裂,说明是脆性材料。
右图为弯钩形曲线,既有弹性变形阶段,又有塑性变形阶段,在塑性变形阶段断裂,说明是塑性材料。
脆性材料力学性能用“弹性模量“和”脆性断裂强度”来描述。
4、塑性材料的应力-应变曲线有哪两种基本形式?如何根据应力-应变曲线确定拉伸性能?答:分为低塑性和高塑性两种,如下图所示。
左图曲线有弹性变形阶段与均匀塑性变形阶段,没有颈缩现象,曲线在最高点处中断,即在均匀塑性变形阶段断裂,且塑性变形量小,说明是低塑性材料。
右图曲线有弹性变形阶段,均匀塑性变形阶段,颈缩后的局集塑性变形阶段,曲线在经过最高点后向下延伸一段再中断,即在颈缩后的局集塑性变形阶段断裂,且塑性变形量大,说明是高塑性材料。
5、何谓工程应力和工程应变?何谓真应力和真应变?两者之间有什么定量关系?答:6、如何测定板材的断面收缩率?答:断面收缩率是材料本身的性质,与试件的几何形状无关,其测试方法见P8。
大连理工大学精品课程-材料力学性能-第八章-应力腐蚀

2020年8月8日星 第八章 金属的应力腐蚀和氢脆断裂 期六
应力腐蚀断裂并不是金属在应力作用下的机械 性破坏与在化学介质作用下的腐蚀性破坏的迭加所 造成的,而是在应力和化学介质的联合作用下,按 特有机理产生的断裂,其断裂抗力比单个因素分别 作用后再迭加起来的要低得多。所以发生应力腐蚀 时,应力可以是很低的,介质的腐蚀性也可以是很 弱的,也正因如此,应力腐蚀经常受到忽视,导致 “意外”事故不断发生,经常造成灾难性的后果。 4
2020年8月8日星 第八章 金属的应力腐蚀和氢脆断裂 期六
应力腐蚀显微裂纹有分 叉现象,呈枯树枝状,如图 8-2所示。表明在应力腐蚀 时,有一主裂纹扩展较快, 其它分支裂纹扩展较慢。根 据这一特征可以将应力腐蚀 与腐蚀疲劳、晶间腐蚀及其 它形式的断裂区分开来。 12
图8-2 应力腐蚀裂纹的分叉现象
2020年8月8日星 第八章 金属的应力腐蚀和氢脆断裂 期六
2.应力腐蚀造成的破坏是脆性断裂。 3.纯金属一般不发生应力腐蚀。只有在特定的合金 成分与特定的介质组合时才会造成应力腐蚀。 4.应力腐蚀的裂纹扩展速率一般在10-9~10-6m/s, 是比较缓慢的,达到某一临界尺寸时产生失稳扩展 导致断裂。 5.应力腐蚀的裂纹多起源于表面蚀坑处,而裂纹的 扩展常垂直于拉力轴。 10
渡区,当KI≥KIC时,裂纹失稳扩展断裂。
第II阶段越长,材料抗应力腐蚀性能越好。如果能测出此阶段da/dt及结
25束时的KI值,就可估算出机件在应力腐蚀条件下的剩余寿命。
2020年8月8日星 第八章 金属的应力腐蚀和氢脆断裂 期六
六、防止应力腐蚀的措施
从产生应力腐蚀的条件来看,防止应力腐蚀的措 施,主要是合理选择金属材料,减少或消除机件中的 残余应力及改变化学介质条件。此外,也可以采用电 化学方法进行保护。 1.合理选择金属材料:针对机件所受的应力和接触的 化学介质,一个基本原则是选用耐应力腐蚀的金属材 料。例如铜对氨的应力腐蚀敏感性很高,那么接触氨 气氛的机件就应避免使用铜合金。
第八章聚合物的力学性能

橡胶拉伸-回缩和拉伸-压缩循环应力-应变曲线
表征滞后现象参数:储存模量、损耗模量(或复数模 量)损耗角正切
四、粘弹性力学模型
理想模型:理想弹簧和理想粘壶 理想弹簧:代表符合虎 克定律的理想固体
E / D
应力松弛过程总形变恒定,有:
d 1 d 0 dt E dt
d E dt
(t) 0et /
t = 0-τ,有: 0 / e 0.370
2、伏伊特模型
结构:由一个理想弹黄与一 σ1
E
ησ2
个理想粘壶并联而成,如图
1 2
定义:高分子材料在交变应力作用下,形变落后于应力 的现象
橡胶轮胎应力和应变随时间的变化曲线,如图 滞后现象,如图
原因:高分子材料也是一个松弛过程
影响因素: 1.) 化学结构; 2.) 外力作用频率、温度等
对聚合物性能的影响:
