16年高考数学真题高考题(8套)

合集下载

历年高考数学真题答案

历年高考数学真题答案

历年高考数学真题答案【篇一:新课标数学历年高考试题汇总及详细答案解析】/p> 第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合m={0,1,2},n=?x|x2?3x?2≤0?,则m?n=() a. {1}【答案】db. {2}c. {0,1}d. {1,2}把m={0,1,2}中的数,代入不等式x2-3x+2≤0,经检验x=1,2满足。

所以选d.2.设复数z1,z2在复平面内的对应点关于虚轴对称,z1?2?i,则z1z2?() a. - 5 【答案】bb.5c. - 4+ id. - 4 - iz1=2+i,z1与z2关于虚轴对称,∴z2=-2+i,∴z1z2=-1-4=-5,故选b.3.设向量a,b满足|a+b|a-ba?b = () a. 1 【答案】ab. 222c. 322d. 5|a+b|=,|a-b|=6,,∴a+b+2ab=10,a+b-2ab=6,联立方程解得=1,故选a.4.钝角三角形abc的面积是,ab=1,,则ac=()2a. 5【答案】bb.c. 2d. 11112∴b=,使用余弦定理,b2=a2+c2-2accosb,解得b=.故选b.5.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()a. 0.8b. 0.75c. 0.6d. 0.45【答案】a设某天空气质量优良,则随后一个空气质量也优良的概率为p,则据题有0.6=0.75?p,解得p=0.8,故选a.6.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()a. b. c. d.279273【答案】c7.执行右图程序框图,如果输入的x,t均为2,则输出的s= () a.4 b. 5c. 6 d. 7【答案】cx=2,t=2,变量变化情况如下: m s k 13 125 2 27 3 故选c.8.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a= a. 0b. 1c. 2d. 3【答案】df(x)=ax-ln(x+1),∴f′(x)=a-1.x+1∴f(0)=0,且f′(0)=2.联立解得a=3.故选d.?x?y?7≤0?9.设x,y满足约束条件?x?3y?1≤0,则z?2x?y的最大值为()?3x?y?5≥0?a. 10b. 8c. 3d. 2【答案】b画出区域,可知区域为三角形,经比较斜率,可知目标函数z=2x-y 在两条直线x-3y+1=0与x+y-7=0的交点(5,2)处,取得最大值z=8.故选b.a.c. d.b.324 【答案】d设点a、b分别在第一和第四象限,af=2m,bf=2n,则由抛物线的定义和直角三角形知识可得,33332m=2?+m,2n=2?-3n,解得m=(2+),n=(2-3),∴m+n=6.4422139244c.d.【答案】c0-1+4=.故选c.106f?x0m2,则m的12.设函数f?x??.若存在f?x?的极值点x0满足x02m2取值范围是()a.,?66,??b.,?44,??c.,?22,??d.,?14,?? 【答案】cf(x)=sin22mm2∴x0+[f(x0)]2+3,∴+3m2,解得|m|2.故选c.44第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答. 二.填空题13.?x?a?的展开式中,x7的系数为15,则a=________.(用数字填写答案)101【答案】21137333c10xa=15x7∴c10a=15,a=.故a=.2214.函数f?x??sin?x?22sin?cos?x的最大值为_________. 【答案】115.已知偶函数f?x?在?0,单调递减,f?2??0.若f?x?1??0,则x的取值范围是__________.,-1)∪(3,+∞)【答案】(-∞偶函数y=f(x)在[0,+∞)上单增,且f(2)=0∴f(x)0的解集为|x|2.故解集为|x-1|2,解得x∈(-∞,-1)∪(3,+∞).∴f(x-1)0的解集为|x-1|2,解得x∈(-∞,-1)∪(3,+∞).在坐标系中画出圆o和直线y=1,其中m(x0,1)在直线上.由圆的切线相等及三角形外角知识,可得x0∈[-1,1].故x0∈[-1,1].已知数列?an?满足a1=1,an?1?3an?1.(Ⅰ)证明an?是等比数列,并求?an?的通项公式;(Ⅱ)证明:??…+?.12n【答案】(1) 无(1)(2)无a1=1,an+1=3an+1.n∈n*.111=3an+1+=3(an+). 222113∴{an+是首项为a1+=,公比为3的等比数列。

历年(2020-2024)全国高考数学真题分类(等式与不等式综合)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(等式与不等式综合)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(等式与不等式综合)汇编解不等式1.(2024∙全国新Ⅰ卷∙高考真题)已知集合{}355,{3,1,0,2,3}A xx B =-<<=--∣,则A B = ( ) A .{1,0}- B .{2,3} C .{3,1,0}-- D .{1,0,2}-2.(2024∙上海∙高考真题)已知,x ∈R 则不等式2230x x --<的解集为 .3.(2023∙全国新Ⅰ卷∙高考真题)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( )A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}24.(2020∙全国∙高考真题)已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B = ( ) A .{4,1}- B .{1,5} C .{3,5}D .{1,3}基本不等式1.(2024∙北京∙高考真题)已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则( ) A .12122log 22y y x x ++< B .12122log 22y y x x ++> C .12212log 2y y x x +<+ D .12212log 2y y x x +>+ 2.(2021∙全国乙卷∙高考真题)下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .2y 22x x -=+D .4ln ln y x x=+3.(2021∙全国新Ⅰ卷∙高考真题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13B .12C .9D .64.(2020∙全国∙高考真题)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b ab-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A .4B .8C .16D .32参考答案解不等式1.(2024∙全国新Ⅰ卷∙高考真题)已知集合{}355,{3,1,0,2,3}A xx B =-<<=--∣,则A B = ( ) A .{1,0}- B .{2,3}C .{3,1,0}--D .{1,0,2}-【答案】A【详细分析】化简集合A ,由交集的概念即可得解.【答案详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-. 故选:A.2.(2024∙上海∙高考真题)已知,x ∈R 则不等式2230x x --<的解集为 . 【答案】{}|13x x -<<【详细分析】求出方程2230x x --=的解后可求不等式的解集. 【答案详解】方程2230x x --=的解为=1x -或3x =, 故不等式2230x x --<的解集为{}|13x x -<<, 故答案为:{}|13x x -<<.3.(2023∙全国新Ⅰ卷∙高考真题)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( )A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}2【答案】C【详细分析】方法一:由一元二次不等式的解法求出集合N ,即可根据交集的运算解出. 方法二:将集合M 中的元素逐个代入不等式验证,即可解出.【答案详解】方法一:因为{}(][)260,23,N x x x ∞∞=--≥=--⋃+,而{}2,1,0,1,2M =--,所以M N ⋂={}2-. 故选:C .方法二:因为{}2,1,0,1,2M =--,将2,1,0,1,2--代入不等式260x x --≥,只有2-使不等式成立,所以M N ⋂={}2-.故选:C .4.(2020∙全国∙高考真题)已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B = ( ) A .{4,1}- B .{1,5} C .{3,5} D .{1,3}【答案】D【详细分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ⋂,得到结果. 【答案详解】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B = , 故选:D.【名师点评】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.基本不等式1.(2024∙北京∙高考真题)已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则( ) A .12122log 22y y x x ++< B .12122log 22y y x x ++> C .12212log 2y y x x +<+ D .12212log 2y y x x +>+ 【答案】B【详细分析】根据指数函数和对数函数的单调性结合基本不等式详细分析判断AB ;举例判断CD 即可. 【答案详解】由题意不妨设12x x <,因为函数2x y =是增函数,所以12022x x <<,即120y y <<,对于选项AB :可得121222222x xx x ++>=,即12122202x x y y ++>>, 根据函数2log y x =是增函数,所以121212222log log 222x x y y x x+++>=,故B 正确,A 错误;对于选项D :例如120,1x x ==,则121,2y y ==, 可得()12223log log 0,122y y +=∈,即12212log 12y y x x +<=+,故D 错误; 对于选项C :例如121,2x x =-=-,则1211,24y y ==, 可得()122223log log log 332,128y y +==-∈--,即12212log 32y y x x +>-=+,故C 错误, 故选:B.2.(2021∙全国乙卷∙高考真题)下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .2y 22x x -=+ D .4ln ln y x x=+【答案】C【详细分析】根据二次函数的性质可判断A 选项不符合题意,再根据基本不等式“一正二定三相等”,即可得出,B D 不符合题意,C 符合题意.【答案详解】对于A ,()2224133y x x x =++=++≥,当且仅当=1x -时取等号,所以其最小值为3,A 不符合题意;对于B ,因为0sin 1x <≤,4sin 4sin y x x=+≥=,当且仅当sin 2x =时取等号,等号取不到,所以其最小值不为4,B 不符合题意;对于C ,因为函数定义域为R ,而20x >,2422242x x xx y -=+=+≥=,当且仅当22x =,即1x =时取等号,所以其最小值为4,C 符合题意; 对于D ,4ln ln y x x=+,函数定义域为()()0,11,+∞ ,而ln x R ∈且ln 0x ≠,如当ln 1x =-,5y =-,D 不符合题意. 故选:C .【名师点评】本题解题关键是理解基本不等式的使用条件,明确“一正二定三相等”的意义,再结合有关函数的性质即可解出.3.(2021∙全国新Ⅰ卷∙高考真题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13 B .12C .9D .6【答案】C【详细分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答案.【答案详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C . 【名师点评】4.(2020∙全国∙高考真题)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b ab-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A .4 B .8 C .16 D .32【答案】B【详细分析】因为2222:1(0,0)x y C a b a b -=>>,可得双曲线的渐近线方程是b y x a=±,与直线x a =联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab值,根据2c =等式,即可求得答案. 【答案详解】 2222:1(0,0)x y C a b a b -=>> ∴双曲线的渐近线方程是b y x a=±直线x a =与双曲线2222:1(0,0)x y C a b a b -=>>的两条渐近线分别交于D ,E 两点 不妨设D 为在第一象限,E 在第四象限 联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故(,)D a b联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩ 故(,)E a b -∴||2ED b =∴ODE 面积为:1282ODE S a b ab =⨯==△双曲线2222:1(0,0)x y C a b a b-=>>∴其焦距为28c =≥==当且仅当a b ==∴C 的焦距的最小值:8故选:B.【名师点评】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了详细分析能力和计算能力,属于中档题.。

2016年河北省普通高等学校对口招生考试数学试题高考真题(含答案)

2016年河北省普通高等学校对口招生考试数学试题高考真题(含答案)

2016年河北省普通高等学校对口招生考试数 学一.选择题(本大题共15小题,每小题3分,共45分。

在每小题所给出的四个选项中,只有一个符合题目要求)1.设集合M ={1,2,3,4,5},N ={x |2650x x -+<2},则M ∩N =( ) A .{1,2,3} B .{2,3,4} C .{ 3,4,5} D .{ 2,4,5} 2.设a <b ,那么下列各不等式恒成立的是( )A .22a b <B .ac < bcC .2log ()0b a ->>0D .22a b < 3.“a =b ”是“lg a =lgb ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.下列函数是奇函数且在区间0,2π⎛⎫⎪⎝⎭内是单调递增的是( )A .cos()y x π=+ B .sin()y x π=- C .sin()2y x π=-D .y =sin 2x5.将函数3sin()6y x π=+的图像向右平移14个周期后,所得的图像对应的函数是( )A .3sin()4y x π=+B .3sin()4y x π=-C .3sin()3y x π=+D .3sin()3y x π=-6.设(1,)a x =-,(1,2)b =,且//a b ,则23a b -= ( ) A .(5,10) B .(-5,-10) C .(10,5) D .(-10,-5) 7.下列函数中,周期为π的奇函数是 ( )A .y =cosxsinxB .22cos sin y x x =-C .y =1-cosxD .y =sin 2x -cos 2x 8.已知等差数列{n a }中,已知384,11a a ==,则10s =( ) A .70 B .75 C .80 D .859.等比数列{n a }中,若27364a a a a +=,则此数列的前8项之积为( ) A .4 B .8 C .16 D .3210.下列四组函数中表示同一函数的是( )A .y x =与y x =B .y =2lnx 与2ln y x =C .y =sinx 与3cos()2y x π=+ D .cos(2)y x π=-与sin()y x π=- 11.等轴双曲线的离心率为( ) A512- B 512+ C 2 D .1 12.某地生态园有4个出入口,若某游客从任一出入口进入,并且从另外3个出入口之一走出,进出方案种数为( ) A .4 B .7 C .10 D .12 13.已知1532()x x-的第k 项为常数项,则k 为( ) A .6 B .7 C .8 D .914.点M (3,4)关于x 轴对称点的坐标为( )A .(-3,4)B .(3,-4)C .(3,4)D .(-3,-4)15.已知点P 是△ABC 所在平面外一点,若PA =PB =PC ,则点P 在平面ABC 内的射影O 是△ABC 的 ( )A .重心B .内心C .外心D .垂心二.填空题:(本大题共15小题,每小题2分,共30分)16.已知]23,(,0()2,(0,)x x x f x x ⎧+∈-∞=⎨-∈+∞⎩则f [f (1)]=____________.17.函数21lg()2y x x x =-+-的定义域是__________________. 18.计算:120153220161log 16cos ()27C π-++-+=____________.19.若13log 1x >,则 x 的取值范围是_________________.20.设()sin 1f x a x =+,若()212f π=,则()12f π-=_________.21.等差数列{a n }中,已知公差为3,且a 1+a 3+a 5=12,则S 6=_________. 22.设向量a =(,1)x x +,b =(1,2),且a b ⊥,则x =______.23.3sin()log 322πα-=,0απ<<则α=_________.24.过直线3x +y +8=0与2x +y +5=0的交点,且与直线x -y +1=0垂直的直线方程为_________.25.若1311ln ,,a b e c e e===,则由a ,b ,c 由小到大的顺序是__________.26.点M (3,λ)关于点N (μ,4)的对称点为M (5,7),则λ=____,μ=____. 27.设直线l ∥平面α,直线b ⊥平面α,则直线l 与直线b 所成角是___________. 28.若△ABC 中,90C ∠=,3,4AC BC ==,则AB BC ⋅=___________. 29.已知正方形ABCD 所在平面与正方形ABEF 所在平面成直二面角,则 ∠FBD =__________.30.从数字1,2,3,4,5中任选3个数字组成一个无重复数字的三位数,则这个三位数是偶数的概率为 _____________.三.解答题:(本大题共7小题,共45分.)31.(5分)已知集合已知集合{}2|610A x x mx =+-=,{}2|350B x x x n =++=且{1}A B =-,求A B 。

2016年高考真题——理科数学(浙江卷)Word版含解析

2016年高考真题——理科数学(浙江卷)Word版含解析

2016年普通高等学校招生全国统一考试(浙江卷)数学(理科)一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一个是符合题目要求的。

