2020年史密斯圆图基本原理

合集下载

史密斯圆图基本原理

史密斯圆图基本原理

阻抗匹配与史密斯(Smith)圆图:基本原理摘要:本文利用史密斯圆图作为RF阻抗匹配的设计指南。

文中给出了反射系数、阻抗和导纳的作图范例,并给出了MAX2474工作在900MHz时匹配网络的作图范例。

事实证明,史密斯圆图仍然是确定传输线阻抗的基本工作。

在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。

一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。

匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。

在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。

频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。

需要用计算值确定电路的结构类型和相应的目标元件值。

有很多种阻抗匹配的方法,包括计算机仿真:由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。

设计者必须熟悉用正确的格式输入众多的数据。

设计人员还需要具有从大量的输出结果中找到有用数据的技能。

另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。

手工计算:这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。

经验:只有在RF领域工作过多年的人才能使用这种方法。

总之,它只适合于资深的专家。

史密斯圆图:本文要重点讨论的内容。

本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。

讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。

当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。

史密斯圆图的原理及应用

史密斯圆图的原理及应用

史密斯圆图的原理及应用一、史密斯圆图的概述史密斯圆图(Smith Chart)是一种常用的电路设计工具,广泛应用于微波电路的设计与分析。

它可以通过坐标变换的方式将复抗匹配器的阻抗表示在一个圆图上,方便工程师快速计算和优化电路。

二、史密斯圆图的原理史密斯圆图的构建基于复平面的坐标转换技术,将复抗匹配器的阻抗表示在一个单位圆上。

具体步骤如下:1.将复抗匹配器的阻抗表示为复平面上的点,以阻抗的实部和虚部作为横纵坐标。

2.将复抗匹配器的阻抗归一化到一个标准的单位圆上,使得阻抗归一化到圆上的点表示为单位圆上的点。

3.在单位圆上绘制一系列等效电阻德曼圆,并标记常用的阻抗值。

这些等效电阻德曼圆的半径是固定的,通过变换得到的阻抗点在不同等效电阻德曼圆上的位置。

4.通过在复平面上作圆的平移和旋转操作,将复抗匹配器的阻抗点转换成单位圆上的点。

5.将复抗匹配器转换后的阻抗点与等效电阻德曼圆上的点连接,得到史密斯圆图。

三、史密斯圆图的应用1. 阻抗匹配•利用史密斯圆图可以方便地进行阻抗匹配的计算和设计。

通过在史密斯圆图上移动阻抗点,可以得到与之匹配的负载阻抗或源阻抗。

工程师可以根据需要,选择合适的匹配器或变换线来实现阻抗的最大传输。

2. 反射系数的计算•史密斯圆图也可以方便地计算反射系数。

通过在史密斯圆图上读取阻抗点对应的反射系数,工程师可以快速了解电路中的反射情况,并根据需要进行相应的优化调整。

3. 变换线设计•史密斯圆图可以帮助工程师设计不同类型的变换线,如电阻性变换线、电容性变换线和电感性变换线。

通过在史密斯圆图上进行阻抗点的变换,可以得到满足特定要求的变换线参数。

4. 频率扫描分析•在频率扫描分析中,史密斯圆图可以帮助工程师分析电路在不同频率下的阻抗变化情况。

通过在史密斯圆图上绘制多个频率下的阻抗点,可以得到电路的频率响应特性。

5. 负载匹配•史密斯圆图也可以应用于负载匹配。

通过在史密斯圆图上绘制负载阻抗曲线和源阻抗曲线,可以找到使得负载与源之间产生最小干扰的最佳匹配点。

Smith(史密斯)圆图阻抗匹配

Smith(史密斯)圆图阻抗匹配
一、圆图的基本原理
利用归一化阻抗与反射系数之间的一一对应 关系,将归一化阻抗表示在反射系数复平面上。
(z ') 2e j2z' 2 e j(2 2z')
构成反射系数复平面
2

ZL Z0 ZL Z0
2

tan 1
RL2
2 X LZ0

X
2 L

Z02
Z (z ') R jX 1 (z ') 1 (z ')
可得
2a b2 2 2 且 2 1
等反射系数模值圆的方程
jb
||=0.5 S=3
j
||=1, =0
开路点
a
1
1
||=1, = 短路点
j
||=0.2 S=1.5
1、反射系数曲线坐标(续)
2 2 z ' tan1 a b 反射系数相角射线方程
X

2b
(1

2 a
)2

b2
a

2
R R 1

b2


1
2

R 1
等归一化电阻圆方程
a
12


b

1 X
2



1 X
2

等归一化电抗圆方程
归一化电阻圆
j b
R0 R 0.5 R 1 R2
圆心都在实轴a上; a=1 圆心坐标与半径之和恒
一一对应关系
二、圆图的基本构成
阻抗圆图是表示在复平面上的反射系数和归 一化阻抗轨迹图,包括两个曲线坐标系统和四簇 曲线。