1.) 如果使用的聚合物发生了滞后现象,则在每一个循 环中都要消耗功-力学损耗;这种消耗功转变成热 能释放出来,会导致聚合物本身的温度升高,从而 影响材料的使用寿命;
晶态聚合物的拉伸: 晶态聚合物典型的应力-应变曲线,如图
未经拉伸的晶态聚合物中,其微晶排列是杂乱的, 拉伸使得晶轴与外力方向不同的微晶熔化,分子链沿 外力方向取向再重排结晶,使得取向在熔点以下不能 复原,使得产生的形变也不能复原,但加热到熔点附 近形变能复原,因此晶态聚合物的大形变本质上也属 高弹性
0
E0
0
E
1
exp
t
【材料科学基础】必考知识点第八章

2020届材料科学基础期末必考知识点总结豆第八章回复与再结晶第一节冷变形金属在加热时的组织与性能变化一回复与再结晶回复:冷变形金属在低温加热时,具显微组织无可见变化,但其物理、力学性能却部分恢复到冷变形以前的过程。
再结晶:冷变形金属被加热到适当温度时,在变形组织内部新的无畸变的等轴晶粒逐渐取代变形晶粒,而使形变强化效应完全消除的过程。
二显微组织变化(示意图)回复阶段:显微组织仍为纤维状,无可见变化;再结晶阶段:变形晶粒通过形核长大,逐渐转变为新的无畸变的等轴晶粒。
晶粒长大阶段:晶界移动、晶粒粗化,达到相对稳定的形状和尺三性能变化1力学性能(示意图)回复阶段:强度、硬度略有下降,塑性略有提高。
再结晶阶段:强度、硬度明显下降,塑性明显提高。
晶粒长大阶段:强度、硬度继续下降,塑性继续提高,粗化严重时下降。
2物理性能密度:在回复阶段变化不大,在再结晶阶段急剧升高;电阻:电阻在回复阶段可明显下降。
四储存能变化(示意图)1储存能:存在于冷变形金属内部的一小部分(〜10%)变形功。
「弹性应变能(3〜12%)2存在形式J位错(80〜90%) 1I点缺陷j 是回复与再结晶的驱动力3储存能的释放:原子活动能力提高,迁移至平衡位置,储存能得以释放。
五内应力变化回复阶段:大部分或全部消除第一类内应力,部分消除第二、三类内应力;再结晶阶段:内应力可完全消除。
第二节回复一回复动力学(示意图)1加工硬化残留率与退火温度和时间的关系ln(x o/x)=C o texp(-Q/RT)x o原始加工硬化残留率;X—退火时加工硬化残留率;C0一比例常数;t—加热时间;T—加热温度。
2动力学曲线特点(1)没有孕育期;(2)开始变化快,随后变慢;(3)长时间处理后,性能趋于一平衡值。
3高温回复:位错攀移(+滑移)f 位错垂直排列(亚晶界)+多边化(亚(0.3~0.5Tm )晶粒)一►弹性畸变能降低。
三回复退火的应用去应力退火:降低应力(保持加工硬化效果),防止工件变形、开 裂,提高耐蚀性。
《工程材料物理性能(第2版)》 第08章 金属的高温力学性能

以σ t ζ表示。
例如:某高温合金σ600 1×10 3 =30Mpa,表 示该合金在700 ℃下,1000小时的持久 强度极限为30Mpa。
h
21
第四节 其它高温力学性能 1.高温短时拉伸性能 2.高温硬度
h
22
h
8
❖ 蠕变第一阶段以晶内滑移和晶界滑动方式产生 变形。位错刚开始运动时,障碍较少,蠕变速 度较快。随后位错逐渐塞积、位错密度逐渐增 大,晶格畸变不断增加,造成形变强化。在高 温下,位错虽可通过攀移形成亚晶而产生回复 软化,但位错攀移的驱动力来自晶格畸变能的 降低。在蠕变初期由于晶格畸变能较小,所以 回复软化过程不太明显。
近有很多裂纹,使断裂机件表面出现龟裂现象;
(2)由于高温氧化,断口往往被一层氧化膜 所覆盖。
4.蠕变断裂断口的微观特征: 主要为冰糖状花样的沿晶断裂形貌。
h
14
(二)蠕变断裂机理
蠕变断裂主要是沿晶断裂。在裂纹成核 和扩展过程中,晶界滑动引起的应力集 中与空位的扩散起着重要作用。由于应 力和温度的不同,裂纹成核有两种类型。
以σ t ζ / δ表示。