1.已知集合P=,Q=,则P=A.[2,3]B.(-2,3]C.[1,2)D.2.已知互相垂直的平面交于直线l,若直线m,n满足,则A. B. C. D.3.在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域中的点在直线x+y-2=0上的投影构成的线段记为AB,则|AB|=A. B.4 C. D.64.命题“使得”的否定形式是A.使得B.使得C.使得D.使得5.设函数,则的最小正周期A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关6.如图,点列分别在某锐角的两边上,且,,,.(表示点P与Q不重合)若,为的面积,则A.是等差数列B.是等差数列C.是等差数列D.是等差数列7.已知椭圆与双曲线的焦点重合,分别为的离心率,则A.且B.且C.且D.且8.已知实数.A.若则B.若则C.若则D.若则二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

9.若抛物线上的点M到焦点的距离为10,则M到y轴的距离是.10.已知,则A=,b=.11.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.12.已知,若,则a=,b=.13.设数列的前n,则=,=.14.如图,在中,AB=BC=2,.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是.15.已知向量a,b,|a|=1,|b|=2,若对任意单位向量e,均有|a·e|+|b·e|,则a·b的最大值是.三、解答题:本大题共5小题,共74分。

解答应写出文字说明,证明过程或演算步骤。

16.(本题满分14分)在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知2cos b c a B += (Ⅰ)证明:2A B =(Ⅱ)若ABC ∆的面积24a S =,求角A 的大小.17.(本题满分15分)如图,在三棱台ABC DEF -中,已知平面BCFE 平面ABC ,90ACB ∠=︒,1BE EF EC ===,2BC =,3AC =,(Ⅰ)求证:ACFD BF ⊥平面 (Ⅱ)求二面角B-AD-C 的余弦值.18. (本题满分15分)设3a ≥,函数2()min{2|1|,242}F x x x ax a =--+-,其中(Ⅰ)求使得等式2()242F x x ax a =-+-成立的x 的取值范围 (Ⅱ)(i )求()F x 的最小值()m a(ii )求()F x 在[0,6]上的最大值()M a19.(本题满分15分)如图,设椭圆C:2221(1)x y a a+=>(Ⅰ)求直线1y kx =+被椭圆截得到的弦长(用a,k 表示) (Ⅱ)若任意以点(0,1)A 为圆心的圆与椭圆至多有三个公共点,求椭圆的离心率的取值范围.20、(本题满分15分)设数列满足1||12n n a a +-≤,(Ⅰ)求证:11||2(||2)(*)n n a a n N -≥-∈(Ⅱ)若3||()2n n a ≤,*n N ∈,证明:||2n a ≤,*n N ∈.2016年高考浙江卷数学(理)试题答案及解析一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中只有一项是符合题目要求的.1. 已知集合{}{}213,4,P x x Q x x=∈≤≤=∈≥R R则()P Q⋃=RA.[2,3] B.( -2,3 ] C.[1,2) D.(,2][1,)-∞-⋃+∞【答案】B【解析】根据补集的运算得{}[](]24(2,2),()(2,2)1,32,3=<=-∴=-=-R RQ x x P Q.故选B.2. 已知互相垂直的平面αβ,交于直线l.若直线m,n满足,m nαβ∥⊥,则A.m∥l B.m∥n C.n⊥l D.m⊥n【答案】C3. 在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影.由区域20340xx yx y-≤⎧⎪+≥⎨⎪-+≥⎩中的点在直线x+y-2=0上的投影构成的线段记为AB,则│AB│=A.22B.4 C.32D.6【答案】C【解析】如图∆PQR为线性区域,区域内的点在直线20x y+-=上的投影构成了线段''R Q,即AB,而''=R Q PQ,由340-+=⎧⎨+=⎩x yx y得(1,1)-Q,由2=⎧⎨+=⎩xx y得(2,2)-R,22(12)(12)32==--++=AB QR.故选C.4. 命题“*x n ∀∈∃∈,R N ,使得2n x >”的定义形式是A .*x n ∀∈∃∈,R N ,使得2n x <B .*x n ∀∈∀∈,R N ,使得2n x <C .*x n ∃∈∃∈,R N ,使得2n x <D .*x n ∃∈∀∈,R N ,使得2n x < 【答案】D【解析】∀的否定是∃,∃的否定是∀,2n x ≥的否定是2n x <.故选D . 5. 设函数2()sin sin f x x b x c =++,则()f x 的最小正周期 A .与b 有关,且与c 有关 B .与b 有关,但与c 无关 C .与b 无关,且与c 无关 D .与b 无关,但与c 有关 【答案】B6. 如图,点列{A n },{B n }分别在某锐角的两边上,且1122,,n n n n n n A A A A A A n ++++=≠∈*N , 1122,,n n n n n n B B B B B B n ++++=≠∈*N ,(P Q P Q ≠表示点与不重合). 若1n n n n n n n d A B S A B B +=,为△的面积,则A .{}n S 是等差数列B .2{}nS 是等差数列 C .{}n d 是等差数列 D .2{}nd 是等差数列 【答案】A【解析】n S 表示点n A 到对面直线的距离(设为n h )乘以1n n B B +长度一半,即112n n n n S h B B +=,由题目中条件可知1n n B B +的长度为定值,那么我们需要知道n h 的关系式,过1A 作垂直得到初始距离1h ,那么1,n A A 和两个垂足构成了等腰梯形,那么11tan n n n h h A A θ+=+⋅,其中θ为两条线的夹角,即为定值,那么1111(tan )2n n n n S h A A B B θ+=+⋅,111111(tan )2n n n n S h A A B B θ+++=+⋅,作差后:1111(tan )2n n n n n n S S A A B B θ+++-=⋅,都为定值,所以1n n S S +-为定值.故选A .7. 已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1 【答案】A【解析】由题意知2211-=+m n ,即222=+m n ,2221222221111()(1)(1)-+=⋅=-+m n e e m n m n,代入222=+m n ,得212,()1>>m n e e .故选A . 8. 已知实数a ,b ,cA .若|a 2+b +c |+|a +b 2+c |≤1,则a 2+b 2+c 2<100B .若|a 2+b +c |+|a 2+b –c |≤1,则a 2+b 2+c 2<100C .若|a +b +c 2|+|a +b –c 2|≤1,则a 2+b 2+c 2<100D .若|a 2+b +c |+|a +b 2–c |≤1,则a 2+b 2+c 2<100 【答案】D二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9. 若抛物线y 2=4x 上的点M 到焦点的距离为10,则M 到y 轴的距离是_______. 【答案】9【解析】1109M M x x +=⇒=10. 已知2cos 2x +sin 2x =Asin(ωx +φ)+b (A >0),则A =______,b =________. 【答案】2 1【解析】22cos sin 22sin(2)14x x x π+=++,所以2, 1.A b == 11. 某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 cm 2,体积是 cm 3.【答案】72 32【解析】几何体为两个相同长方体组合,长方体的长宽高分别为4,2,2,所以体积为2(224)32⨯⨯⨯=,由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为2(222244)2(22)72⨯⨯+⨯⨯-⨯= 12. 已知a >b >1.若log a b +log b a =52,a b =b a ,则a = ,b = .【答案】4 2【解析】设log ,1b a t t =>则,因为21522t t a b t +=⇒=⇒=,因此22222, 4.b a b b a b b b b b b a =⇒=⇒=⇒==13.设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1= ,S 5= . 【答案】1 12114. 如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是 .【答案】12【解析】ABC ∆中,因为2,120AB BC ABC ==∠=, 所以30BAD BCA ∠==.由余弦定理可得2222cos AC AB BC AB BC B =+-⋅2222222cos12012=+-⨯⨯=,所以3AC =设AD x =,则023t <<23DC x =.在ABD ∆中,由余弦定理可得2222cos BD AD AB AD AB A =+-⋅22222cos30x x =+-⋅2234x x =-+.故2234BD x x =-+在PBD ∆中,PD AD x ==,2PB BA ==.由余弦定理可得2222222(234)3cos 2222PD PB BD x x x BPD PD PB x +-+--+∠===⋅⋅⋅,所以30BPD ∠=.EDCBAP过P 作直线BD的垂线,垂足为O .设PO d =则11sin 22PBD S BD d PD PB BPD ∆=⨯=⋅∠, 即2112342sin 3022x x d x -+⨯=⋅, 解得2234d x x =-+.而BCD ∆的面积111sin (23)2sin 30(23)222S CD BC BCD x x =⋅∠=-⋅=-. 设PO 与平面ABC 所成角为θ,则点P 到平面ABC 的距离sin h d θ=.故四面体PBCD 的体积211111sin (23)33332234BcD BcD BcD V S h S d S d x x x θ∆∆∆=⨯=≤⋅=⨯-⋅-+ 21(23)6234x x x x -=-+.设22234(3)1t x x x =-+=-+,因为023x ≤≤,所以12t ≤≤.则2|3|1x t -=-.(2323x <≤2|331x x t ==- 故231x t =-此时,221(31)[23(31)]6t t V t+--+-=21414()66t t t t-=⋅=-. 由(1)可知,函数()V t 在(1,2]单调递减,故141()(1)(1)612V t V <=-=. 综上,四面体PBCD 的体积的最大值为12. 15. 已知向量a 、b , |a | =1,|b | =2,若对任意单位向量e ,均有 |a ·e |+|b ·e |≤6 ,则a ·b 的最大值是 . 【答案】12【解析】221|(a b)||a ||b |6|a b |6|a ||b |2a b 6a b 2e e e +⋅≤⋅+⋅≤⇒+≤⇒++⋅≤⇒⋅≤,即最大值为12三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16. (本题满分14分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c . 已知b +c =2a cos B. (I )证明:A =2B ;(II )若△ABC 的面积2=4a S ,求角A 的大小.【试题分析】(I )由正弦定理及两角和的正弦公式可得()sin sin B =A-B ,再判断A-B 的取值范围,进而可证2A =B ;(II )先由三角形的面积公式及二倍角公式可得sinC cos =B ,再利用三角形的内角和可得角A 的大小.(II )由24a S =得21sin C 24a ab =,故有1sin sin C sin 2sin cos 2B =B =B B ,因sin 0B ≠,得sinC cos =B .又B ,()C 0,π∈,所以C 2π=±B .当C 2πB +=时,2πA =; 当C 2π-B =时,4πA =.综上,2πA =或4πA =.17. (本题满分15分)如图,在三棱台ABC DEF -中,平面BCFE ⊥平面ABC ,=90ACB ∠,BE =EF =FC =1,BC =2,AC =3.(I)求证:EF ⊥平面ACFD ;(II)求二面角B -AD -F 的平面角的余弦值.【试题分析】(I )先证F C B ⊥A ,再证F C B ⊥K ,进而可证F B ⊥平面CFD A ;(II )方法一:先找二面角D F B-A -的平面角,再在Rt QF ∆B 中计算,即可得二面角D F B-A -的平面角的余弦值;方法二:先建立空间直角坐标系,再计算平面C A K 和平面ABK 的法向量,进而可得二面角D F B-A -的平面角的余弦值.(II )方法一:过点F 作FQ ⊥AK ,连结Q B .因为F B ⊥平面C A K ,所以F B ⊥AK ,则AK ⊥平面QF B ,所以Q B ⊥AK . 所以,QF ∠B 是二面角D F B-A -的平面角.在Rt C ∆A K 中,C 3A =,C 2K =,得313FQ =. 在Rt QF ∆B 中,313FQ =,F 3B =,得3cos QF ∠B =. 所以,二面角D F B-A -的平面角的余弦值为34.18. (本小题15分)已知3a ≥,函数F (x )=min{2|x −1|,x 2−2ax +4a −2},其中min{p,q}=,>p p qq p q.≤⎧⎨⎩,,(I)求使得等式F(x)=x2−2ax+4a−2成立的x的取值范围;(II)(i)求F(x)的最小值m(a);(ii)求F(x)在区间[0,6]上的最大值M(a).【试题分析】(I)分别对1x≤和1x>两种情况讨论()F x,进而可得使得等式()2F242x x ax a=-+-成立的x的取值范围;(II)(i)先求函数()21f x x=-,()2242g x x ax a=-+-的最小值,再根据()F x的定义可得()F x的最小值()m a;(ii)分别对02x≤≤和26x≤≤两种情况讨论()F x的最大值,进而可得()F x在区间[]0,6上的最大值()aM.(II)(i)设函数()21f x x=-,()2242g x x ax a=-+-,则()()min10f x f==,()()2min42g x g a a a==-+-,所以,由()F x的定义知()()(){}min1,m a f g a=,即()20,32242,22am aa a a⎧≤≤+⎪=⎨-+->+⎪⎩(ii)当02x≤≤时,()()()(){}()F max0,22F2x f x f f≤≤==,当26x≤≤时,()()()(){}{}()(){}F max2,6max2,348max F2,F6x g x g g a≤≤=-=.所以,()348,342,4a aaa-≤<⎧M=⎨≥⎩.19. (本题满分15分)如图,设椭圆2221xya+=(a>1).(I)求直线y=kx+1被椭圆截得的线段长(用a、k表示);(II)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.【试题解析】(I)设直线1y kx=+被椭圆截得的线段为AP,由22211y kxxya=+⎧⎪⎨+=⎪⎩得()2222120a k x a kx++=,故1x=,222221a kxa k=-+.因此22212222111a kk x ka kAP=+-=++(II)假设圆与椭圆的公共点有4个,由对称性可设y轴左侧的椭圆上有两个不同的点P,Q,满足QAP=A.记直线AP,QA的斜率分别为1k,2k,且1k,2k>,12k k≠.20.(本题满分15分)设数列{}n a 满足112n n a a +-≤,n *∈N . (I )证明:()1122n n a a -≥-,n *∈N ;(II )若32nn a ⎛⎫≤ ⎪⎝⎭,n *∈N ,证明:2n a ≤,n *∈N .【试题分析】(I )先利用三角形不等式得1112n n a a +-≤,变形为111222n n n n n a a ++-≤,再用累加法可得1122n n a a -<,进而可证()1122n n a a -≥-;(II )由(I )可得11222n m n m n a a --<,进而可得3224mn n a ⎛⎫<+⋅ ⎪⎝⎭,再利用m 的任意性可证2n a ≤.(II )任取n *∈N ,由(I )知,对于任意m n >,1121112122222222n m n n n n m m n m n n n n m m a a a a a a a a +++-+++-⎛⎫⎛⎫⎛⎫-=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 11111222n n m +-≤++⋅⋅⋅+ 112n -<, 故11222m nn n m a a -⎛⎫<+⋅ ⎪⎝⎭ 11132222m n n m -⎡⎤⎛⎫≤+⋅⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦3224mn ⎛⎫=+⋅ ⎪⎝⎭.从而对于任意m n >,均有。