Smith 圆图—原理与分析

Smith 圆图—原理与分析

2-5 Smith 圆图微波工程,即传输线工程问题,主要讨论(最基本的运算是)工作参数ρΓ, Z, 之间的数量关系和传输匹配问题――怎样传输得好,没有反射,而没有反射传输就是匹配。

一般是在已知特征参数βZ和长度l 的基础上进行。

、Smith圆图正是把特征参数和工作参数形成一体,用图论的方法解决工程问题。

它是一种专用Chart,自三十年代出现以来,已历经六十年而不衰,可见其简单,方便和直观.一、Smith图圆的基本思想Smith圆图,亦称阻抗圆图。

其基本思想有三条:1. 归一化思想――特征参数归一化特征参数归一思想,是形成统一Smith圆图的最关键点,它包含了阻抗归一和电长度归一。

阻抗千变万化,极难统一表述。

现在用Z0归一,统一起来作为一种情况加以研究。

在应用中可以简单地认为Z0=1。

电长度归一不仅包含了特征参数β,而且隐含了角频率ω。

由于上述两种归一使特征参数Z0不见了;而另一特征参数β连同长度均转化为反射系数Γ的转角。

――什么阻抗都通用,什么波长都能用。

2. 反射系数Γ作基底①以系统不变量|Γ|作为Smith圆图的基底――它是一个有限量,②在无耗λ为一个周期。

所传输线中,|Γ|是系统的不变量,③Γ是频率的周期量,以2以由|Γ|从0到1的同心圆作为Smith圆图的基底,使我们可能在一有限空间表示全部工作参数Γ、Z(Y)和ρ。

ϕϕϕβj l j l z j l e e e z l ||||) ()2( 2Γ=Γ=Γ=Γ--θ的周期是1/2λg 。

这种以|Γ|圆为基底的图形称为Smith 圆图。

3. 套覆上jx r Z +=――――把阻抗(或导纳),驻波比关系套覆在|Γ|圆上。

这样,Smith 圆图的基本思想可描述为:消去特征参数Z 0,把β归于Γ相位;工作参数Γ为基底,套覆Z(Y)和ρ。

二、Smith 圆图的基本构成1. 反射系数Γ图为基底图 7-1 反射系统Γ图反射系数图最重要的概念是相角走向。

射频工程师必知必会——史密斯圆图

射频工程师必知必会——史密斯圆图

射频工程师必知必会——史密斯圆图这篇文章盘算了很久,迟迟不敢下笔,对于圆图的巧夺天工实在不敢多语。

有人用圆图做阻抗匹配,也有人用圆图做电路调试,甚至还有滤波器的调试。

感谢史密斯大神的圆图,让射频设计变得简单——一切逃不开这个⚪。

今天我们尝试着再去学习一下这个圆,水平有限,还望海涵。

上图所示的就是一个完整版的史密斯圆图,它是一种求解传输线问题的辅助工具,它是在1939年由P.Smith 在贝尔实验室工作时开发的。

也许有人会有疑问,在计算机和计算机辅助设计如此发达的今天,图形在已经用的很少了。

包括我自己也有这样的疑问,我们可以直观的测试得到阻抗曲线,可以利用计算机去模拟优化阻抗匹配。

但是如果我们掌握了史密斯圆图的方法,进入⚪内,也许会有更加直观的见解,开发出关于传输线和阻抗匹配问题的直观想象力。

初看起来,史密斯圆图似乎很可怕,密密麻麻的小字,到底是什么意思?但理解他的关键它基本上就是电压发射系数的极坐标图。

史密斯圆图又称为阻抗圆图,将归一化等电阻圆,归一化的等电抗圆叠画在反射系数复平面上而形成的。

为了使圆图对传输线的特性阻抗具有普遍意义,设计圆图时采用归一化阻抗。

归一化阻抗就是阻抗与所接传输线特性阻抗之比,即:式中的r(z)和x(z)分别为归一化电阻和归一化电抗。

根据前文的介绍,我们知道归一化阻抗与反射系数之间的关系为:利用上式就可以做出反应归一化阻抗和反射系数关系的图。

首先要建立一个坐标系,用反射系数的实部作为横坐标,虚部作为纵坐标。

同时在坐标平面上标明反射系数的模和相角。

然后把归一化电阻和归一化电抗的关系曲线画在该坐标系上,这样就建立了阻抗圆图。

1,建立反射系数复平面反射系数复平面:横坐标:反射系数的实部u,纵坐标: 反射系数的虚部v。

2,等反射系数圆(1)所有点均落在单位圆内。

(2)沿均匀无耗传输线移动时,反射系数的模保持不变,只有相角变化,对应到Γ平面上就是沿着平面上的某一圆旋转。

(a)向信号源方向移动时,z 增大,反射系数相位滞后,对应在Γ平面上沿某圆顺时针方向旋转;(b)向负载方向移动时,z 减小,反射系数的相位超前,对应在Γ 平面上沿某圆向逆时针方向旋转;(c)在圆图上标有旋转时对应的波长数。

