LINGO和EXCEL在数学建模中的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LINGO和EXCEL在数学建模中的应用
72页:最短路问题
model:
sets:
cities/A,B,C,D,E,F,G/:FL;
roads(cities,cities)/A,B A,C B,D B,E B,F C,D C,E C,F D,G E,G F,G/:W,P; endsets
data:
W=2 4 3 3 1 2 3 1 1 3 4;
enddata
N=@SIZE(CITIES); FL(N)=0;
@FOR(cities(i)|i#LT#N:FL(i)=@MIN(roads(i,j):W(i,j)+FL(j)));
@FOR(roads(i,j):p(i,j)=@IF(FL(i)#EQ#W(i,j)+FL(j),1,0));
end
运行结果:
Feasible solution found.
Total solver iterations: 0
Variable Value
N 7.000000
FL( A) 6.000000
FL( B) 4.000000
FL( C) 3.000000
FL( D) 1.000000
FL( E) 3.000000
FL( F) 4.000000
FL( G) 0.000000
W( A, B) 2.000000
W( A, C) 4.000000
W( B, D) 3.000000
W( B, E) 3.000000
W( B, F) 1.000000
W( C, D) 2.000000
W( C, E) 3.000000
W( C, F) 1.000000
W( D, G) 1.000000
W( E, G) 3.000000
W( F, G) 4.000000
P( A, B) 1.000000
P( A, C) 0.000000
P( B, D) 1.000000
P( B, E) 0.000000
P( B, F) 0.000000
P( C, D) 1.000000
P( C, E) 0.000000
P( C, F) 0.000000
P( D, G) 1.000000
P( E, G) 1.000000
P( F, G) 1.000000
Row Slack or Surplus
1 0.000000
2 0.000000
3 0.000000
4 0.000000
5 0.000000
6 0.000000
7 0.000000
8 0.000000
9 0.000000
10 0.000000
11 0.000000
12 0.000000
13 0.000000
14 0.000000
15 0.000000
16 0.000000
17 0.000000
18 0.000000
19 0.000000
85页:最小费用最大流
model:
sets:
CHSH/1..6/;
LINKS(CHSH,CHSH)/1,2 1,3 2,3 2,4 3,5 4,3 4,6 5,4 5,6 6,1/:C,U,F; ENDSETS
DATA:
U=8,7,5,9,9,2,5,6,10,15;
C=2,8,5,2,3,1,6,4,7,8;
ENDDATA
N=@SIZE(CHSH);
F(6,1)=14;
MIN=@SUM(LINKS(I,J)|I#LT#N:C(I,J)*F(I,J));
@FOR(LINKS(I,J):F(I,J)<=U(I,J));
@FOR(CHSH(I):@SUM(LINKS(J,I):F(J,I))=@SUM(LINKS(I,J):F(I,J))); END
运行结果:
Global optimal solution found.
Objective value: 205.0000
Infeasibilities: 0.000000
Total solver iterations: 0
Variable Value Reduced Cost
N 6.000000 0.000000
C( 1, 2) 2.000000 0.000000
C( 1, 3) 8.000000 0.000000
C( 2, 3) 5.000000 0.000000
C( 2, 4) 2.000000 0.000000
C( 3, 5) 3.000000 0.000000
C( 4, 3) 1.000000 0.000000
C( 4, 6) 6.000000 0.000000
C( 5, 4) 4.000000 0.000000
C( 5, 6) 7.000000 0.000000
C( 6, 1) 8.000000 0.000000
U( 1, 2) 8.000000 0.000000
U( 1, 3) 7.000000 0.000000
U( 2, 3) 5.000000 0.000000
U( 2, 4) 9.000000 0.000000
U( 3, 5) 9.000000 0.000000
U( 4, 3) 2.000000 0.000000
U( 4, 6) 5.000000 0.000000
U( 5, 4) 6.000000 0.000000
U( 5, 6) 10.00000 0.000000
U( 6, 1) 15.00000 0.000000
F( 1, 2) 8.000000 0.000000
F( 1, 3) 6.000000 0.000000
F( 2, 3) 1.000000 0.000000
F( 2, 4) 7.000000 0.000000
F( 3, 5) 9.000000 0.000000
F( 4, 3) 2.000000 0.000000
F( 4, 6) 5.000000 0.000000
F( 5, 4) 0.000000 10.00000
F( 5, 6) 9.000000 0.000000
F( 6, 1) 14.00000 0.000000