2016年江苏高考数学真题及解析

2016年江苏高考数学真题及解析

2016年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式: 样本数据12,,,n x x x 的方差()2211ni i s x xn ==-∑,其中11ni i x x n ==∑.棱柱的体积V Sh =,其中S 是棱柱的底面积,h 是高.棱锥的体积13V Sh =,其中S 是棱锥的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 已知集合{}1,2,3,6A =-,{}|23B x x =-<<,则AB = .【答案】{}1,2-;【解析】由交集的定义可得{}1,2AB =-.2. 复数()()12i 3i z =+-,其中i 为虚数单位,则z 的实部是 .【答案】5;【解析】由复数乘法可得55i z =+,则则z 的实部是5.3. 在平面直角坐标系xOy 中,双曲线22173x y -=的焦距是 .【答案】【解析】c =2c =4. 已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是 .【答案】0.1; 【解析】 5.1x =,()22222210.40.300.30.40.15s =++++=. 5.函数y 的定义域是 .【答案】[]3,1-;【解析】2320x x --≥,解得31x -≤≤,因此定义域为[]3,1-.6. 如图是一个算法的流程图,则输出a 的值是 .【答案】9;【解析】,a b 的变化如下表:则输出时9a =.7. 将一个质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点为正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 .【答案】56; 【解析】将先后两次点数记为(),x y ,则共有6636⨯=个等可能基本事件,其中点数之和大于等于10有()()()()()()4,6,5,5,5,6,6,4,6,5,6,6六种,则点数之和小于10共有30种,概率为305366=. 8. 已知{}n a 是等差数列,n S 是其前n 项和.若2123a a +=-,510S =,则9a 的值是 . 【答案】20;【解析】设公差为d ,则由题意可得()2113a a d ++=-,151010a d +=, 解得14a =-,3d =,则948320a =-+⨯=.9. 定义在区间[]0,3π上的函数sin 2y x =的图象与cos y x =的图象的交点个数是 .【答案】7;【解析】画出函数图象草图,共7个交点.10. 如图,在平面直角坐标系xOy 中,F 是椭圆()222210x y a b a b +=>>的右焦点,直线2by =与椭圆交于,B C两点,且90BFC ∠=︒,则该椭圆的离心率是.【解析】由题意得(),0F c ,直线2by =与椭圆方程联立可得2b B ⎛⎫ ⎪ ⎪⎝⎭,2b C ⎫⎪⎪⎝⎭, 由90BFC ∠=︒可得0BF CF ⋅=,2b BFc ⎛⎫=+- ⎪ ⎪⎝⎭,2b CF c ⎛⎫=-- ⎪ ⎪⎝⎭, 则22231044c a b -+=,由222b a c =-可得223142c a =,则c e a ===. 11. 设()f x 是定义在R 上且周期为2的函数,在区间[)1,1-上(),10,2,01,5x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩其中a ∈R ,若5922f f⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,则()5f a 的值是 . 【答案】25-;【解析】由题意得511222f f a ⎛⎫⎛⎫-=-=-+ ⎪ ⎪⎝⎭⎝⎭,91211225210f f ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭, 由5922f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭可得11210a -+=,则35a =,则()()()325311155f a f f a ==-=-+=-+=-.12.已知实数,x y满足240,220,330,x yx yx y-+≥⎧⎪+-≥⎨⎪--≤⎩则22x y+的取值范围是.【答案】4,135⎡⎤⎢⎥⎣⎦;【解析】在平面直角坐标系中画出可行域如下22x y+为可行域内的点到原点距离的平方.可以看出图中A点距离原点最近,此时距离为原点A到直线220x y+-=的距离,d==,则()22min45x y+=,图中B 点距离原点最远,B点为240x y-+=与330x y--=交点,则()2,3B,则()22max13x y+=.13.如图,在ABC△中,D 是BC的中点,,E F 是AD上两个三等分点,4BA CA⋅=,1BF CF⋅=-,则BE CE⋅的值是.【答案】78;【解析】令DF a=,DB b=,则DC b=-,2DE a=,3DA a=,则3BA a b=-,3CA a b=+,2BE a b=-,2CE a b=+,BF a b=-,CF a b=+,则229BA CA a b⋅=-,22BF CF a b⋅=-,224BE CE a b⋅=-,由4BA CA⋅=,1BF CF⋅=-可得2294a b-=,221a b-=-,因此22513,88a b==,因此22451374888BE CE a b⨯⋅=-=-=.14. 在锐角三角形ABC 中,sin 2sin sin A B C =,则tan tan tan A B C 的最小值是 .【答案】8;【解析】由()()sin sin πsin sin cos cos sin A A B C B C B C =-=+=+,sin 2sin sin A B C =, 可得sin cos cos sin 2sin sin B C B C B C +=(*), 由三角形ABC 为锐角三角形,则cos 0,cos 0B C >>,在(*)式两侧同时除以cos cos B C 可得tan tan 2tan tan B C B C +=, 又()()tan tan tan tan πtan 1tan tan B CA ABC B C+=--=-+=--(#),则tan tan tan tan tan tan tan 1tan tan B CA B C B C B C+=-⨯-,由tan tan 2tan tan B C B C +=可得()22tan tan tan tan tan 1tan tan B C A B C B C=--,令tan tan B C t =,由,,A B C 为锐角可得tan 0,tan 0,tan 0A B C >>>, 由(#)得1tan tan 0B C -<,解得1t >2222tan tan tan 111t A B C t t t=-=---,221111124t t t ⎛⎫-=-- ⎪⎝⎭,由1t >则211104t t >-≥-,因此tan tan tan A B C 最小值为8, 当且仅当2t =时取到等号,此时tan tan 4B C +=,tan tan 2B C =,解得tan 224B C A ===(或tan ,tan B C 互换),此时,,A B C 均为锐角.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤. 15. (本小题满分14分)在ABC △中,6AC =,4cos 5B =,π4C =. ⑴ 求AB 的长; ⑵ 求πcos 6A ⎛⎫- ⎪⎝⎭的值.【答案】⑴. 【解析】⑴ 4cos 5B =,B 为三角形的内角 3sin 5B ∴=sinC sin AB ACB=635=,即:AB=⑵()cos cos sin sin cos cosA CB BC B C=-+=-cos A∴=又A为三角形的内角sin10A∴=π1cos sin62A A A⎛⎫∴-=+⎪⎝⎭16.(本小题满分14分)如图,在直三棱柱111ABC A B C-中,,D E分别为,AB BC的中点,点F在侧棱1B B上,且11B D A F⊥,1111AC A B⊥.求证:⑴直线//DE平面11AC F;⑵平面1B DE⊥平面11AC F.【答案】见解析;【解析】⑴,D E为中点,DE∴为ABC∆的中位线//DE AC∴又111ABC A B C-为棱柱,11//AC AC∴11//DE AC∴,又11AC ⊂平面11AC F,且11DE AC F⊄//DE∴平面11AC F;⑵111ABC A B C-为直棱柱,1AA∴⊥平面111A B C111AA AC∴⊥,又1111AC A B⊥且1111AA A B A=,111,AA A B⊂平面11AA B B11AC∴⊥平面11AA B B,又11//DE AC,DE∴⊥平面11AA B B又1A F ⊂平面11AA B B,1DE A F∴⊥又11A FB D⊥,1DE B D D=,且1,DE B D⊂平面1B DE1A F∴⊥平面1B DE,又111A F AC F⊂∴平面1B DE⊥平面11AC F.FECBAC1B1A117. (本小题满分14分)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111P A B C D -,下部分的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱的高1O O 是正四棱锥的高1PO 的4倍. ⑴ 若6m AB =,12m PO =,则仓库的容积是多少;⑵ 若正四棱锥的侧棱长为6m ,当1PO 为多少时,仓库的容积最大?【答案】⑴3312m;⑵m ;【解析】⑴12m PO =,则18m OO =,1111231116224m 33P A B C D ABCD V S PO -⋅=⨯⨯==,111123168288m ABCD A B C D ABCD V S OO -⋅=⨯==,111111113312m =P A B C D ABCD A B C D V V V --+=,故仓库的容积为3312m ;⑵设1m PO x =,仓库的容积为()V x则14m OO x =,11m AO =,11m A B =,()111123331111272224m 3333P A B C D ABCD V S PO x x x x x -⋅=⨯⨯=-=-=,1111233142888m ABCD A B C D ABCD V S OO x x x-⋅=⨯=-=,()()111111113332262428883120633=P A B C D ABCD A B C D V x V V x x x x x x x --+=-+-=-+<<, ()()22'263122612V x x x =-+=--()06x <<,当(x ∈时,()'0V x >,()V x 单调递增,当()x ∈时,()'0V x <,()V x 单调递减,因此,当x =()V x 取到最大值,即1m PO =时,仓库的容积最大.18. (本小题满分14分)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :221214600x y x y +--+= 及其上一点()2,4A .1A⑴ 设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线6x =上,求圆N 的标准方程; ⑵ 设平行于OA 的直线l 与圆M 相交于,B C 两点,且BC OA =,求直线l 的方程;⑶ 设点(),0T t 满足:存在圆M 上的两点P 和Q ,使得TA TP TQ +=,求实数t 的取值范围.【答案】⑴()()22611x y -+-=⑵25y x =+或215y x =-⑶2⎡-+⎣; 【解析】⑴ 因为N 在直线6x =上,设()6,N n ,因为与x 轴相切,则圆N 为()()2226x y n n -+-=,0n >又圆N 与圆M 外切,圆M :()()226725x x -+-=,则75n n -=+,解得1n =,即圆N 的标准方程为()()22611x y -+-=;⑵由题意得OA =2OA k = 设:2l y x b =+,则圆心M 到直线l 的距离d ==则BC ==BC =解得5b =或15b =-,即l :25y x =+或215y x =-;⑶TA TP TQ +=,即TA TQ TP PQ =-=,即TA PQ =,(TA t =又10PQ ≤,10,解得2t ⎡∈-+⎣,对于任意2t ⎡∈-+⎣,欲使TA PQ =,此时10TA ≤,只需要作直线TA 2TA必然与圆交于P Q 、两点,此时TA PQ =,即TA PQ =,因此对于任意2t ⎡∈-+⎣,均满足题意,综上2t ⎡∈-+⎣.19. (本小题满分14分)已知函数()()0,0,1,1x x f x a b a b a b =+>>≠≠. ⑴ 设2a =,12b =. ① 求方程()2f x =的根;② 若对于任意x ∈R ,不等式()()26f x mf x -≥恒成立,求实数m 的最大值; ⑵ 若01a <<,1b >,函数()()2g x f x =-有且只有1个零点,求ab 的值.【答案】⑴ ①0x =;②4;⑵1;【解析】⑴ ① ()122xxf x ⎛⎫=+ ⎪⎝⎭,由()2f x =可得1222x x +=,则()222210x x -⨯+=,即()2210x -=,则21x =,0x =;② 由题意得221122622x x x x m ⎛⎫++- ⎪⎝⎭≥恒成立, 令122x x t =+,则由20x >可得2t =≥, 此时226t mt --≥恒成立,即244t m t t t +=+≤恒成立 ∵2t ≥时44t t +≥,当且仅当2t =时等号成立,因此实数m 的最大值为4.()()22xxg x f x a b =-=+-,()ln 'ln ln ln ln x xxxa b g x a a b b a b b a ⎡⎤⎛⎫=+=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,由01a <<,1b >可得1b a >,令()ln ln xb ah x a b⎛⎫=+ ⎪⎝⎭,则()h x 递增,而ln 0,ln 0a b <>,因此0ln log ln b a a x b ⎛⎫=- ⎪⎝⎭时()00h x =,因此()0,x x ∈-∞时,()0h x <,ln 0x a b >,则()'0g x <;()0,x x ∈+∞时,()0h x >,ln 0x a b >,则()'0g x >;则()g x 在()0,x -∞递减,()0,x +∞递增,因此()g x 最小值为()0g x , ① 若()00g x <,log 2a x <时,log 22a x a a >=,0x b >,则()0g x >; x >log b 2时,0x a >,log 22b x b b >=,则()0g x >;因此1log 2a x <且10x x <时,()10g x >,因此()g x 在()10,x x 有零点,2log 2b x >且20x x >时,()20g x >,因此()g x 在()02,x x 有零点, 则()g x 至少有两个零点,与条件矛盾;② 若()00g x ≥,由函数()g x 有且只有1个零点,()g x 最小值为()0g x , 可得()00g x =, 由()00020g a b =+-=, 因此00x =,因此ln log 0ln b a a b ⎛⎫-= ⎪⎝⎭,即ln 1ln a b -=,即ln ln 0a b +=, 因此()ln 0ab =,则1ab =.20. (本小题满分14分) 记{}1,2,,100U =.对数列{}n a (*n ∈N )和U 的子集T ,若T =∅,定义0T S =;若{}12,,,k T t t t =,定义12k T t t t S a a a =+++.例如:{}1,3,66T =时,1366T S a a a =++.现设{}n a (*n ∈N )是公比为3的等比数列,且当{}2,4T =时,30T S =. ⑴ 求数列{}n a 的通项公式;⑵ 对任意正整数k (1100k ≤≤),若{}1,2,,T k ⊆,求证:1T k S a +<;⑶ 设C U ⊆,D U ⊆,C D S S ≥,求证:2C CDD S S S +≥.【答案】⑴13n n a -=;⑵⑶详见解析;【解析】⑴ 当{}2,4T =时,2422930T S a a a a =+=+=,因此23a =,从而2113a a ==,13n n a -=;⑵ 2112131133332k k k T k k S a a a a -+-++=++++=<=≤;⑶设()C A CD =ð,()D B C D =ð,则A B =∅,C A CDS S S =+,D B CDS S S =+,22C C DD A B S S S S S +-=-,因此原题就等价于证明2A B S S ≥.由条件C D S S ≥可知A B S S ≥.① 若B =∅,则0B S =,所以2A B S S ≥.② 若B ≠∅,由A B S S ≥可知A ≠∅,设A 中最大元素为l ,B 中最大元素为m , 若1m l +≥,则由第⑵小题,1A l m B S a a S +<≤≤,矛盾. 因为A B =∅,所以l m ≠,所以1l m +≥,211123113332222m m m lA B m a a S S a a a -+-+++=++++=<≤≤≤,即2A B S S >.综上所述,2A B S S ≥,因此2C C DD S S S +≥.数学Ⅱ(附加题)21. [选做题]本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤.A .[选修4-1:几何证明选讲](本小题满分10分)如图,在ABC △中,90ABC ∠=︒,BD AC ⊥,D 为垂足,E 是BC 中点. 求证:EDC ABD ∠=∠.【答案】详见解析;【解析】由BD AC ⊥可得90BDC ∠=︒, 由E 是BC 中点可得12DE CE BC ==, 则EDC C ∠=∠,由90BDC ∠=︒可得90C DBC ∠+∠=︒, 由90ABC ∠=︒可得90ABD DBC ∠+∠=︒, 因此ABD C ∠=∠,又EDC C ∠=∠可得EDC ABD ∠=∠.B .[选修4-2:矩阵与变换](本小题满分10分)已知矩阵1202⎡⎤=⎢⎥-⎣⎦A ,矩阵B 的逆矩阵111202-⎡⎤-⎢⎥=⎢⎥⎣⎦B ,求矩阵AB . 【答案】51401⎡⎤⎢⎥⎢⎥-⎣⎦;【解析】()11112124221010222--⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦B B ,因此151121440210102⎡⎤⎡⎤⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥-⎣⎦⎢⎥⎣⎦AB .C .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,已知直线l 的参数方程为()11,2,x t t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数,椭圆C 的参数方程为()cos ,2sin ,x y θθθ=⎧⎨=⎩为参数,设直线l 与椭圆C 相交于,A B 两点,求线段AB 的长. EDCBA【答案】167; 【解析】直线l0y -=,椭圆C 方程化为普通方程为2214y x +=,联立得22014y y x --=⎨+=⎪⎩,解得10x y =⎧⎨=⎩或17x y ⎧=-⎪⎪⎨⎪=⎪⎩,因此167AB ==.D .[选修4-5:不等式选讲](本小题满分10分)设0a >,13a x -<,23ay -<,求证:24x y a +-<.【答案】详见解析;【解析】由13a x -<可得2223a x -<, 22422233a ax y x y a +--+-<+=≤.[必做题]第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时写出文字说明、证明过程或演算步骤. 22. (本小题满分10分)如图,在平面直角坐标系xOy 中,已知直线:20l x y --=,抛物线()2:20C y px p =>. ⑴ 若直线l 过抛物线C 的焦点,求抛物线C 的方程; ⑵ 已知抛物线C 上存在关于直线l 对称的相异两点P 和Q . ①求证:线段PQ 上的中点坐标为()2,p p --; ②求p 的取值范围.【答案】⑴28y x =;⑵①见解析;②40,3⎛⎫⎪⎝⎭【解析】⑴:20l x y --=,∴l 与x 轴的交点坐标为()2,0即抛物线的焦点为()2,0,22p∴= 28y x ∴=;⑵① 设点()11,P x y ,()22,Q x y则:21122222y px y px ⎧=⎪⎨=⎪⎩,即21122222y x p y x p ⎧=⎪⎪⎨⎪=⎪⎩,12221212222PQ y y p k y y y y p p -==+- 又,P Q 关于直线l 对称,1PQ k ∴=-即122y y p +=-,122y y p +∴=- 又PQ 中点一定在直线l 上 12122222x x y y p ++∴=+=- ∴线段PQ 上的中点坐标为()2,p p --;②中点坐标为()2,p p --122212122422y y p y y x x p p +=-⎧⎪∴+⎨+==-⎪⎩即1222212284y y p y y p p +=-⎧⎨+=-⎩ 12212244y y py y p p+=-⎧∴⎨=-⎩,即关于222440y py p p ++-=有两个不等根 0∴∆>,()()2224440p p p -->,40,3p ⎛⎫∴∈ ⎪⎝⎭.23. (本小题满分10分)⑴ 求34677C 4C -的值;⑵ 设*,m n ∈N ,n m ≥,求证:()()()()()212121C 2C 3C C 1C 1C m m m m m m m m m n n n m m m n n m +++-++++++++++=+.【答案】⑴0;⑵详见解析;【解析】⑴ 34677C 4C 7204350-=⨯-⨯=;⑵对任意的*m ∈N ,① 当n m =时,左边()1C 1m m m m =+=+,右边()221C 1m m m m ++=+=+,等式成立,② 假设()n k k m =≥时命题成立,即()()()()()212121C 2C 3C C 1C 1C m m m m m m m m m k k k m m m k k m +++-++++++++++=+,当1n k =+时,左边=()()()()()12111C 2C 3C C 1C 2C m m mm m mm m m k k k m m m k k k ++-++++++++++++()()2211C 2C m m k k m k +++=+++,右边()231C m k m ++=+,而()()22321C 1C m m k k m m +++++-+,()()()()()()()()()()()()()()()()13!2!12!1!2!!2!1312!1!1!2!1!2C m k k k m m k m m k m k m k k m m k m k k m k m k +⎡⎤++=+-⎢⎥+-++-⎢⎥⎣⎦+=+⨯+--+⎡⎤⎣⎦+-++=+-+=+因此()()()222131C 2C 1C m m m k k k m k m ++++++++=+,因此左边=右边,因此1n k =+时命题也成立,综合①②可得命题对任意n m ≥均成立.另解:因为()()111C 1C m m k k k m +++=+,所以 左边()()()1111211C 1C 1C m m m m m n m m m ++++++=++++++()()1111211C C C m m m m m n m ++++++=++++又由111C C C k k k n n n ---=+,知2212112111112111221121C C C C C C C C C C C C m m m m m m m m m m m m n n n n n n m m n m m n ++++++++++++++++++++++=+=++==+++=+++,所以,左边=右边.。