Smith 圆图—原理与分析

Smith 圆图—原理与分析

Smith 圆图—原理与分析
Smith 圆图是一种用于分析电路中的匹配网络的工具。

它由美国电气工程师Phillip H. Smith于1950年提出,并被广泛应用于射频电路设计和天线设计领域。

Smith 圆图的原理基于复阻抗的概念。

在Smith 圆图中,电路中的每个点都可
以表示为一个复阻抗,即由实部和虚部组成的复数。

这样,整个电路可以表示为一个复阻抗的集合。

Smith 圆图将复阻抗表示为一个圆形图形,其中圆心表示纯电阻,圆的边界表
示纯电抗。

圆的半径表示电阻的大小,而圆的位置表示电抗的大小和相位。

通过在Smith 圆图上绘制电路中的复阻抗,可以直观地分析电路的匹配情况。

当电路的复阻抗位于Smith 圆图的边界上时,表示电路是纯电抗的,即无功。

当电路的复阻抗位于Smith 圆图的圆心时,表示电路是纯电阻的,即有功。

通过分析Smith 圆图上的复阻抗,可以确定电路的匹配情况。

匹配是指电路中
的负载阻抗与发射源或传输线的特性阻抗相匹配。

在Smith 圆图中,当负载阻抗与特性阻抗相匹配时,负载阻抗位于Smith 圆图的边界上,此时电路的反射系数为零,表示无反射。

Smith 圆图还可以用于计算电路中的反射系数、驻波比、传输线的特性阻抗等
参数。

通过在Smith 圆图上测量复阻抗的位置,可以直接读取这些参数的数值。

总之,Smith 圆图是一种简单直观的工具,可以帮助工程师分析电路中的匹配
情况,并优化电路设计。

它在射频电路设计和天线设计中具有重要的应用价值。

史密斯圆图

史密斯圆图

史密斯圆图
史密斯圆图(Smith chart)是一款用于电机与电子工程学的图表,主要用于传输线的阻抗匹配上。

史密斯图的基本原理在于以下的算式:
反射系数Γ(reflection coefficient)和阻抗z L均为复数,z L是归一化负载值,即z L = ZL/ Z0。

ZL是电路的负载值,Z0是传输线的特性阻抗值,通常使用50Ω。

这是一双线性变换,属于复变函数中的保角变换。

它将z
复平面上实部r=常数和虚部x=常数的两族正交直线变换为Γ
复平面上的正交圆族。

该图表是由菲利普·史密斯(Phillip Smith)于1939年发明的,当时他在美国的RCA公司工作。

史密斯也许不是图表的第一位发明者,一位名为Kurakawa的日本工程师声称早于其一年发明了这种图表。

史密斯曾说过,“在我能够使用计算尺的时候,我对以图表方式来表达数学上的关联很有兴趣。


Smith 圆图
图表中的圆形线代表阻抗的实部,即等电阻圆;中间的横线与向上和向下散出的弧线则代表阻抗的虚部,即等电抗圆。

上半圆是正值,下半圆是负值。

在图边的数字代表反射系数的角度(0-180度)和波长(由零至半个波长)。

有一些图表是以导纳值(admitt ance)来表示,把上面的阻抗圆图旋转180度即可导纳圆图。

自从有了计算机后,此种圆图的使用率随之而下,但仍常用来表示特定的资料。

对于就读电磁学及微波电子学的学生来说,在解决课本问题仍然很实用,因此史密斯图至今仍是重要的教学工具。

在学术论文里,结果也常会以史密斯图来表示。

(完整word版)smith史密斯圆图(个人总结),推荐文档

(完整word版)smith史密斯圆图(个人总结),推荐文档

smith chart史密斯圆图总结史密斯圆图(Smith chart)是一款用于电机与电子工程学的圆图,是最著名和最广泛的用于求解传输线问题的图解技术。

主要用于传输线的阻抗匹配上。

一条传输线(transmission line)的电阻抗力(impedance)会随其长度而改变,要设计一套匹配(matching)的线路,需要通过不少繁复的计算程序,史密斯圆图的特点便是省却一些计算程序。

Smith圆图的构成:等反射系数圆、阻抗圆图、导纳圆图。

史密斯圆图的基础在于以下的算式Γ= (Z - 1)/(Z+ 1)Γ代表其线路的反射系数(reflection coefficient),即S-parameter里的S11,Z是归一负载值,即ZL / Z0。

当中,ZL是线路的负载值Z0是传输线的特征阻抗值,通常会使用50Ω。

圆图中的横坐标代表反射系数的实部,纵坐标代表虚部。

圆形线代表等电阻圆,每个圆的圆心为1/(R+1),半径为R/(R+1).R为该圆上的点的电阻值。

中间的横线与向上和向下散出的线则代表阻抗的虚数值,即等电抗圆,圆心为1/X,半径为1/X.由于反射系数是小于等于1的,所以在等电抗圆落在单位圆以外的部分没有意义。