如σ 600 1 / δ=10 5=100Mpa,表示材料在500 ℃温度下,105小时后总伸长率为1%的蠕 变极限为100Mpa。
试验时间及蠕变总伸长率的具体数值根 据机件后勤工作时间来规定的。
蠕变极限一般有两种表示方法:
h
20
2.持久强度极限: 高温长时载荷下断裂的抗力。
1.蠕变:金属在长时间的恒温、恒载荷 下缓慢地产生塑性变形的现象。由于这 种变形而最后导致金属材料的断裂称为 蠕变断裂。(蠕变在较低温度下也会发 生,但只有当约比温度大于0.3时才比较 明显。
材料力学性能复习总结

绪论弹性:指材料在外力作用下保持和恢复固有形状和尺寸的能力。
塑性:材料在外力作用下发生不可逆的永久变形的能力。
刚度:材料在受力时抵抗弹性变形的能力。
强度:材料对变形和断裂的抗力。
韧性:指材料在断裂前吸收塑性变形和断裂功的能力。
硬度:材料的软硬程度。
耐磨性:材料抵抗磨损的能力。
寿命:指材料在外力的长期或重复作用下抵抗损伤和失效的能。
材料的力学性能的取决因素:内因——化学成分、组织结构、残余应力、表面和内部的缺陷等;外因——载荷的性质、应力状态、工作温度、环境介质等条件的变化。
第一章 材料在单向静拉伸载荷下的力学性能1.1 拉伸力—伸长曲线和应力—应变曲线应力—应变曲线退火低碳钢在拉伸力作用下的力学行为可分为弹性变形、不均匀屈服塑性变形、均匀塑性变形和不均匀集中塑性变形和断裂几个阶段。
弹性变形阶段:曲线的起始部分,图中的oa 段。
多数情况下呈直线形式,符合虎克定律。
屈服阶段:超出弹性变形范围之后,有的材料在塑性变形初期产生明显的塑性流动。
此时,在外力不增加或增加很小或略有降低的情况下,变形继续产生,拉伸图上出现平台或呈锯齿状,如图中的ab 段。
均匀塑性变形阶段:屈服后,欲继续变形,必须不断增加载荷,此阶段的变形是均匀的,直到曲线达到最高点,均匀变形结束,如图中的bc 段。
不均匀塑性变形阶段:从试样承受的最大应力点开始直到断裂点为止,如图中的cd 段。
在此阶段,随变形增大,载荷不断下降,产生大量不均匀变形,且集中在颈缩处,最后载荷达到断裂载荷时,试样断裂。
弹性模量E :应力—应变曲线与横轴夹角的大小表示材料对弹性变形的抗力,用弹性模量E退火低碳钢应力—应变曲线表示。
塑性材料应力—应变曲线(a)弹性—弹塑性型:Oa为弹性变形阶段,在a点偏离直线关系,进入弹—塑性阶段,开始发生塑性变形,开始发生塑性变形的应力称为屈服点,屈服点以后的变形包括弹性变形和塑性变形。
在m点卸载,应力沿mn降至零,发生加工硬化。
(b)弹性-不均匀塑性-均匀塑性型:与前者不同在于出现了明显的屈服点aa′,有时呈屈服平台状,有时呈齿状。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章材料的摩擦磨损
任何一部机器在运转时,机件之间总要发生相对运动。
当两个相互接触的机件表面做相对运动(滑动、滚动或滑动+滚动)时就产生了摩擦,有摩擦就有磨损,这是必然的结果。
而磨损是降低机器或工具运行效率、精确度甚至使其报废的重要原因,也是造成金属材料损耗和能源消耗的重要原因。
§8.1 磨损概述
机件表面相接触并做相对运动时,表面逐渐有微小颗粒分离出来形成磨屑(松散的、尺寸和形状均不相同的碎屑),是表面材料逐渐流失(导致机件尺寸变化和质量损失)、造成表面损伤的现象称为磨损。
引起磨损的原因既有力学作用,也有物理和化学作用。
磨损过程中,磨屑的形成也是一个变形和断裂的过程,但表面应力复杂,且塑性变形和断裂反复动态进行,表层组织变化也具有动态特征。
§8.2 耐磨性试验
一、试验方法
(磨损量的测量有称重法和尺寸法两类),一般用磨损量(ω)来表示,包括线磨损量(摩擦表面法向尺寸减小量)、体积磨损量、质量磨损量;
上述磨损量为摩擦行程或摩擦时间的函数,因此可取单位行程或单位时间内的磨损量作为耐磨性指标(磨损速