2016年高考新课标3理科数学真题及答案详解

2016年高考新课标3理科数学真题及答案详解

2016年普通高等学校招生全国统一考试(新课标全国卷Ⅲ)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分,考试时间120分钟。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={x |(x -2)(x -3)≥0},T ={x |x >0},则S∩T =A.[2,3]B.(-∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)(2)若z =1+2i ,则4i z ¯z -1= A.1 B.-1 C.i D.-i(3)已知向量−→BA =(12,22),−→BC =(32,12),则∠ABC = A.30° B.45° C.60° D.120°(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平 均最高气温和平均最低气温的雷达图,图中A 点表示十月的平均最高气温约为15°C ,B 点表示四月的平均最低气温约为5°C .下面叙述不正确的是A.各月的平均最低气温都在0°C 以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均气温高于20°C 的月份有5个(5)若tanα=34,则cos 2 α+2sin2α=A.6425B.4825C.1D.1625(6)已知a =243,b =323,c =2513,则A.b <a <cB.a <b <cC.b <c <aD.c <a <b(7)执行右面的程序框图,如果输入的a =4,b =6,那么输出的n =A.3B.4C.5D.6(8)在△ABC 中,B =π4,BC 边上的高等于13BC ,则cos A = A.31010 B.1010 C.-1010 D.-31010(9)如图,网格纸上小正方形的边长为1,粗实现画出的的是某多面体的三视图,则该多面体的表面积为A.18+36 5B.54+18 5C.90D.81(10)在封闭的直三棱柱ABC-A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是A.4πB.9π2C.6πD.32π3(11)已知O 为坐标原点,F 是椭圆C : x 2 a 2+ y 2 b2=1(a >b >0)左焦点,A 、B 分别为C 的左、右顶点,P 为C 上一点,且PF ⊥x 轴,过点A 的直线l 与线段PF 交于点M ,与y 轴交于E ,若直线BM 经过OE 的中点,则C 的离心率为A.13B.12C.23D.34(12)定义“规范01数列”{a n }如下,{a n }共有2m 项,其中m 为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…a k 中0的个数不少于1的个数,若m =4,则不同的“规范01数列”共有A.18个B.16个C.14个D.12个第Ⅱ卷二、填空题:本大题共4小题,每小题5分.(13)若x ,y 满足约束条件⎩⎨⎧x -y +1≥0x -2y≤0x +2y -2≤0,则z =x +y 的最大值为____________. (14)函数y =sin x -3cos x 的图像可由函数y =sinx +3cosx 图像至少向右平移_______个单位长度得到。