当中向上发散的是正数,向下发散的是负数。

圆图最中间的点(Z=1+j0, Γ=0)代表一个已匹配(matched)的电阻数值(此ZL=Z0,即Z=1),同时其反射系数的值会是零。

圆图的边缘代表其反射系数的幅度是1,即100%反射。

在图边的数字代表反射系数的角度(0-180度)。

有一些圆图是以导纳值(admittance)来表示,把上述的阻抗值版本旋转180度即可。

圆图中的每一点代表在该点阻抗下的反射系数。

该电的阻抗实部可以从该电所在的等电阻圆读出,虚部可以从该点所在的等电抗圆读出。

同时,该点到原点的距离为反射系数的绝对值,到原点的角度为反射系数的相位。

由反射系数可以得到电压驻波比和回波损耗。

smith圆图的原理和应用

smith圆图的原理和应用

Smith圆图的原理和应用1. 前言Smith圆图是一种用于分析和解决电路中匹配问题的有效工具。

它由英国电气工程师Philip H. Smith于1939年创造,被广泛应用于射频电路、微波电路和天线设计等领域。

本文将介绍Smith圆图的基本原理和其在电路设计中的应用。

2. Smith圆图的基本原理2.1 反射系数和阻抗的关系Smith圆图是基于反射系数和阻抗之间的关系来进行分析的。

在电路中,反射系数表示反射波与入射波之间的关系,它是一个复数,可以用幅值和相位角来表示。

而阻抗则表示电路的负载特性,是一个实数。

Smith圆图将反射系数和阻抗之间的关系以一种直观而又简洁的方式进行了可视化。

2.2 Smith圆图的表示方式Smith圆图以单位圆为基础,将纯虚轴表示为电阻为无穷大的点,将实轴表示为电抗为零的点。

反射系数的值可以通过在Smith圆图上找到相应的点来表示。

例如,反射系数为0时,点位于单位圆的中心,反射系数为1时,点位于单位圆的边缘。

3. Smith圆图的应用3.1 反射系数的测量Smith圆图可以用于测量电路中的反射系数。

通过将电路与信号源和负载连接,可以使用向电路中注入信号的方式来测量反射系数。

通过测量反射系数的幅值和相位角,并将其在Smith圆图上进行标记,可以得到电路的匹配情况。

3.2 阻抗匹配Smith圆图可以帮助我们进行阻抗匹配,即调整电路的参数,以使得电路的输入和输出阻抗相匹配。

在Smith圆图上,我们可以通过移动点的位置来调整电路的参数,直至反射系数最小化。

通过在Smith圆图上定位匹配的点,可以快速找到合适的参数设置。

3.3 确定失配的原因Smith圆图可以帮助我们确定电路中失配的原因。

当电路的反射系数不为零时,可以使用Smith圆图来定位反射点,并判断失配的原因。

例如,如果反射系数位于实轴上,则说明电路存在电抗失配;如果反射系数位于圆心,则说明电路存在电阻失配。

3.4 天线设计Smith圆图在天线设计中也有广泛的应用。

史密斯圆图基本原理及应用

史密斯圆图基本原理及应用

第一章 均匀传输线理论之史密斯圆图及其应用
结论:阻抗圆图上的重要点、线、面
上半圆电感性
x=+1电抗圆弧
r=1的纯电阻圆 开路点 匹配点
纯电阻线 短路点
纯电抗圆
x=-1电抗圆弧
下半圆电容性
微波工程基础
10
第一章 均匀传输线理论之史密斯圆图及其应用
结论



在阻抗圆图的上半圆内的电抗为x>0呈感性;下半圆内的 电抗为x<0呈容性; 实轴上的点代表纯电阻点,左半轴上的点为电压波节点, 其上的刻度既代表rmin ,又代表行波系数K,右半轴上的点 为电压波腹点,其上的刻度既代表rmax ,又代表驻波比; 圆图旋转一周为/2; =1的圆周上的点代表纯电抗点; 实轴左端点为短路点,右端点为开路点;中心点处有r=1、 x=0,是匹配点; 在传输线上由负载向电源方向移动时,在圆图上应顺时针 旋转;反之,由电源向负载方向移动时,应逆时针旋转。
作为图形设计工具,通过比较
SMITH圆图中等驻波比圆的半 径,可以直观地观测传输线和附 载阻抗之间的失配程度。
终端负载决定了无耗传输线反
射系数大小 微波工程基础
16
第一章 均匀传输线理论之史密斯圆图及其应用
[例1-3]已知传输线的特性阻抗Z0=50。假设传输线的负 载阻抗为Zl=25+j25 ,求离负载z=0.2处的等效阻抗。
微波工程基础
14
第一章 均匀传输线理论之史密斯圆图及其应用
[例1-1]已知传输线的特性阻抗Z0=50Ω,终端 接有下列负载阻抗,将其用反射系数表示 ~ Z a L 1 a Z L 0 ZL L Z0 b L 1 b Z L ~
(c ) Z L 50 ( d ) Z L (16.67 j16.67) (e) Z L (50 j 50)