率),称耐磨强度(μm/m,mg/m)和耐磨率(μm/h,mg/h)。
也可用相对耐磨性来表示:
被测试样磨损量
ε=
标准试样磨损量
3. 磨损过程
机件正常运行中的磨损过程一般分为三个阶段:
跑合阶段(磨合阶段)
开始,摩擦表面具有一定的粗糙度,真实接触面积较小,故磨损速率很大。
随着表面逐渐被磨平,实际接触面积增大,磨损速率减小;
稳定磨损阶段
经过跑合阶段,接触表面进一步平滑,磨损稳定下来,磨损量很低,而磨损速率保持恒定;
(大多数机器零件均在此阶段服役,磨损试验也需要进行到这一阶段。
通常根据这一阶段的时间、磨损速率或磨损量来评定材料的耐磨性能。
一般在跑合阶段磨合得越好,稳定磨损阶段的磨损速率就越低)
剧烈磨损阶段
随时间和磨损行程增加,接触表面之间的间隙逐渐扩大,机件表面质量下降,润滑膜被破坏,引起剧烈振动,磨损速率急剧增加,摩擦副温度升高,机械效率下降,精度丧失,最后导致零件完全失效。
§8.3 磨损机制(磨损类型)
一、黏着(粘着)磨损
又称擦伤、咬合磨损
实际表面存在粗糙度,两个相互作用的面接触时,真正的接触只在少数几个孤立的微凸体顶点上,由此产生高的局部应力,超过材料的压缩屈服强度,发生塑性变形,挤破润滑油膜、氧化膜,同时摩擦表面温度升高,裸露的金属表面接触而产生黏着,而摩擦面持续相对运动,黏着点被剪切破坏,另一区域又形成新的黏着点。
即:黏着点形成→剪切破坏→形成→破坏。
二、磨料磨损
在硬的磨粒或凸出物对零件表面的摩擦过程中,使表面层材料发生磨耗的现象。
(石英、砂土、矿石等非金属磨料,或零件本身磨损产物) 一种是磨料硬度高且棱角尖锐,在切应力作用下,切削金属表面形成切屑;
另一种是磨料圆钝,基体材料塑性好,磨料在基体表面犁过,使其产生塑性变形在两侧堆积起来形成
沟槽,然后堆积部分被压平,反复的塑性变形,产
生裂纹并引起剥落(疲劳破坏)
三、腐蚀磨损
在摩擦过程中,摩擦副之间或摩擦副表面与周围介质发生化学或电化学反应,形成的腐蚀产物在摩擦过程中被剥离出来所造成的磨损。
腐蚀磨损常与机械磨损(比如黏着磨损和磨粒磨损)共存,故又称机械腐蚀磨损。
在各类金属零件中最经常见到腐蚀磨损的是氧化磨损。
与别的磨损相比,氧化磨损具有最小的磨损速度(0.1~0.5μm/h),是允许存在的一种磨损形式,生产中可创造条件使其他磨损转化为氧化磨损(改善润滑条件)。
氧化磨损速率和氧化膜性质和它与基体的结合强度有关(脆性的、结合强度低→易磨损),也与基体金属表面塑性变形抗力有关(硬度高→耐磨损)。
四、微动磨损
两接触表面间小幅度的相对切向运动称为微动。
在压紧的表面之间由于微动而发生的磨损称为微动磨损。
任何存在于大气中的机件表面总有一层氧的吸附层。
在摩擦副做相对运动时,由于表面凹凸不平,凸起部位单位压力很大,
(例如紧配合轴在反
复弯矩±M作用下弯
曲,从配合点A至边缘
各点滑动量依次增加
到±dl,这种非常小的
相对滑动引起磨损。
)
微动磨损是黏着、磨料、腐蚀、和表面疲劳的复合磨损过程:
①两接触面产生凸起塑性变形,黏着,随后发生的切向位移使黏着点脱落;
②脱落的颗粒具有较大的活性,从而在大气中形成氧化物;由于两摩擦面不脱离接触,在随后的位移中,发生脱落的颗粒将起磨料作用;
③接触区产生疲劳裂纹,裂纹形成后,与表面近似垂直方向向内部扩展,导致疲劳失效。
(磨损类型并非固定不变,而是在不同的外界条件(摩擦类型、相对滑动速度和接触压力的大小)和材料特性(表面抗粘着能力、力学性能、耐热性、金属与润滑剂的相互作用等)条件下,呈现不同的形式;而且,各种磨损类型往往同时或交替出现;
(参考教材P144页详细解释)
在摩擦过程中,零件表面将发生系列物理、化学和力学状态的变化(如表层硬化、应力状态变化、相变、淬火、回火、回复再结晶、吸附等),有可能改变材料的耐磨损性和磨损类型。
)
本章小结:
磨损概念、机理、试验方法及指标。