2016年高中数学导数高考真题

2016年高中数学导数高考真题

高中数学导数高考真题一.选择题(共7小题)1.函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.2.函数y=sinx2的图象是()A.B.C.D.3.若函数f(x)=x﹣sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣]4.已知a为函数f(x)=x3﹣12x的极小值点,则a=()A.﹣4 B.﹣2 C.4 D.25.若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是()A.y=sinx B.y=lnx C.y=e x D.y=x36.函数f(x)=的图象如图所示,则下列结论成立的是()A.a>0,b>0,c<0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c<07.设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞) C.(﹣∞,﹣1)∪(﹣1,0) D.(0,1)∪(1,+∞)二.填空题(共8小题)8.已知函数f(x)=(2x+1)e x,f′(x)为f(x)的导函数,则f′(0)的值为.9.函数f(x)=(x≥2)的最大值为.10.已知f(x)为偶函数,当x≤0时,f(x)=e﹣x﹣1﹣x,则曲线y=f(x)在点(1,2)处的切线方程是.11.已知f(x)为偶函数,当x<0时,f(x)=ln(﹣x)+3x,则曲线y=f(x)在点(1,﹣3)处的切线方程是.12.若直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=ln(x+1)的切线,则b=.13.函数y=xe x在其极值点处的切线方程为.14.曲线y=x2与y=x所围成的封闭图形的面积为.15.已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=.三.解答题(共15小题)16.已知函数f(x)=(x+1)lnx﹣a(x﹣1).(I)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(II)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.17.设函数f(x)=xe a﹣x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e﹣1)x+4,(Ⅰ)求a,b的值;(Ⅱ)求f(x)的单调区间.18.设f(x)=xlnx﹣ax2+(2a﹣1)x,a∈R.(Ⅰ)令g(x)=f′(x),求g(x)的单调区间;(Ⅱ)已知f(x)在x=1处取得极大值,求实数a的取值范围.19.设函数f(x)=ax2﹣a﹣lnx,g(x)=﹣,其中a∈R,e=2.718…为自然对数的底数.(Ⅰ)讨论f(x)的单调性;(Ⅱ)证明:当x>1时,g(x)>0;(Ⅲ)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.20.设函数f(x)=lnx﹣x+1.(1)讨论f(x)的单调性;(2)证明当x∈(1,+∞)时,1<<x;(3)设c>1,证明当x∈(0,1)时,1+(c﹣1)x>c x.21.已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.22.设函数f(x)=(x﹣1)3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=3;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[0,2]上的最大值不小于.23.设函数f(x)=acos2x+(a﹣1)(cosx+1),其中a>0,记|f(x)|的最大值为A.(Ⅰ)求f′(x);(Ⅱ)求A;(Ⅲ)证明:|f′(x)|≤2A.24.(Ⅰ)讨论函数f(x)=e x的单调性,并证明当x>0时,(x﹣2)e x+x+2>0;(Ⅱ)证明:当a∈[0,1)时,函数g(x)=(x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.25.设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于.26.已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.27.已知f(x)=a(x﹣lnx)+,a∈R.(I)讨论f(x)的单调性;(II)当a=1时,证明f(x)>f′(x)+对于任意的x∈[1,2]成立.28.设函数f(x)=x3+ax2+bx+c.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)设a=b=4,若函数f(x)有三个不同零点,求c的取值范围;(3)求证:a2﹣3b>0是f(x)有三个不同零点的必要而不充分条件.29.已知函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=.①求方程f(x)=2的根;②若对于任意x∈R,不等式f(2x)≥mf(x)﹣6恒成立,求实数m的最大值;(2)若0<a<1,b>1,函数g(x)=f(x)﹣2有且只有1个零点,求ab的值.30.设函数f(x)=x3+,x∈[0,1],证明:(Ⅰ)f(x)≥1﹣x+x2(Ⅱ)<f(x)≤.高中数学导数高考真题参考答案与试题解析一.选择题(共7小题)1.(2016•新课标Ⅰ)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【分析】根据已知中函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答案.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D【点评】本题考查的知识点是函数的图象,对于超越函数的图象,一般采用排除法解答.2.(2016•浙江)函数y=sinx2的图象是()A.B.C.D.【分析】根据函数奇偶性的性质,以及函数零点的个数进行判断排除即可.【解答】解:∵sin(﹣x)2=sinx2,∴函数y=sinx2是偶函数,即函数的图象关于y轴对称,排除A,C;由y=sinx2=0,则x2=kπ,k≥0,则x=±,k≥0,故函数有无穷多个零点,排除B,故选:D【点评】本题主要考查函数图象的识别和判断,根据函数奇偶性和函数零点的性质是解决本题的关键.比较基础.3.(2016•新课标Ⅰ)若函数f(x)=x﹣sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣]【分析】求出f(x)的导数,由题意可得f′(x)≥0恒成立,设t=cosx(﹣1≤t ≤1),即有5﹣4t2+3at≥0,对t讨论,分t=0,0<t≤1,﹣1≤t<0,分离参数,运用函数的单调性可得最值,解不等式即可得到所求范围.【解答】解:函数f(x)=x﹣sin2x+asinx的导数为f′(x)=1﹣cos2x+acosx,由题意可得f′(x)≥0恒成立,即为1﹣cos2x+acosx≥0,即有﹣cos2x+acosx≥0,设t=cosx(﹣1≤t≤1),即有5﹣4t2+3at≥0,当t=0时,不等式显然成立;当0<t≤1时,3a≥4t﹣,由4t﹣在(0,1]递增,可得t=1时,取得最大值﹣1,可得3a≥﹣1,即a≥﹣;当﹣1≤t<0时,3a≤4t﹣,由4t﹣在[﹣1,0)递增,可得t=﹣1时,取得最小值1,可得3a≤1,即a≤.综上可得a的范围是[﹣,].故选:C.【点评】本题考查导数的运用:求单调性,考查不等式恒成立问题的解法,注意运用参数分离和换元法,考查函数的单调性的运用,属于中档题.4.(2016•四川)已知a为函数f(x)=x3﹣12x的极小值点,则a=()A.﹣4 B.﹣2 C.4 D.2【分析】可求导数得到f′(x)=3x2﹣12,可通过判断导数符号从而得出f(x)的极小值点,从而得出a的值.【解答】解:f′(x)=3x2﹣12;∴x<﹣2时,f′(x)>0,﹣2<x<2时,f′(x)<0,x>2时,f′(x)>0;∴x=2是f(x)的极小值点;又a为f(x)的极小值点;∴a=2.故选D.【点评】考查函数极小值点的定义,以及根据导数符号判断函数极值点的方法及过程,要熟悉二次函数的图象.5.(2016•山东)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是()A.y=sinx B.y=lnx C.y=e x D.y=x3【分析】若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为﹣1,进而可得答案.【解答】解:函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为﹣1,当y=sinx时,y′=cosx,满足条件;当y=lnx时,y′=>0恒成立,不满足条件;当y=e x时,y′=e x>0恒成立,不满足条件;当y=x3时,y′=3x2>0恒成立,不满足条件;故选:A【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,转化思想,难度中档.6.(2015•安徽)函数f(x)=的图象如图所示,则下列结论成立的是()A.a>0,b>0,c<0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c<0【分析】分别根据函数的定义域,函数零点以及f(0)的取值进行判断即可.【解答】解:函数在P处无意义,由图象看P在y轴右边,所以﹣c>0,得c<0,f(0)=,∴b>0,由f(x)=0得ax+b=0,即x=﹣,即函数的零点x=﹣>0,∴a<0,综上a<0,b>0,c<0,故选:C【点评】本题主要考查函数图象的识别和判断,根据函数图象的信息,结合定义域,零点以及f(0)的符号是解决本题的关键.7.(2015•新课标Ⅱ)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞) C.(﹣∞,﹣1)∪(﹣1,0) D.(0,1)∪(1,+∞)【分析】由已知当x>0时总有xf′(x)﹣f(x)<0成立,可判断函数g(x)=为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0等价于x•g(x)>0,数形结合解不等式组即可.【解答】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)恒小于0,∴当x>0时,函数g(x)=为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数又∵g(﹣1)==0,∴函数g(x)的图象性质类似如图:数形结合可得,不等式f(x)>0⇔x•g(x)>0⇔或,⇔0<x<1或x<﹣1.故选:A.【点评】本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题.二.填空题(共8小题)8.(2016•天津)已知函数f(x)=(2x+1)e x,f′(x)为f(x)的导函数,则f′(0)的值为3.【分析】先求导,再带值计算.【解答】解:∵f(x)=(2x+1)e x,∴f′(x)=2e x+(2x+1)e x,∴f′(0)=2e0+(2×0+1)e0=2+1=3.故答案为:3.【点评】本题考查了导数的运算法则,属于基础题.9.(2016•北京)函数f(x)=(x≥2)的最大值为2.【分析】分离常数便可得到,根据反比例函数的单调性便可判断该函数在[2,+∞)上为减函数,从而x=2时f(x)取最大值,并可求出该最大值.【解答】解:;∴f(x)在[2,+∞)上单调递减;∴x=2时,f(x)取最大值2.故答案为:2.【点评】考查函数最大值的概念及求法,分离常数法的运用,以及反比例函数的单调性,根据函数单调性求最值的方法.10.(2016•新课标Ⅲ)已知f(x)为偶函数,当x≤0时,f(x)=e﹣x﹣1﹣x,则曲线y=f(x)在点(1,2)处的切线方程是y=2x.【分析】由已知函数的奇偶性结合x≤0时的解析式求出x>0时的解析式,求出导函数,得到f′(1),然后代入直线方程的点斜式得答案.【解答】解:已知f(x)为偶函数,当x≤0时,f(x)=e﹣x﹣1﹣x,设x>0,则﹣x<0,∴f(x)=f(﹣x)=e x﹣1+x,则f′(x)=e x﹣1+1,f′(1)=e0+1=2.∴曲线y=f(x)在点(1,2)处的切线方程是y﹣2=2(x﹣1).即y=2x.故答案为:y=2x.【点评】本题考查利用导数研究过曲线上某点处的切线方程,考查了函数解析式的求解及常用方法,是中档题.11.(2016•新课标Ⅲ)已知f(x)为偶函数,当x<0时,f(x)=ln(﹣x)+3x,则曲线y=f(x)在点(1,﹣3)处的切线方程是2x+y+1=0.【分析】由偶函数的定义,可得f(﹣x)=f(x),即有x>0时,f(x)=lnx﹣3x,求出导数,求得切线的斜率,由点斜式方程可得切线的方程.【解答】解:f(x)为偶函数,可得f(﹣x)=f(x),当x<0时,f(x)=ln(﹣x)+3x,即有x>0时,f(x)=lnx﹣3x,f′(x)=﹣3,可得f(1)=ln1﹣3=﹣3,f′(1)=1﹣3=﹣2,则曲线y=f(x)在点(1,﹣3)处的切线方程为y﹣(﹣3)=﹣2(x﹣1),即为2x+y+1=0.故答案为:2x+y+1=0.【点评】本题考查导数的运用:求切线的方程,同时考查函数的奇偶性的定义和运用,考查运算能力,属于中档题.12.(2016•新课标Ⅱ)若直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=ln(x+1)的切线,则b=1﹣ln2.【分析】先设切点,然后利用切点来寻找切线斜率的联系,以及对应的函数值,综合联立求解即可【解答】解:设y=kx+b与y=lnx+2和y=ln(x+1)的切点分别为(x1,kx1+b)、(x2,kx2+b);由导数的几何意义可得k==,得x1=x2+1再由切点也在各自的曲线上,可得联立上述式子解得;从而kx1+b=lnx1+2得出b=1﹣ln2.【点评】本题考查了导数的几何意义,体现了方程思想,对学生综合计算能力有一定要求,中档题13.(2015•陕西)函数y=xe x在其极值点处的切线方程为y=﹣.【分析】求出极值点,再结合导数的几何意义即可求出切线的方程.【解答】解:依题解:依题意得y′=e x+xe x,令y′=0,可得x=﹣1,∴y=﹣.因此函数y=xe x在其极值点处的切线方程为y=﹣.故答案为:y=﹣.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.14.(2015•天津)曲线y=x2与y=x所围成的封闭图形的面积为.【分析】先根据题意画出区域,然后依据图形得到积分下限为0,积分上限为1,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.【解答】解:先根据题意画出图形,得到积分上限为1,积分下限为0直线y=x与曲线y=x2所围图形的面积S=∫01(x﹣x2)dx而∫01(x﹣x2)dx=()|01=﹣=∴曲边梯形的面积是.故答案为:.【点评】本题主要考查了学生会求出原函数的能力,以及考查了数形结合的思想,同时会利用定积分求图形面积的能力,解题的关键就是求原函数.15.(2015•新课标Ⅰ)已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=1.【分析】求出函数的导数,利用切线的方程经过的点求解即可.【解答】解:函数f(x)=ax3+x+1的导数为:f′(x)=3ax2+1,f′(1)=3a+1,而f(1)=a+2,切线方程为:y﹣a﹣2=(3a+1)(x﹣1),因为切线方程经过(2,7),所以7﹣a﹣2=(3a+1)(2﹣1),解得a=1.故答案为:1.【点评】本题考查函数的导数的应用,切线方程的求法,考查计算能力.三.解答题(共15小题)16.(2016•新课标Ⅱ)已知函数f(x)=(x+1)lnx﹣a(x﹣1).(I)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(II)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.【分析】(I)当a=4时,求出曲线y=f(x)在(1,f(1))处的切线的斜率,即可求出切线方程;(II)先求出f′(x)>f′(1)=2﹣a,再结合条件,分类讨论,即可求a的取值范围.【解答】解:(I)当a=4时,f(x)=(x+1)lnx﹣4(x﹣1).f(1)=0,即点为(1,0),函数的导数f′(x)=lnx+(x+1)•﹣4,则f′(1)=ln1+2﹣4=2﹣4=﹣2,即函数的切线斜率k=f′(1)=﹣2,则曲线y=f(x)在(1,0)处的切线方程为y=﹣2(x﹣1)=﹣2x+2;(II)∵f(x)=(x+1)lnx﹣a(x﹣1),∴f′(x)=1++lnx﹣a,∴f″(x)=,∵x>1,∴f″(x)>0,∴f′(x)在(1,+∞)上单调递增,∴f′(x)>f′(1)=2﹣a.①a≤2,f′(x)>f′(1)≥0,∴f(x)在(1,+∞)上单调递增,∴f(x)>f(1)=0,满足题意;②a>2,存在x0∈(1,+∞),f′(x0)=0,函数f(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,由f(1)=0,可得存在x0∈(1,+∞),f(x0)<0,不合题意.综上所述,a≤2.【点评】本题主要考查了导数的应用,函数的导数与函数的单调性的关系的应用,导数的几何意义,考查参数范围的求解,考查学生分析解决问题的能力,有难度.17.(2016•北京)设函数f(x)=xe a﹣x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e﹣1)x+4,(Ⅰ)求a,b的值;(Ⅱ)求f(x)的单调区间.【分析】(Ⅰ)求函数的导数,根据导数的几何意义求出函数的切线斜率以及f (2),建立方程组关系即可求a,b的值;(Ⅱ)求函数的导数,利用函数单调性和导数之间的关系即可求f(x)的单调区间.【解答】解:(Ⅰ)∵y=f(x)在点(2,f(2))处的切线方程为y=(e﹣1)x+4,∴当x=2时,y=2(e﹣1)+4=2e+2,即f(2)=2e+2,同时f′(2)=e﹣1,∵f(x)=xe a﹣x+bx,∴f′(x)=e a﹣x﹣xe a﹣x+b,则,即a=2,b=e;(Ⅱ)∵a=2,b=e;∴f(x)=xe2﹣x+ex,∴f′(x)=e2﹣x﹣xe2﹣x+e=(1﹣x)e2﹣x+e,f″(x)=﹣e2﹣x﹣(1﹣x)e2﹣x=(x﹣2)e2﹣x,由f″(x)>0得x>2,由f″(x)<0得x<2,即当x=2时,f′(x)取得极小值f′(2)=(1﹣2)e2﹣2+e=e﹣1>0,∴f′(x)>0恒成立,即函数f(x)是增函数,即f(x)的单调区间是(﹣∞,+∞).【点评】本题主要考查导数的应用,根据导数的几何意义,结合切线斜率建立方程关系以及利用函数单调性和导数之间的关系是解决本题的关键.综合性较强.18.(2016•山东)设f(x)=xlnx﹣ax2+(2a﹣1)x,a∈R.(Ⅰ)令g(x)=f′(x),求g(x)的单调区间;(Ⅱ)已知f(x)在x=1处取得极大值,求实数a的取值范围.【分析】(Ⅰ)先求出g(x)=f′(x)的解析式,然后求函数的导数g′(x),利用函数单调性和导数之间的关系即可求g(x)的单调区间;(Ⅱ)分别讨论a的取值范围,根据函数极值的定义,进行验证即可得到结论.【解答】解:(Ⅰ)∵f(x)=xlnx﹣ax2+(2a﹣1)x,∴g(x)=f′(x)=lnx﹣2ax+2a,x>0,g′(x)=﹣2a=,当a≤0,g′(x)>0恒成立,即可g(x)的单调增区间是(0,+∞);当a>0,当x>时,g′(x)<0,函数为减函数,当0<x<,g′(x)>0,函数为增函数,∴当a≤0时,g(x)的单调增区间是(0,+∞);当a>0时,g(x)的单调增区间是(0,),单调减区间是(,+∞);(Ⅱ)∵f(x)在x=1处取得极大值,∴f′(1)=0,①当a≤0时,f′(x)单调递增,则当0<x<1时,f′(x)<0,f(x)单调递减,当x>1时,f′(x)>0,f(x)单调递增,∴f(x)在x=1处取得极小值,不合题意,②当0<a<时,>1,由(1)知,f′(x)在(0,)内单调递增,当0<x<1时,f′(x)<0,当1<x<时,f′(x)>0,∴f(x)在(0,1)内单调递减,在(1,)内单调递增,即f(x)在x=1处取得极小值,不合题意.③当a=时,=1,f′(x)在(0,1)内单调递增,在(1,+∞)上单调递减,则当x>0时,f′(x)≤0,f(x)单调递减,不合题意.④当a>时,0<<1,当<x<1时,f′(x)>0,f(x)单调递增,当x>1时,f′(x)<0,f(x)单调递减,∴当x=1时,f(x)取得极大值,满足条件.综上实数a的取值范围是a>.【点评】本题主要考查导数的综合应用,考查函数的单调性,极值和导数的关系,要求熟练掌握利用导数研究函数的单调性、极值与最值、把问题等价转化等是解题的关键.综合性较强,难度较大.19.(2016•四川)设函数f(x)=ax2﹣a﹣lnx,g(x)=﹣,其中a∈R,e=2.718…为自然对数的底数.(Ⅰ)讨论f(x)的单调性;(Ⅱ)证明:当x>1时,g(x)>0;(Ⅲ)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.【分析】(Ⅰ)求导数,分类讨论,即可讨论f(x)的单调性;(Ⅱ)要证g(x)>0(x>1),即﹣>0,即证,也就是证;(Ⅲ)由f(x)>g(x),得,设t(x)=,由题意知,t(x)>0在(1,+∞)内恒成立,再构造函数,求导数,即可确定a的取值范围.【解答】(Ⅰ)解:由f(x)=ax2﹣a﹣lnx,得f′(x)=2ax﹣=(x>0),当a≤0时,f′(x)<0在(0,+∞)成立,则f(x)为(0,+∞)上的减函数;当a>0时,由f′(x)=0,得x==,∴当x∈(0,)时,f′(x)<0,当x∈(,+∞)时,f′(x)>0,则f(x)在(0,)上为减函数,在(,+∞)上为增函数;综上,当a≤0时,f(x)为(0,+∞)上的减函数,当a>0时,f(x)在(0,)上为减函数,在(,+∞)上为增函数;(Ⅱ)证明:要证g(x)>0(x>1),即﹣>0,即证,也就是证,令h(x)=,则h′(x)=,∴h(x)在(1,+∞)上单调递增,则h(x)min=h(1)=e,即当x>1时,h(x)>e,∴当x>1时,g(x)>0;(Ⅲ)解:由f(x)>g(x),得,设t(x)=,由题意知,t(x)>0在(1,+∞)内恒成立,∵t(1)=0,∴有t′(x)=2ax=≥0在(1,+∞)内恒成立,令φ(x)=,则φ′(x)=2a=,当x≥2时,φ′(x)>0,令h(x)=,h′(x)=,函数在[1,2)上单调递增,∴h(x)min=h(1)=﹣1.