(完整word版)史密斯圆图简介

(完整word版)史密斯圆图简介

史密斯圆图(Smith chart )分析长线的工作状态离不开计算阻抗、反射系数等参数,会遇到大量繁琐的复数运算,在计算机技术还未广泛应用的过去,图解法就是常用的手段之一。

在天线和微波工程设计中,经常会用到各种图形曲线,它们既简便直观,又具有足够的准确度,即使计算机技术广泛应用的今天,它们仍然对天线和微波工程设计有着重要的影响作用。

Smith chart 就是其中最常用一种。

1、Smith chart 的构成在Smith chart 中反射系数和阻抗一一对应;Smith chart 包含两部分,一部分是阻抗Smith 圆图(Z-Smith chart ),它由等反射系数圆和阻抗圆图构成;另外一部分是导纳Smith 圆图(Y-Smith chart ),它由等反射系数圆和导纳圆图构成;它们共同构成YZ-Smith chart 。

阻抗圆图又由电阻和电抗两部分构成,导纳圆图由电导和电纳构成。

1.1 等反射系数圆在如图1所示的带负载的传输线电路图中,由长线理论的知识我们可以得到负载处的反射系数0Γ为:000000Lj L u v L Z Z j eZ Z θ-Γ==Γ+Γ=Γ+ 其中00arctan(/)Lv u θ=ΓΓ。

图1 带负载的传输线电路图在离负载距离为z 处的反射系数Γ为:2000L j j z in u v in Z Z j e eZ Z θβ--Γ==Γ+Γ=Γ+ 其中220u v Γ=Γ+Γ,arctan(/)L v u θ=ΓΓ。

椐此我们用极坐标当负载和传输线的特征阻抗确定下来之后,传输线上不同位置处的反射系数辐值(1Γ≤)将不再改变,而变得只是反射系数的辐角;辐角的变化为2z β-∆,传输线上的位置向负载方向移动时,辐角逆时针转动,向波源方向移动时,辐角向顺时针方向转动,如图2所示。

图2 等反射系数圆传输线上不同位置处的反射系数的辐角变化只与2z β-,其中传波常数2/p βπλ=,所以Γ是一个周期为0.5p λ的周期性函数。

第2.5章史密斯圆图.

第2.5章史密斯圆图.

圆图上旋转一周的相应传输
线长度为/2
方向
G(d ) =
G e j(F L - 2b d ) L
向电源:d 增加—从负载移向信号源,
在圆图上顺时针方向旋转;
向负载:d 减小—从信号
源移向负载,在 圆图上逆时针方 向旋转;
ZL
(2)导纳圆图
当微波元件为并联时,使用导纳计算比较方便。
Y = 1 = G + jB Z
解: 归一化负载阻抗: zL 2 j0.6 1)旋转1800得到 yL 0.45 j0.5 ;
~ 对应 lL 0.028
∵ 长线上阻抗(导纳)
具有/2的重复性;
故有
l
le =
l-
n? 2
0.3l
求 Yin
由 yL 点沿等圆向电源方向旋转0.3λ ,至 yin点,则可得 yin 1.18 j0.9 ; lin 0.3 0.028 0.328
yL
=
1, zL
y = g + yL = (g + gL ) + jbL ,
导纳转换 为阻抗
z= 1 y
并联 电抗
阻抗转换 为导纳
在等电导 圆上旋转
导纳转换 为阻抗
1
yL =
, zL
y = jb + yL = gL + j(b + bL ),
z= 1 y
圆图的使用3
已知传输线Z0 上最小点的位 置dmin,VSWR
§2.5 史密斯圆图
史密斯圆图(Smith chart)是利用图解法来求 解传输线上任一点的参数。
在传输线上任一参考面上定义三套参量:
①反射系数Γ ; ②输入阻抗Zin; ③驻波系数VSWR和lmin

2.5 史密斯圆图

2.5 史密斯圆图

圆图就是将两组等值线簇画在同一张图上即可。
圆图所依据的关系为: z (d ) Z (d ) 1 (d )
Z0
1 ( d )

z (d ) 1 ( d ) z (d ) 1
存在一一 对应关系
圆图就是将二者的归一化关系画在同一张图上就行了. 从z→平面,用极坐标表示---史密斯圆图; 从→z平面,用直角坐标表示---施密特圆图;
此时
1+ G 1+ G z= r= = = r 1- G 1- G
rmax = r ,
Rmax = Z0 r
B
A
则Vmax线上以r 的标度作为ρ的标度。
Vmin线(电压最小线)—左半实轴
OB线上,
G(d ) = G(d ) e jf (d ) = - G(d )
V (d ) = V + [1 + G(d )]= V + 轾 1- G(d ) = V min 臌
1 r 2 (1 Re )
2 Re
2
2 Im 2 Im
2 1 2 Re Im j Im r jx (1 Re )2 2 Im
2 (r 1)2 ( r 1) Im Re 2r Re 1 r
骣 r 鼢 2 骣1 珑 可得珑 GRe + GIm = 鼢 鼢 珑 桫 桫 1+ r 1+ r GIm 同理x = (1- GRe )2 + G2 Im
1,VSWR , ZL
A
开路点
对应电压驻 波波腹点
VL = VL+ (1 + GL ) = 2VL+
短路点
1,VSWR ,z

