基于dsp的正弦波信号发生器课程设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
第1章绪论 (1)
1 DSP简介 (1)
第2章总体方案的分析和设计 (2)
2.1 总体方案设计 (2)
2.2正弦波信号发生器 (2)
第3章硬件设计 (3)
3.1硬件组成 (3)
3.2控制器部分 (4)
3.4人机接口部分 (5)
第4章软件设计 (6)
4.1流程图 (6)
4.2 正弦信号发生器程序清单 (7)
第5章总结 (12)
参考文献 (12)
第1章绪论
1 DSP简介
数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。数字信号处理是一种通过使用数学技巧执行转换或提取信息,来处理现实信号的方法,这些信号由数字序列表示。在过去的二十多年时间里,信号处理已经在通信等领域得到极为广泛的应用。
图一是数字信号处理系统的简化框图。此系统先将模拟信号转换为数字信号,经数字信号处理后,再转换成模拟信号输出。其中抗混叠滤波器的作用是将输入信号x (t)中高于折叠频率的分量滤除,以防止信号频谱的混叠。随后,信号经采样和A/D 转换后,变成数字信号x(n)。数字信号处理器对x(n)进行处理,得到输出数字信号y (n),经D/A转换器变成模拟信号。此信号经低通滤波器,滤除不需要的高频分量,最后输出平滑的模拟信号y(t)。
图1.1数字信号处理系统简化框图
数字信号处理是以众多学科为理论基础的,它所涉及的范围极其广泛。例如,在数学领域,微积分、概率统计、随机过程、数值分析等都是数字信号处理的基本工具,与网络理论、信号与系统、控制论、通信理论、故障诊断等也密切相关。近来新兴的一些学科,如人工智能、模式识别、神经网络等,都与数字信号处理密不可分。可以说,数字信号处理是把许多经典的理论体系作为自己的理论基础,同时又使自己成为一系列新兴学科的理论基础。
第2章 总体方案的分析和设计
2.1 总体方案设计
1.基于DSP 的特点,本设计采用TMS320C54X 系列的DSP 作为正弦信号发生器的核心控制芯片。
2.用泰勒级数展开法实现正弦波信号。
3.设置波形时域观察窗口,得到其滤波前后波形变化图;
4.设置频域观察窗口,得到其滤波前后频谱变化图。
2.2正弦波信号发生器
正弦波信号发生器已被广泛地应用于通信、仪器仪表和工业控制等领域的信号处理系统中。
通常有两种方法可以产生正弦波,分别为查表法和泰勒级数展开法。 查表法是通过查表的方式来实现正弦波,主要用于对精度要求不很高的场合。 泰勒级数展开法是根据泰勒展开式进行计算来实现正弦信号,它能精确地计算出一个角度的正弦和余弦值,且只需要较小的存储空间。 本次主要用泰勒级数展开法来实现正弦波信号。
产生正弦波的算法正弦函数和余弦函数可以展开成泰勒级数,其表达式:
取泰勒级数的前5项,得近似计算式:
-+-+-=!9!7!5!3)sin(9
753x x x x x x
-+-+-=!
8!6!4!21)cos(8
642x x x x x ))))
((((9
81761541321 !9!7!5!3)sin(2
2229
753⨯-⨯-⨯-⨯-=+
-+-=x x x x x x x x x x x
递推公式:
sin(nx ) = 2cos(x )sin[(n -1)x ]-sin[(n -2)x ] cos(nx ) = 2cos(x )sin[(n -1)x ]-cos[(n -2)x ]
由递推公式可以看出,在计算正弦和余弦值时,需要已知cos(x )、sin(n -1)x 、sin(n-
2)x 和cos(n -2)x 。
第3章 硬件设计
3.1硬件组成
基于DSP 的信号发生器的硬件结构图如图3.1所示,它主要由DSP 主控制器,输出D/A 通道和人机界面等几个主要部分组成。
图3.1 基于DSP 的信号发生器系统框图
)))
(((87165143121 !8!6!4!21)cos(2
2228
642⨯-⨯-⨯--=+
-+-=x x x x x x x x x
3.2控制器部分
本系统采用TI公司的TMS320LF2407 DSP处理器,该器件具有外设集成度高,程序存储器容量大,A/D转换精度高,运算速度高,I/O口资源丰富等特点,芯片内部集成有32KB的FLASH程序存储器、2KB的数据/程序RAM,两个事件管理器模块(EVE和EVB)、16通道A/D转换器、看门狗定时器模块、16位的串行外设接口(SPI)模块、40个可单独编程或复用的通用输入输出引脚(GPIO)以及5个外部中断和系统监视模块。
TMS320LF2407芯片中的事件管理模块(EV)是一个非常重要的组成部分。SP WM波形的产生和输出就是由这一部分完成的,它由两个完全相同的模块(EV A和E VB)组成,每个模块都含有2个通用定时器、3个比较器、6至8个PWM发生器、3个捕获单元和2个正交脉冲编码电路(QEP)。由于TMS320LF2407有544字的双口RAM(DARAM)和2K字的单口RAM(SARAM);而本系统的程序仅有几KB,且所用RAM也不多,因此不用考虑存储器的扩展问题,而对于TMS320LF2407的I /O扩展问题,由于TMS320LF2407器件有多达40个通用、双向的数字I/O(GPIO)引脚,且其中大多数的基本功能和一般I/O复用的引脚,而实际上,本系统只需要1 7路I/O信号,这样,就可以为系统剩余50%多的I/O资源,因此可以说,该方案既不算浪费系统资源,也为系统今后的升级留有余地。
3.3微输出D/A通道部分
本系统的输出通道部分主要负责实现波形的输出,此通道的入口为TMS320LF2 407的PWM8口,可输出SPWM等幅脉冲波形,出口为系统的输出端,这样,经过一系列的中间环节,便可将PWM脉冲波转化为交流正弦波形,从而实现正弦波的输出,其原理框图如图3.2所示。
图3.2 输出通道的原理结构
图3.2中的缓冲电路的作用是对PWM口输出的数字量进行缓冲,并将电压拉高