又2a≥1,e1﹣x>0,∴1<x<2,φ′(x)>0,综上所述,x>1,φ′(x)>0,φ(x)在区间(1,+∞)单调递增,∴t′(x)>t′(1)≥0,即t(x)在区间(1,+∞)单调递增,∴a≥.【点评】本题考查导数知识的综合运用,考查函数的单调性,不等式的证明,考查恒成立成立问题,正确构造函数,求导数是关键.20.(2016•新课标Ⅲ)设函数f(x)=lnx﹣x+1.(1)讨论f(x)的单调性;(2)证明当x∈(1,+∞)时,1<<x;(3)设c>1,证明当x∈(0,1)时,1+(c﹣1)x>c x.【分析】(1)求出导数,由导数大于0,可得增区间;导数小于0,可得减区间,注意函数的定义域;(2)由题意可得即证lnx<x﹣1<xlnx.运用(1)的单调性可得lnx<x﹣1,设F(x)=xlnx﹣x+1,x>1,求出单调性,即可得到x﹣1<xlnx成立;(3)设G(x)=1+(c﹣1)x﹣c x,求出导数,可令G′(x)=0,由c>1,x∈(0,1),可得1<<c,由(1)可得c x=恰有一解,设为x=x0是G(x)的最小值点,运用最值,结合不等式的性质,即可得证.【解答】解:(1)函数f(x)=lnx﹣x+1的导数为f′(x)=﹣1,由f′(x)>0,可得0<x<1;由f′(x)<0,可得x>1.即有f(x)的增区间为(0,1);减区间为(1,+∞);(2)证明:当x∈(1,+∞)时,1<<x,即为lnx<x﹣1<xlnx.由(1)可得f(x)=lnx﹣x+1在(1,+∞)递减,可得f(x)<f(1)=0,即有lnx<x﹣1;设F(x)=xlnx﹣x+1,x>1,F′(x)=1+lnx﹣1=lnx,当x>1时,F′(x)>0,可得F(x)递增,即有F(x)>F(1)=0,即有xlnx>x﹣1,则原不等式成立;(3)证明:设G(x)=1+(c﹣1)x﹣c x,G′(x)=c﹣1﹣c x lnc,可令G′(x)=0,可得c x=,由c>1,x∈(0,1),可得1<c x<c,即1<<c,由(1)可得c x=恰有一解,设为x=x0是G(x)的最大值点,且0<x0<1,由G(0)=G(1)=0,且G(x)在(0,x0)递增,在(x0,1)递减,可得G(x0)=1+(c﹣1)x0﹣c x0>0成立,则c>1,当x∈(0,1)时,1+(c﹣1)x>c x.【点评】本题考查导数的运用:求单调区间和极值、最值,考查不等式的证明,注意运用构造函数法,求出导数判断单调性,考查推理和运算能力,属于中档题.21.(2016•新课标Ⅰ)已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.【分析】(Ⅰ)求出f(x)的导数,讨论当a≥0时,a<﹣时,a=﹣时,﹣<a<0,由导数大于0,可得增区间;由导数小于0,可得减区间;(Ⅱ)由(Ⅰ)的单调区间,对a讨论,结合单调性和函数值的变化特点,即可得到所求范围.【解答】解:(Ⅰ)由f(x)=(x﹣2)e x+a(x﹣1)2,可得f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①当a≥0时,由f′(x)>0,可得x>1;由f′(x)<0,可得x<1,即有f(x)在(﹣∞,1)递减;在(1,+∞)递增;②当a<0时,若a=﹣,则f′(x)≥0恒成立,即有f(x)在R上递增;若a<﹣时,由f′(x)>0,可得x<1或x>ln(﹣2a);由f′(x)<0,可得1<x<ln(﹣2a).即有f(x)在(﹣∞,1),(ln(﹣2a),+∞)递增;在(1,ln(﹣2a))递减;若﹣<a<0,由f′(x)>0,可得x<ln(﹣2a)或x>1;由f′(x)<0,可得ln(﹣2a)<x<1.即有f(x)在(﹣∞,ln(﹣2a)),(1,+∞)递增;在(ln(﹣2a),1)递减;(Ⅱ)①由(Ⅰ)可得当a>0时,f(x)在(﹣∞,1)递减;在(1,+∞)递增,且f(1)=﹣e<0,x→+∞,f(x)→+∞;x→﹣∞,f(x)→+∞.f(x)有两个零点;②当a=0时,f(x)=(x﹣2)e x,所以f(x)只有一个零点x=2;③当a<0时,若a<﹣时,f(x)在(1,ln(﹣2a))递减,在(﹣∞,1),(ln(﹣2a),+∞)递增,又当x≤1时,f(x)<0,所以f(x)不存在两个零点;当a≥﹣时,f(x)在(1,+∞)单调递增,又x≤1时,f(x)<0,所以f(x)不存在两个零点.综上可得,f(x)有两个零点时,a的取值范围为(0,+∞).【点评】本题考查导数的运用:求单调区间,考查函数零点的判断,注意运用分类讨论的思想方法和函数方程的转化思想,考查化简整理的运算能力,属于难题.22.(2016•天津)设函数f(x)=(x﹣1)3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=3;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[0,2]上的最大值不小于.【分析】(1)求出f(x)的导数,讨论a≤0时,f′(x)≥0,f(x)在R上递增;当a>0时,由导数大于0,可得增区间;导数小于0,可得减区间;(2)f′(x0)=0,可得3(x0﹣1)2=a,分别计算f(x0),f(3﹣2x0),化简整理即可得证;(3)要证g(x)在区间[0,2]上的最大值不小于,即证在[0,2]上存在x1,x2,使得f(x1)﹣f(x2)≥.讨论当a≥3时,当0<a<3时,运用单调性和极值,化简整理即可得证.【解答】解:(1)函数f(x)=(x﹣1)3﹣ax﹣b的导数为f′(x)=3(x﹣1)2﹣a,当a≤0时,f′(x)≥0,f(x)在R上递增;当a>0时,当x>1+或x<1﹣时,f′(x)>0,当1﹣<x<1+,f′(x)<0,可得f(x)的增区间为(﹣∞,1﹣),(1+,+∞),减区间为(1﹣,1+);(2)证明:f′(x0)=0,可得3(x0﹣1)2=a,由f(x0)=(x0﹣1)3﹣3x0(x0﹣1)2﹣b=(x0﹣1)2(﹣2x0﹣1)﹣b,f(3﹣2x0)=(2﹣2x0)3﹣3(3﹣2x0)(x0﹣1)2﹣b=(x0﹣1)2(8﹣8x0﹣9+6x0)﹣b=(x0﹣1)2(﹣2x0﹣1)﹣b,即为f(3﹣2x0)=f(x0)=f(x1),即有3﹣2x0=x1,即为x1+2x0=3;(3)证明:要证g(x)在区间[0,2]上的最大值不小于,即证在[0,2]上存在x1,x2,使得f(x1)﹣f(x2)≥.当a≥3时,f(x)在[0,2]递减,f(2)=1﹣2a﹣b,f(0)=﹣1﹣b,f(0)﹣f(2)=2a﹣2≥4>,递减,成立;当0<a<3时,f(1﹣)=(﹣)3﹣a(1﹣)﹣b=﹣﹣a+a﹣b =﹣a﹣b,f(1+)=()3﹣a(1+)﹣b=﹣a﹣a﹣b=﹣﹣a﹣b,f(2)=1﹣2a﹣b,f(0)=﹣1﹣b,f(2)﹣f(0)=2﹣2a,若0<a≤时,f(2)﹣f(0)=2﹣2a≥成立;若a>时,f(1﹣)﹣f(1+)=>成立.综上可得,g(x)在区间[0,2]上的最大值不小于.【点评】本题考查导数的运用:求单调区间和最值,考查不等式的证明,注意运用分类讨论的思想方法和转化思想,考查分析法的证明,以及化简整理的运算能力,属于难题.23.(2016•新课标Ⅲ)设函数f(x)=acos2x+(a﹣1)(cosx+1),其中a>0,记|f(x)|的最大值为A.(Ⅰ)求f′(x);(Ⅱ)求A;(Ⅲ)证明:|f′(x)|≤2A.【分析】(Ⅰ)根据复合函数的导数公式进行求解即可求f′(x);(Ⅱ)讨论a的取值,利用分类讨论的数学,结合换元法,以及一元二次函数的最值的性质进行求解;(Ⅲ)由(I),结合绝对值不等式的性质即可证明:|f′(x)|≤2A.【解答】(I)解:f′(x)=﹣2asin2x﹣(a﹣1)sinx.(II)当a≥1时,|f(x)|=|acos2x+(a﹣1)(cosx+1)|≤a|cos2x|+(a﹣1)|(cosx+1)|≤a|cos2x|+(a﹣1)(|cosx|+1)|≤a+2(a﹣1)=3a﹣2=f(0),因此A=3a﹣2.当0<a<1时,f(x)等价为f(x)=acos2x+(a﹣1)(cosx+1)=2acos2x+(a﹣1)cosx﹣1,令g(t)=2at2+(a﹣1)t﹣1,则A是|g(t)|在[﹣1,1]上的最大值,g(﹣1)=a,g(1)=3a﹣2,且当t=时,g(t)取得极小值,极小值为g()=﹣﹣1=﹣,(二次函数在对称轴处取得极值)令﹣1<<1,得a<(舍)或a>.因此A=3a﹣2①当0<a≤时,g(t)在(﹣1,1)内无极值点,|g(﹣1)|=a,|g(1)|=2﹣3a,|g(﹣1)|<|g(1)|,∴A=2﹣3a,②当<a<1时,由g(﹣1)﹣g(1)=2(1﹣a)>0,得g(﹣1)>g(1)>g(),又|g()﹣g(﹣1)|=>0,∴A=|g()|=,综上,A=.(III)证明:由(I)可得:|f′(x)|=|﹣2asin2x﹣(a﹣1)sinx|≤2a+|a﹣1|,当0<a≤时,|f′(x)|≤1+a≤2﹣4a<2(2﹣3a)=2A,当<a<1时,A==++≥1,∴|f′(x)|≤1+a≤2A,当a≥1时,|f′(x)|≤3a﹣1≤6a﹣4=2A,综上:|f′(x)|≤2A.【点评】本题主要考查函数的导数以及函数最值的应用,求函数的导数,利用函数单调性和导数的关系,以及换元法,转化法转化法转化为一元二次函数是解决本题的关键.综合性较强,难度较大.24.(2016•新课标Ⅱ)(Ⅰ)讨论函数f(x)=e x的单调性,并证明当x>0时,(x﹣2)e x+x+2>0;(Ⅱ)证明:当a∈[0,1)时,函数g(x)=(x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.【分析】从导数作为切入点探求函数的单调性,通过函数单调性来求得函数的值域,利用复合函数的求导公式进行求导,然后逐步分析即可【解答】解:(1)证明:f(x)=f'(x)=e x()=∵当x∈(﹣∞,﹣2)∪(﹣2,+∞)时,f'(x)>0∴f(x)在(﹣∞,﹣2)和(﹣2,+∞)上单调递增∴x>0时,>f(0)=﹣1即(x﹣2)e x+x+2>0(2)g'(x)===a∈[0,1)由(1)知,当x>0时,f(x)=的值域为(﹣1,+∞),只有一解使得,t∈(0,2]当x∈(0,t)时,g'(x)<0,g(x)单调减;当x∈(t,+∞),g'(x)>0,g(x)单调增;h(a)===记k(t)=,在t∈(0,2]时,k'(t)=>0,故k(t)单调递增,所以h(a)=k(t)∈(,].【点评】该题考查了导数在函数单调性上的应用,重点是掌握复合函数的求导,以及导数代表的意义,计算量较大,难度较大.25.(2016•天津)设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于.【分析】(1)求出f(x)的导数,讨论a≤0时f′(x)≥0,f(x)在R上递增;当a>0时,由导数大于0,可得增区间;导数小于0,可得减区间;(2)由条件判断出a>0,且x0≠0,由f′(x0)=0求出x0,分别代入解析式化简f(x0),f(﹣2x0),化简整理后可得证;(3)设g(x)在区间[﹣1,1]上的最大值M,根据极值点与区间的关系对a分三种情况讨论,运用f(x)单调性和前两问的结论,求出g(x)在区间上的取值范围,利用a的范围化简整理后求出M,再利用不等式的性质证明结论成立.【解答】解:(1)若f(x)=x3﹣ax﹣b,则f′(x)=3x2﹣a,分两种情况讨论:①、当a≤0时,有f′(x)=3x2﹣a≥0恒成立,此时f(x)的单调递增区间为(﹣∞,+∞),②、当a>0时,令f′(x)=3x2﹣a=0,解得x=或x=,当x>或x<﹣时,f′(x)=3x2﹣a>0,f(x)为增函数,当﹣<x<时,f′(x)=3x2﹣a<0,f(x)为减函数,故f(x)的增区间为(﹣∞,﹣),(,+∞),减区间为(﹣,);(2)若f(x)存在极值点x0,则必有a>0,且x0≠0,由题意可得,f′(x)=3x2﹣a,则x02=,进而f(x0)=x03﹣ax0﹣b=﹣x0﹣b,又f(﹣2x0)=﹣8x03+2ax0﹣b=﹣x0+2ax0﹣b=f(x0),由题意及(Ⅰ)可得:存在唯一的实数x1,满足f(x1)=f(x0),其中x1≠x0,则有x1=﹣2x0,故有x1+2x0=0;(Ⅲ)设g(x)在区间[﹣1,1]上的最大值M,max{x,y}表示x、y两个数的最大值,下面分三种情况讨论:①当a≥3时,﹣≤﹣1<1≤,由(I)知f(x)在区间[﹣1,1]上单调递减,所以f(x)在区间[﹣1,1]上的取值范围是[f(1),f(﹣1)],因此M=max{|f(1)|,|f(﹣1)|}=max{|1﹣a﹣b|,|﹣1+a﹣b|}=max{|a﹣1+b|,|a﹣1﹣b|}=,所以M=a﹣1+|b|≥2②当a<3时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)≥=f(),f(1)≤=,所以f(x)在区间[﹣1,1]上的取值范围是[f(),f(﹣)],因此M=max{|f()|,|f(﹣)|}=max{||,||} =max{||,||}=,③当0<a<时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)<=f(),f(1)>=,所以f(x)在区间[﹣1,1]上的取值范围是[f(﹣1),f(1)],因此M=max{|f(﹣1)|,|f(1)|}=max{|﹣1+a﹣b|,|1﹣a﹣b|}=max{|1﹣a+b|,|1﹣a﹣b|}=1﹣a+|b|>,综上所述,当a>0时,g(x)在区间[﹣1,1]上的最大值不小于.【点评】本题考查导数的运用:求单调区间和最值,不等式的证明,注意运用分类讨论的思想方法和转化思想,考查分析法在证明中的应用,以及化简整理、运算能力,属于难题.26.(2016•新课标Ⅰ)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.【分析】(Ⅰ)由函数f(x)=(x﹣2)e x+a(x﹣1)2可得:f′(x)=(x﹣1)e x+2a (x﹣1)=(x﹣1)(e x+2a),对a进行分类讨论,综合讨论结果,可得答案.(Ⅱ)设x1,x2是f(x)的两个零点,则﹣a==,令g (x)=,则g(x1)=g(x2)=﹣a,分析g(x)的单调性,令m>0,则g(1+m)﹣g(1﹣m)=,设h(m)=,m>0,利用导数法可得h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,可得结论.【解答】解:(Ⅰ)∵函数f(x)=(x﹣2)e x+a(x﹣1)2,∴f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①若a=0,那么f(x)=0⇔(x﹣2)e x=0⇔x=2,函数f(x)只有唯一的零点2,不合题意;②若a>0,那么e x+2a>0恒成立,当x<1时,f′(x)<0,此时函数为减函数;当x>1时,f′(x)>0,此时函数为增函数;此时当x=1时,函数f(x)取极小值﹣e,由f(2)=a>0,可得:函数f(x)在x>1存在一个零点;当x<1时,e x<e,x﹣2<﹣1<0,∴f(x)=(x﹣2)e x+a(x﹣1)2>(x﹣2)e+a(x﹣1)2=a(x﹣1)2+e(x﹣1)﹣e,令a(x﹣1)2+e(x﹣1)﹣e=0的两根为t1,t2,且t1<t2,则当x<t1,或x>t2时,f(x)>a(x﹣1)2+e(x﹣1)﹣e>0,故函数f(x)在x<1存在一个零点;即函数f(x)在R是存在两个零点,满足题意;③若﹣<a<0,则ln(﹣2a)<lne=1,当x<ln(﹣2a)时,x﹣1<ln(﹣2a)﹣1<lne﹣1=0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当ln(﹣2a)<x<1时,x﹣1<0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=ln(﹣2a)时,函数取极大值,由f(ln(﹣2a))=[ln(﹣2a)﹣2](﹣2a)+a[ln(﹣2a)﹣1]2=a{[ln(﹣2a)﹣2]2+1}<0得:函数f(x)在R上至多存在一个零点,不合题意;④若a=﹣,则ln(﹣2a)=1,当x<1=ln(﹣2a)时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故函数f(x)在R上单调递增,函数f(x)在R上至多存在一个零点,不合题意;⑤若a<﹣,则ln(﹣2a)>lne=1,当x<1时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当1<x<ln(﹣2a)时,x﹣1>0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>ln(﹣2a)时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=1时,函数取极大值,由f(1)=﹣e<0得:函数f(x)在R上至多存在一个零点,不合题意;综上所述,a的取值范围为(0,+∞)证明:(Ⅱ)∵x1,x2是f(x)的两个零点,∴f(x1)=f(x2)=0,且x1≠1,且x2≠1,∴﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,∵g′(x)=,∴当x<1时,g′(x)<0,g(x)单调递减;当x>1时,g′(x)>0,g(x)单调递增;设m>0,则g(1+m)﹣g(1﹣m)=﹣=,设h(m)=,m>0,则h′(m)=>0恒成立,即h(m)在(0,+∞)上为增函数,h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,则g(1+1﹣x1)>g(1﹣1+x1)⇔g(2﹣x1)>g(x1)=g(x2)⇔2﹣x1>x2,即x1+x2<2.【点评】本题考查的知识点是利用导数研究函数的极值,函数的零点,分类讨论思想,难度较大.27.(2016•山东)已知f(x)=a(x﹣lnx)+,a∈R.(I)讨论f(x)的单调性;(II)当a=1时,证明f(x)>f′(x)+对于任意的x∈[1,2]成立.【分析】(Ⅰ)求出原函数的导函数,然后对a分类分析导函数的符号,由导函数的符号确定原函数的单调性;(Ⅱ)构造函数F(x)=f(x)﹣f′(x),令g(x)=x﹣lnx,h(x)=.则F(x)=f(x)﹣f′(x)=g(x)+h(x),利用导数分别求g(x)与h(x)的最小值得到F(x)>恒成立.由此可得f(x)>f′(x)+对于任意的x∈[1,2]成立.【解答】(Ⅰ)解:由f(x)=a(x﹣lnx)+,得f′(x)=a(1﹣)+==(x>0).若a≤0,则ax2﹣2<0恒成立,∴当x∈(0,1)时,f′(x)>0,f(x)为增函数,当x∈(1,+∞)时,f′(x)<0,f(x)为减函数;当a>0,若0<a<2,当x∈(0,1)和(,+∞)时,f′(x)>0,f(x)为增函数,当x∈(1,)时,f′(x)<0,f(x)为减函数;若a=2,f′(x)≥0恒成立,f(x)在(0,+∞)上为增函数;若a>2,当x∈(0,)和(1,+∞)时,f′(x)>0,f(x)为增函数,当x∈(,1)时,f′(x)<0,f(x)为减函数;(Ⅱ)解:∵a=1,令F(x)=f(x)﹣f′(x)=x﹣lnx﹣1=x﹣lnx+.令g(x)=x﹣lnx,h(x)=.则F(x)=f(x)﹣f′(x)=g(x)+h(x),由,可得g(x)≥g(1)=1,当且仅当x=1时取等号;又,设φ(x)=﹣3x2﹣2x+6,则φ(x)在[1,2]上单调递减,且φ(1)=1,φ(2)=﹣10,∴在[1,2]上存在x0,使得x∈(1,x0)时φ(x0)>0,x∈(x0,2)时,φ(x0)<0,∴函数h(x)在(1,x0)上单调递增;在(x0,2)上单调递减,由于h(1)=1,h(2)=,因此h(x)≥h(2)=,当且仅当x=2取等号,∴f(x)﹣f′(x)=g(x)+h(x)>g(1)+h(2)=,∴F(x)>恒成立.即f(x)>f′(x)+对于任意的x∈[1,2]成立.【点评】本题考查利用导数加以函数的单调性,考查了利用导数求函数的最值,考查了分类讨论的数学思想方法和数学转化思想方法,是压轴题.28.(2016•北京)设函数f(x)=x3+ax2+bx+c.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)设a=b=4,若函数f(x)有三个不同零点,求c的取值范围;(3)求证:a2﹣3b>0是f(x)有三个不同零点的必要而不充分条件.【分析】(1)求出f(x)的导数,求得切线的斜率和切点,进而得到所求切线的方程;(2)由f(x)=0,可得﹣c=x3+4x2+4x,由g(x)=x3+4x2+4x,求得导数,单调区间和极值,由﹣c介于极值之间,解不等式即可得到所求范围;(3)先证若f(x)有三个不同零点,令f(x)=0,可得单调区间有3个,求出导数,由导数的图象与x轴有两个不同的交点,运用判别式大于0,可得a2﹣3b >0;再由a=b=4,c=0,可得若a2﹣3b>0,不能推出f(x)有3个零点.【解答】解:(1)函数f(x)=x3+ax2+bx+c的导数为f′(x)=3x2+2ax+b,可得y=f(x)在点(0,f(0))处的切线斜率为k=f′(0)=b,切点为(0,c),可得切线的方程为y=bx+c;(2)设a=b=4,即有f(x)=x3+4x2+4x+c,由f(x)=0,可得﹣c=x3+4x2+4x,由g(x)=x3+4x2+4x的导数g′(x)=3x2+8x+4=(x+2)(3x+2),当x>﹣或x<﹣2时,g′(x)>0,g(x)递增;当﹣2<x<﹣时,g′(x)<0,g(x)递减.即有g(x)在x=﹣2处取得极大值,且为0;g(x)在x=﹣处取得极小值,且为﹣.由函数f(x)有三个不同零点,可得﹣<﹣c<0,解得0<c<,则c的取值范围是(0,);(3)证明:若f(x)有三个不同零点,令f(x)=0,可得f(x)的图象与x轴有三个不同的交点.即有f(x)有3个单调区间,即为导数f′(x)=3x2+2ax+b的图象与x轴有两个交点,可得△>0,即4a2﹣12b>0,即为a2﹣3b>0;若a2﹣3b>0,即有导数f′(x)=3x2+2ax+b的图象与x轴有两个交点,当c=0,a=b=4时,满足a2﹣3b>0,即有f(x)=x(x+2)2,图象与x轴交于(0,0),(﹣2,0),则f(x)的零点为2个.故a2﹣3b>0是f(x)有三个不同零点的必要而不充分条件.【点评】本题考查导数的运用:求切线的方程和单调区间、极值,考查函数的零点的判断,注意运用导数求得极值,考查化简整理的圆能力,属于中档题.29.(2016•江苏)已知函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=.。