Smith 圆图—原理与分析

Smith 圆图—原理与分析

Smith 圆图—原理与分析一、引言Smith 圆图是一种用于分析和解释市场经济中的价格和数量关系的工具。

它由经济学家Adam Smith提出,被广泛应用于经济学和市场研究领域。

本文将介绍Smith 圆图的原理和分析方法,并通过实例进行说明。

二、Smith 圆图的原理Smith 圆图的核心原理是供给和需求的交互作用决定了市场价格和数量的均衡。

供给曲线表示生产者愿意以不同价格提供的商品数量,需求曲线表示消费者愿意以不同价格购买的商品数量。

当供给和需求曲线相交时,市场达到均衡状态,即供给量等于需求量,价格也达到了均衡价格。

三、Smith 圆图的分析步骤1. 收集数据:首先,需要收集相关商品的供给和需求数据。

可以通过市场调研、统计数据等方式获取。

2. 绘制供给曲线:根据收集到的供给数据,绘制供给曲线。

横轴表示商品的价格,纵轴表示供给的数量。

通常情况下,供给曲线是向上倾斜的,即价格上升时,供给数量也会增加。

3. 绘制需求曲线:根据收集到的需求数据,绘制需求曲线。

横轴表示商品的价格,纵轴表示需求的数量。

需求曲线通常是向下倾斜的,即价格上升时,需求数量会减少。

4. 确定均衡点:通过观察供给曲线和需求曲线的交点,确定市场的均衡点。

交点的横坐标即为均衡价格,纵坐标即为均衡数量。

5. 分析结果:根据均衡点的位置,可以分析市场的供需关系。

如果均衡点位于供给曲线和需求曲线的中间位置,说明市场供需相对平衡;如果均衡点偏向供给曲线一侧,说明供给过剩;如果均衡点偏向需求曲线一侧,说明需求不足。

四、实例分析假设我们研究某个市场中的苹果价格和数量关系。

根据收集到的数据,我们绘制了供给曲线和需求曲线,并找到了均衡点。

根据我们的数据和绘制的曲线,我们观察到均衡点位于供给曲线和需求曲线的中间位置。

这意味着市场供需相对平衡,供给量等于需求量,价格也达到了均衡价格。

进一步分析发现,如果苹果价格上升,供给量会增加,而需求量会减少。

如果苹果价格下降,供给量会减少,而需求量会增加。

Smith圆图详解知识分享

Smith圆图详解知识分享

S(1,1)
Smith 圆图——ADS验证
m1 freq=2.400GHz S(1,1)=0.013 / -160.338 impedance = Z0 * (0.976 - j0.008)
m1
freq (2.000GHz to 3.000GHz)
VSWR1
dB(S(1,1))
m2 freq=2.400GHz dB(S(1,1))=-37.839
以实轴中心为原点,画圆,使负载点 在圆上。圆与实轴左边的那个交点上, 画一条直线下来。
从Smith 圆图中读参数_2
由上图可以看出: 驻波比SWR=2.6 回波损耗:RTN LOSS=7dB 反射系数: |Γ|=0.44
从Smith 圆图中读参数_3
在smith图中找到 负载点,如红点所 示。
通过实轴中心与负 载点画一条直线, 直线与相位圆相交 于紫色点,读出该 点相角约为26.2度
freq, GHz
m3 freq= 10.00GHz S(1,1)=0.447 / 26.565 impedance = Z0 * (2.000 + j1.000)
VSWR1
2.6180340
m2 freq=3.000GHz VSWR1=2.618
2.6180340
2.6180340
m2
2.6180340
2.6180340
Smith 圆图_ADS验证
dB(S(1,1))
-6.9897000
m1 freq=3.000GHz dB(S(1,1))=-6.990
-6.9897000
-6.9897000
m1
-6.9897000
-6.9897000
-6.9897000
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作者:败转头作品编号44122544:GL568877444633106633215458时间:2020.12.13阻抗匹配与史密斯(Smith)圆图:基本原理摘要:本文利用史密斯圆图作为RF阻抗匹配的设计指南。