历年高考数学真题(全国卷整理版)完整版完整版

历年高考数学真题(全国卷整理版)完整版完整版

参考公式:如果事件 A、B互斥,那么球的表面积公式P( A B) P( A) P(B)S 4R2如果事件 A、B相互独立,那么其中 R表示球的半径P(A B) P( A) P(B)球的体积公式如果事件 A 在一次试验中发生的概率是p ,那么V3R3n 次独立重复试验中事件 A 恰好发生k次的概率4其中 R 表示球的半径P n (k ) C n k p k (1 p)n k (k 0,1,2, n)普通高等学校招生全国统一考试一、选择题13i 1、复数i =1A 2+I B2-I C 1+2i D 1- 2i2、已知集合 A ={1.3.m },B={1,m} ,A B = A, 则 m=A0或3 B 0或3C1或3 D 1或33椭圆的中心在原点,焦距为 4 一条准线为 x=-4 ,则该椭圆的方程为A x2y2=1Bx2y2=1 16++12128C x2y2=1Dx2y28+12+=1 444已知正四棱柱ABCD- A 1B 1C1D1中,AB=2 ,CC1= 2 2 E 为 CC1的中点,则直线 AC 1与平面 BED 的距离为A2B3C2D1(5)已知等差数列{a n} 的前 n 项和为 S n, a5=5, S5=15,则数列的前100项和为10099(C)99101(A)(B)(D)100101101100(6)△ ABC 中, AB 边的高为 CD ,若a· b=0, |a|=1, |b|=2,则(A)(B)(C)(D)3(7)已知α为第二象限角,sinα+ sinβ =3,则 cos2α = 5555--(C) 9(D)3(A)3(B)9(8)已知 F1、 F2 为双曲线 C: x2-y2=2的左、右焦点,点P 在 C 上, |PF1|=|2PF2|,则 cos ∠F1PF2=1334(A) 4(B)5(C)4(D)51(9)已知 x=ln π, y=log52 ,z=e2,则(A)x < y< z(B)z<x<y(C)z < y< x(D)y < z< x(10) 已知函数y= x2-3x+c 的图像与 x 恰有两个公共点,则c=(A )-2 或 2 (B)-9 或 3 (C)-1 或 1 (D)-3 或 1(11)将字母 a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A)12 种( B)18 种( C)24 种( D)36 种7(12)正方形 ABCD 的边长为1,点 E 在边 AB 上,点 F 在边 BC 上, AE = BF =3。