文中给出了反射系数、阻抗和导纳的作图范例,并给出了MAX2474工作在900MHz时匹配网络的作图范例。

事实证明,史密斯圆图仍然是确定传输线阻抗的基本工作。

在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。

一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。

匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。

在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。

频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。

需要用计算值确定电路的结构类型和相应的目标元件值。

有很多种阻抗匹配的方法,包括计算机仿真:由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。

设计者必须熟悉用正确的格式输入众多的数据。

设计人员还需要具有从大量的输出结果中找到有用数据的技能。

另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。

手工计算:这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。

经验:只有在RF领域工作过多年的人才能使用这种方法。

总之,它只适合于资深的专家。

史密斯圆图:本文要重点讨论的内容。

本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。

讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。

当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。

图1. 阻抗和史密斯圆图基础基础知识在介绍史密斯圆图的使用之前,最好回顾一下RF环境下(大于100MHz) IC连线的电磁波传播现象。

这对RS-485传输线、PA和天线之间的连接、LNA和下变频器/混频器之间的连接等应用都是有效的。

大家都知道,要使信号源传送到负载的功率最大,信号源阻抗必须等于负载的共轭阻抗,即:R s + jX s = R L - jX L图2. 表达式R s + jX s = R L - jX L的等效图在这个条件下,从信号源到负载传输的能量最大。

另外,为有效传输功率,满足这个条件可以避免能量从负载反射到信号源,尤其是在诸如视频传输、RF或微波网络的高频应用环境更是如此。

史密斯圆图史密斯圆图是由很多圆周交织在一起的一个图。

正确的使用它,可以在不作任何计算的前提下得到一个表面上看非常复杂的系统的匹配阻抗,唯一需要作的就是沿着圆周线读取并跟踪数据。

史密斯圆图是反射系数(伽马,以符号Γ表示)的极座标图。

反射系数也可以从数学上定义为单端口散射参数,即s11。

史密斯圆图是通过验证阻抗匹配的负载产生的。

这里我们不直接考虑阻抗,而是用反射系数ΓL,反射系数可以反映负载的特性(如导纳、增益、跨导),在处理RF频率的问题时ΓL更加有用。

我们知道反射系数定义为反射波电压与入射波电压之比:图3. 负载阻抗负载反射信号的强度取决于信号源阻抗与负载阻抗的失配程度。

反射系数的表达式定义为:由于阻抗是复数,反射系数也是复数。

为了减少未知参数的数量,可以固化一个经常出现并且在应用中经常使用的参数。

这里Z0 (特性阻抗)通常为常数并且是实数,是常用的归一化标准值,如50Ω、75Ω、100Ω和600Ω。

于是我们可以定义归一化的负载阻抗:据此,将反射系数的公式重新写为:从上式我们可以看到负载阻抗与其反射系数间的直接关系。

但是这个关系式是一个复数,所以并不实用。

我们可以把史密斯圆图当作上述方程的图形表示。

为了建立圆图,方程必需重新整理以符合标准几何图形的形式(如圆或射线)。

首先,由方程2.3求解出;并且令等式2.5的实部和虚部相等,得到两个独立的关系式:重新整理等式2.6,经过等式2.8至2.13得到最终的方程2.14。

这个方程是在复平面(Γr, Γi)上、圆的参数方程(x-a)2 + (y-b)² = R²,它以(r/r+1, 0)为圆心,半径为1/1+r.更多细节参见图4a。

图4a. 圆周上的点表示具有相同实部的阻抗。

例如,r = 1的圆,以(0.5, 0)为圆心,半径为0.5。

它包含了代表反射零点的原点(0, 0) (负载与特性阻抗相匹配)。

以(0, 0)为圆心、半径为1的圆代表负载短路。

负载开路时,圆退化为一个点(以1, 0为圆心,半径为零)。

与此对应的是最大的反射系数1,即所有的入射波都被反射回来。

在作史密斯圆图时,有一些需要注意的问题。

下面是最重要的几个方面:1.所有的圆周只有一个相同的,唯一的交点(1, 0)。

2.代表0Ω、也就是没有电阻(r = 0)的圆是最大的圆。

3.无限大的电阻对应的圆退化为一个点(1, 0)4.实际中没有负的电阻,如果出现负阻值,有可能产生振荡。

5.选择一个对应于新电阻值的圆周就等于选择了一个新的电阻。

作图经过等式2.15至2.18的变换,2.7式可以推导出另一个参数方程,方程2.19。

同样,2.19也是在复平面(Γr, Γi)上的圆的参数方程(x-a)² + (y-b)² = R²,它的圆心为(1, 1/x),半径1/x。

更多细节参见图4b。

图4b. 圆周上的点表示具有相同虚部x的阻抗。

例如,x = 1的圆以(1, 1)为圆心,半径为1。

所有的圆(x为常数)都包括点(1, 0)。

与实部圆周不同的是,x既可以是正数也可以是负数。

这说明复平面下半部是其上半部的镜像。

所有圆的圆心都在一条经过横轴上1点的垂直线上。

完成圆图为了完成史密斯圆图,我们将两簇圆周放在一起。

可以发现一簇圆周的所有圆会与另一簇圆周的所有圆相交。

若已知阻抗为r + jx,只需要找到对应于r和x的两个圆周的交点就可以得到相应的反射系数。

可互换性上述过程是可逆的,如果已知反射系数,可以找到两个圆周的交点从而读取相应的r和x 的值。

过程如下:•确定阻抗在史密斯圆图上的对应点•找到与此阻抗对应的反射系数(Γ)•已知特性阻抗和Γ,找出阻抗•将阻抗转换为导纳•找出等效的阻抗•找出与反射系数对应的元件值(尤其是匹配网络的元件,见图7)推论因为史密斯圆图是一种基于图形的解法,所得结果的精确度直接依赖于图形的精度。

下面是一个用史密斯圆图表示的RF应用实例:例:已知特性阻抗为50Ω,负载阻抗如下:Z1 = 100 + j50ΩZ2 = 75 -j100ΩZ3 =j200ΩZ4= 150ΩZ5= ∞ (开路) Z6= 0 (短路)Z7 =50ΩZ8 = 184 -j900Ω对上面的值进行归一化并标示在圆图中(见图5):z1 = 2 + jz2= 1.5 -j2z3= j4z4 = 3z5 = 8 z6 = 0z7= 1z8 = 3.68 -j18图5. 史密斯圆图上的点现在可以通过图5的圆图直接解出反射系数Γ。

画出阻抗点(等阻抗圆和等电抗圆的交点),只要读出它们在直角坐标水平轴和垂直轴上的投影,就得到了反射系数的实部Γr 和虚部Γi (见图6)。

该范例中可能存在八种情况,在图6所示史密斯圆图上可以直接得到对应的反射系数Γ: = 0.4 = 0. = 0.8 = 0.= 1 = -1 = 0= 0.图6. 从X-Y轴直接读出反射系数Γ的实部和虚部用导纳表示史密斯圆图是用阻抗(电阻和电抗)建立的。

一旦作出了史密斯圆图,就可以用它分析串联和并联情况下的参数。

可以添加新的串联元件,确定新增元件的影响只需沿着圆周移动到它们相应的数值即可。

然而,增加并联元件时分析过程就不是这么简单了,需要考虑其它的参数。

通常,利用导纳更容易处理并联元件。

我们知道,根据定义Y = 1/Z,Z = 1/Y。

导纳的单位是姆欧或者Ω-1 (早些时候导纳的单位是西门子或S)。

并且,如果Z是复数,则Y也一定是复数。

所以Y = G + jB (2.20), 其中G叫作元件的“电导”,B称“电纳”。

在演算的时候应该小心谨慎,按照似乎合乎逻辑的假设,可以得出:G = 1/R及B = 1/X,然而实际情况并非如此,这样计算会导致结果错误。

用导纳表示时,第一件要做的事是归一化, y = Y/Y0,得出y = g + jb。

但是如何计算反射系数呢?通过下面的式子进行推导:结果是G的表达式符号与z相反,并有Γ(y) = -Γ(z)。

如果知道z,就能通过将的符号取反找到一个与(0, 0)的距离相等但在反方向的点。

围绕原点旋转180°可以得到同样的结果(见图7)。

图7. 180°度旋转后的结果当然,表面上看新的点好像是一个不同的阻抗,实际上Z和1/Z表示的是同一个元件。

(在史密斯圆图上,不同的值对应不同的点并具有不同的反射系数,依次类推)出现这种情况的原因是我们的图形本身是一个阻抗图,而新的点代表的是一个导纳。

因此在圆图上读出的数值单位是姆欧。

尽管用这种方法就可以进行转换,但是在解决很多并联元件电路的问题时仍不适用。

作者:败转头作品编号44122544:GL568877444633106633215458时间:2020.12.13导纳圆图在前面的讨论中,我们看到阻抗圆图上的每一个点都可以通过以Γ复平面原点为中心旋转180°后得到与之对应的导纳点。

于是,将整个阻抗圆图旋转180°就得到了导纳圆图。

这种方法十分方便,它使我们不用建立一个新图。

所有圆周的交点(等电导圆和等电纳圆)自然出现在点(-1, 0)。

使用导纳圆图,使得添加并联元件变得很容易。

在数学上,导纳圆图由下面的公式构造:解这个方程接下来,令方程3.3的实部和虚部相等,我们得到两个新的独立的关系:从等式3.4,我们可以推导出下面的式子:它也是复平面(Γr, Γi)上圆的参数方程(x-a)² + (y-b) ² = R² (方程3.12),以(-g/g+1, 0)为圆心,半径为1/(1+g)。

从等式3.5,我们可以推导出下面的式子:同样得到(x-a)² + (y-b)² = R²型的参数方程(方程3.17)。

求解等效阻抗当解决同时存在串联和并联元件的混合电路时,可以使用同一个史密斯圆图,在需要进行从z到y或从y到z的转换时将图形旋转。

相关文档
最新文档