高考数学(理)真题专题汇编:集合与逻辑

高考数学(理)真题专题汇编:集合与逻辑

高考数学(理)真题专题汇编:集合与逻辑一、选择题1.【来源】2019年高考真题——数学(浙江卷) 若0,0ab >>,则“4a b +≤”是 “4ab ≤”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件2.【来源】2019年高考真题——数学(浙江卷)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(C U A)∩B=( ) A. {-1} B. {0,1} C. {-1,2,3}D. {-1,0,1,3}3.【来源】2019年高考真题——理科数学(北京卷)设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件D. 既不充分也不必要条件4.【来源】2019年高考真题——理科数学(天津卷)设x R ∈,则“250x x -<”是“|1|1x -<”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.【来源】2019年高考真题——理科数学(天津卷)设集合A={-1,1,2,3,5},B={2,3,4},{|13}C x x =∈≤<R ,则()A C B =A.{2}B.{2,3}C.{-1,2,3}D.{1,2,3,4} 6.【来源】2019年高考真题——理科数学(全国卷Ⅱ) 设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线D .α,β垂直于同一平面7.【来源】2019年高考真题——理科数学(全国卷Ⅱ) 设集合A={x|x 2-5x+6>0},B={ x|x-1<0},则A∩B= A .(-∞,1) B .(-2,1) C .(-3,-1)D .(3,+∞)8.【来源】2019年高考真题——理科数学(全国卷Ⅲ)已知集合A={-1,0,1,2},B={x|x 2≤1},则A∩B= A .{-1,0,1}B .{0,1}C .{-1,1}D .{0,1,2}9.【来源】2019年高考真题——理科数学(全国卷Ⅰ) 已知集合}242{60{}M x x N x x x =-<<=--<,,则M∩N=A .}{43x x -<<B .}42{x x -<<- C .}{22x x -<< D .}{23x x <<10.【来源】2018年高考真题——数学理(全国卷Ⅲ)已知集合A={x|x -1≥0},B={0,1,2},则A∩B= A .{0}B .{1}C.{1,2}D .{0,1,2}11.【来源】2018年高考真题——理科数学(北京卷)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则 (A )对任意实数a ,(2,1)A ∈(B )对任意实数a ,(2,1)A ∉(C )当且仅当a<0时,(2,1)A ∉ (D )当且仅当32a ≤时,(2,1)A ∉ 12.【来源】2018年高考真题——理科数学(北京卷)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件13.【来源】2018年高考真题——理科数学(北京卷)(1)已知集合A={x||x|<2},B={–2,0,1,2},则A∩B = (A ){0,1}(B ){–1,0,1}(C ){–2,0,1,2}(D ){–1,0,1,2}14.【来源】2018年高考真题——理科数学(天津卷)设x ∈R ,则“11||22x -<”是“31x <”的 (A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件(D)既不充分也不必要条件15.【来源】2018年高考真题——理科数学(天津卷)设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()=R A B(A) {01}x x <≤ (B) {01}x x << (C){12}x x ≤<(D){02}x x <<16.【来源】2018年高考真题——理科数学(全国卷II )已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为 A .9B .8C .5D .417.【来源】2018年高考真题——理科数学(全国卷Ⅰ)已知集合A={x|x 2-x -2>0},则C R A= A.{ x|-1<x <2} B. { x|-1≤x≤2}C. { x| x <-1}∪{ x|x >2}D. { x| x≤-1}∪{ x|x≥2} 18.【来源】2016年高考真题——理科数学(天津卷)设{a n }是首项为正数的等比数列,公比为q ,则“q<0”是“对任意的正整数n ,a 2n−1+a 2n <0”的( )(A )充要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件 19.【来源】2016年高考真题——理科数学(天津卷)已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则A B =( ) (A ){1}(B ){4}(C ){1,3}(D ){1,4}20.【来源】2017年高考真题——理科数学(北京卷)设m,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件21.【来源】2017年高考真题——理科数学(北京卷)若集合A={x|–2<x<1},B={x|x<–1或x>3},则A∩B=(A){x|–2<x<–1} (B){x|–2<x<3}(C){x|–1<x<1} (D){x|1<x<3}22.【来源】2017年高考真题——数学(浙江卷)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4 + S6>2S5”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件23.【来源】2017年高考真题——数学(浙江卷)已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=A. (-1,2) B. (0,1) C. (-1,0) D.(1,2)二、填空题24.【来源】2019年高考真题——数学(江苏卷)已知集合A={-1,0,1,6},{}|0,B x x x R =>∈,则A∩B=_____. 25.【来源】2018年高考真题——理科数学(北京卷)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________.26.【来源】2018年高考真题——数学(江苏卷)已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ .27.【来源】2018年高考真题——数学(江苏卷)已知集合A={0,1,2,8},B={-1,1,6,8},那么A∩B = ▲ . 28.【来源】2017年高考真题——理科数学(北京卷)能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a+b >c”是假命题的一组整数a ,b ,c 的值依次为______________________________. 29.【来源】2017年高考真题——数学(江苏卷)已知集合A={1,2},B={a ,a 2+3},若A∩B={1},则实数a 的值为________ 三、解答题(本题共1道小题,第1题0分,共0分) 30.【来源】2018年高考真题——理科数学(北京卷)(本小题14分)设n 为正整数,集合A=12{|(,,,),{0,1},1,2,,}n n t t t t k n αα=∈=.对于集合A 中的任意元素12(,,,)n x x x α=和12(,,,)n y y y β=,记M (αβ,)=111122221[(||)(||)(||)]2n n n n x y x y x y x y x y x y +--++--+++--.(Ⅰ)当n=3时,若(1,1,0)α=,(0,1,1)β=,求M (,αα)和M (,αβ)的值;(Ⅱ)当n=4时,设B 是A 的子集,且满足:对于B 中的任意元素,αβ,当,αβ相同时,M (αβ,)是奇数;当,αβ不同时,M (αβ,)是偶数.求集合B 中元素个数的最大值;(Ⅲ)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素,αβ,M (αβ,)=0.写出一个集合B ,使其元素个数最多,并说明理由.试卷答案1.A 【分析】本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取,a b值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.【点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取,a b 的值,从假设情况下推出合理结果或矛盾结果. 2. A【分析】本题借根据交集、补集的定义可得.容易题,注重了基础知识、基本计算能力的考查. 【详解】={1,3}U C A -,则(){1}U C A B =-【点睛】易于理解集补集的概念、交集概念有误. 3. C【分析】由题意结合向量的减法公式和向量的运算法则考查充分性和必要性是否成立即可. 【详解】∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AB -AC |⇔|AB +AC |2>|AB -AC |2AB ⇔•AC >0AB ⇔与AC的夹角为锐角.故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件,故选C. 4. B化简不等式,可知 05x <<推不出11x -<; 由11x -<能推出05x <<,故“250x x -<”是“|1|1x -<”的必要不充分条件, 故选B. 5.因为{1,2}A C =, 所以(){1,2,3,4}A C B =.6. B根据面面平行的判定定理易得答案.选B. 7. A{2|<=x x A 或}3>x ,{}1|<=x x B ,∴)(1,∞-=⋂B A .8. A}11|{}1|{2≤≤-=≤=x x x x B ,所以}1,0,1{-=⋂B A .9. C由题意可知,}32|{<<-=x x N ,又因为}24|{<<-=x x M ,则}22|{<<-=x x N M ,故选C .10. C详解:由集合A 得 ,所以故答案选C. 11. D分析:求出 及 所对应的集合,利用集合之间的包含关系进行求解.详解:若,则且,即若,则 ,此命题的逆否命题为:若 ,则有,故选D.12. C分析:先对模平方,将 等价转化为0,再根据向量垂直时数量积为零得充要关系. 详解:,因为a ,b 均为单位向量,所以a ⊥b ,即“”是“a⊥b”的充分必要条件.选C.A分析:先解含绝对值不等式得集合A ,再根据数轴求集合交集. 详解:因此A∩B= ,选A.14. A分析:首先求解绝对值不等式,然后求解三次不等式即可确定两者之间的关系. 详解:绝对值不等式,由. 据此可知是的充分而不必要条件.本题选择A 选项. 15. B分析:由题意首先求得,然后进行交集运算即可求得最终结果.详解:由题意可得:,结合交集的定义可得:.本题选择B 选项. 16. A 详解: ,当 时, ; 当 时, ; 当时,;所以共有9个,选A. 17. B 解答:{|2A x x =>或1}x <-,则{|12}R C A x x =-≤≤.18. C试题分析:由题意得,22212(1)21210()0(1)0(,1)n n n n n a a a q q q q q ----+<⇔+<⇔+<⇔∈-∞-,故是必要不充分条件,故选C. 19.D试题分析:{1,4,7,10},A B {1,4}.B ==选D. 20. A若0λ∃<,使m n λ=,即两向量反向,夹角是180°,那么0cos1800m n m n m n ⋅==-<,反过来,若0m n ⋅<,那么两向量的夹角为(90°,180°],并不一定反向,即不一定存在负数λ,使得λ=m n ,所以是充分不必要条件,故选A. 21. A{}21A B x x =-<<-,故选A.22.C试题分析:由46511210212(510)S S S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d>0”是“S 4 +S 6>2S 5”的充要条件,选C .【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=, 结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >”⇔“46520S S S +->”,故互为充要条件. 23.A试题分析:利用数轴,取P 、Q 所有元素,得P ∪Q=(-1,2)【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 24. {1,6} 【分析】由题意利用交集的定义求解交集即可. 【详解】由题知,{1,6}AB =.【点睛】本题主要考查交集的运算,属于基础题. 25.y=sinx (答案不唯一)分析:举的反例要否定增函数,可以取一个分段函数,使得f (x )>f (0)且(0,2]上是减函数.详解:令,则f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是增函数. 又如,令f (x )=sinx ,则f (0)=0,f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是增函数.26.27分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值. 详解:设 ,则由得 所以只需研究是否有满足条件的解, 此时 , ,m 为等差数列项数,且. 由得满足条件的n 最小值为27.27.{1,8} 分析:根据交集定义求结果. 详解:由题设和交集的定义可知:.28.1,2,3---(答案不唯一) 123,1(2)3->->--+-=-29.1由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为130.解:(Ⅰ)因为α=(1,1,0),β=(0,1,1),所以M(α,α)=12[(1+1−|1−1|)+(1+1−|1−1|)+(0+0−|0−0|)]=2, M(α,β)=12[(1+0–|1−0|)+(1+1–|1–1|)+(0+1–|0–1|)]=1.(Ⅱ)设α=(x1,x 2,x3,x4)∈B,则M(α,α)= x1+x2+x3+x4.由题意知x1,x 2,x3,x4∈{0,1},且M(α,α)为奇数,所以x1,x 2,x3,x4中1的个数为1或3.所以B {(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.将上述集合中的元素分成如下四组:(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).经验证,对于每组中两个元素α,β,均有M(α,β)=1.所以每组中的两个元素不可能同时是集合B的元素.所以集合B中元素的个数不超过4.又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件,所以集合B中元素个数的最大值为4.(Ⅲ)设S k=( x1,x 2,…,x n)|( x1,x 2,…,x n)∈A,x k =1,x1=x2=…=x k–1=0)(k=1,2,…,n),S n+1={( x1,x 2,…,x n)| x1=x2=…=x n=0},则A=S1∪S1∪…∪S n+1.对于S k(k=1,2,…,n–1)中的不同元素α,β,经验证,M(α,β)≥1.所以S k(k=1,2 ,…,n–1)中的两个元素不可能同时是集合B的元素.所以B中元素的个数不超过n+1.取e k=( x1,x 2,…,x n)∈S k且x k+1=…=x n=0(k=1,2,…,n–1).令B=(e1,e2,…,e n–1)∪S n∪S n+1,则集合B的元素个数为n+1,且满足条件.故B是一个满足条件且元素个数最多的集合.。

2016年高考真题文科数学(全国Ⅰ卷)含答案

2016年高考真题文科数学(全国Ⅰ卷)含答案

2016年普通高等学校招生全国统一考试文科数学 第Ⅰ卷一、选择题:本大题共12小题,每小题5分.(1)设集合,,则(A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7}(2)设的实部与虚部相等,其中a 为实数,则a =( )(A )-3 (B )-2 (C )2 (D )3 (3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) (A )31 (B )21 (C ) 32 (D )65 (4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知,,32cos =A ,则b=( )(A )(B )(C )2 (D )3(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到的l 距离为其短轴长的41,则该椭圆的离心率为( )(A )31 (B )21 (C )32 (D )43(6)若将函数y =2sin (2x +6π)的图像向右平移41个周期后,所得图像对应的函数为( )(A )y =2sin(2x +4π) (B )y =2sin(2x +3π) (C )y =2sin(2x –4π) (D )y =2sin(2x –3π) )(7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的表面积是( ) (A )17π (B )18π (C )20π (D )28π(8)若a>b>0,0<c<1,则( )(A )log a c <log b c (B )log c a <log c b (C )a c <b c (D )c a >c b (9)函数y =2x 2–e |x |在[–2,2]的图像大致为( )(A ) (B ) (C ) (D ) (10)执行右面的程序框图,如果输入的1,0==y x n =1,则输出y x ,的值满足( )(A )(B )(C )(D )(11)平面过正方体ABCD —A 1B 1C 1D 1的顶点A ,,,,则m ,n 所成角的正弦值为(A )(B ) (C ) (D )(12)若函数在单调递增,则a 的取值范围是 (A )(B ) (C ) (D )第II 卷二、填空题:本大题共4小题,每小题5分 (13)设向量a =(x ,x +1),b =(1,2),且a b ,则x =(14)已知θ是第四象限角,且sin(θ+4π)=53,则tan(θ–4π)=.(15)设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B两点,若32AB =,则圆C 的面积为 (16)某企业生产产品A 和产品B 需要甲、乙两种新型材料。

2016年高考数学真题

2016年高考数学真题

文科数学(全国甲卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={1,2,3},B ={x |x 2<9},则A ∩B =( ) A .{-2,-1,0,1,2,3} B .{-2,-1,0,1,2} C .{1,2,3} D .{1,2}解析:选D.先化简集合B ,再利用交集定义求解. ∵x 2<9,∴-3<x <3,∴B ={x |-3<x <3}. 又A ={1,2,3},∴A ∩B ={1,2,3}∩{x |-3<x <3}={1,2},故选D. 2.设复数z 满足z +i =3-i ,则z =( ) A .-1+2i B .1-2i C .3+2i D .3-2i解析:选C.先求复数z ,再利用共轭复数定义求z . 由z +i =3-i 得z =3-2i ,∴z =3+2i ,故选C. 3.函数y =A sin(ωx +φ)的部分图象如图所示,则( )A .y =2sin ⎝⎛⎭⎫2x -π6 B .y =2sin ⎝⎛⎭⎫2x -π3 C .y =2sin ⎝⎛⎭⎫x +π6 D .y =2sin ⎝⎛⎭⎫x +π3 解析:选A.根据图象上点的坐标及函数最值点,确定A ,ω与φ的值.由图象知T 2=π3-⎝⎛⎭⎫-π6=π2,故T =π,因此ω=2ππ=2.又图象的一个最高点坐标为⎝⎛⎭⎫π3,2,所以A =2,且2×π3+φ=2k π+π2(k ∈Z ),故φ=2k π-π6(k ∈Z ),结合选项可知y =2sin ⎝⎛⎭⎫2x -π6.故选A.4.体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )A .12π B.323πC .8πD .4π解析:选A.先利用正方体外接球直径等于正方体体对角线长求出球的半径,再用球的表面积公式求解.设正方体棱长为a ,则a 3=8,所以a =2.所以正方体的体对角线长为23,所以正方体外接球的半径为3,所以球的表面积为4π·(3)2=12π,故选A.5.设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k =( )A.12 B .1 C.32D .2 解析:选D.根据抛物线的方程求出焦点坐标,利用PF ⊥x 轴,知点P ,F 的横坐标相等,再根据点P 在曲线y =kx上求出k .∵y 2=4x ,∴F (1,0).又∵曲线y =kx (k >0)与C 交于点P ,PF ⊥x 轴,∴P (1,2).将点P (1,2)的坐标代入y =kx(k >0)得k =2.故选D.6.圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( )A .-43B .-34C. 3 D .2解析:选A.将圆的方程化为标准方程,根据点到直线距离公式求解.圆x 2+y 2-2x -8y +13=0的标准方程为(x -1)2+(y -4)2=4,由圆心到直线ax +y -1=0的距离为1可知|a +4-1|a 2+12=1,解得a =-43,故选A.7.右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( ) A .20π B .24π C .28π D .32π解析:选C.根据三视图特征,将三视图还原为直观图,根据直观图特征求表面积. 由三视图可知,该几何体是由一个圆柱和一个圆锥组成的组合体,上面是一个圆锥,圆锥的高是23,底面半径是2,因此其母线长为4,下面圆柱的高是4,底面半径是2,因此该几何体的表面积是S =π×22+2π×2×4+π×2×4=28π,故选C.8.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )A.710B.58C.38D.310解析:选B.利用几何概型的概率公式求解.如图,若该行人在时间段AB 的某一时刻来到该路口,则该行人至少等待15秒才出现绿灯.AB 长度为40-15=25,由几何概型的概率公式知,至少需要等待15秒才出现绿灯的概率为40-1540=58,故选B.9.中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图,执行该程序框图,若输入的x =2,n =2,依次输入的a 为2,2,5,则输出的s =( )A .7B .12C .17D .34解析:选C.逐次运行程序,直到满足条件时输出s 值终止程序. 输入x =2,n =2.第一次,a =2,s =2,k =1,不满足k >n ; 第二次,a =2,s =2×2+2=6,k =2,不满足k >n ;第三次,a =5,s =6×2+5=17,k =3,满足k >n ,输出s =17.10.下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( ) A .y =x B .y =lg xC .y =2xD .y =1x解析:选D.根据函数解析式特征求函数的定义域、值域. 函数y =10lg x 的定义域与值域均为(0,+∞). 函数y =x 的定义域与值域均为(-∞,+∞).函数y =lg x 的定义域为(0,+∞),值域为(-∞,+∞).函数y =2x 的定义域为(-∞,+∞),值域为(0,+∞).函数y =1x的定义域与值域均为(0,+∞).故选D.11.函数f (x )=cos 2x +6cos ⎝⎛⎭⎫π2-x 的最大值为( ) A .4 B .5 C .6 D .7解析:选B.利用诱导公式及二倍角的余弦公式,将三角函数最值问题转化为给定区间的二次函数的最值问题求解.∵f (x )=cos 2x +6cos ⎝⎛⎭⎫π2-x =cos 2x +6sin x=1-2sin 2x +6sin x =-2⎝⎛⎭⎫sin x -322+112, 又sin x ∈[-1,1],∴当sin x =1时,f (x )取得最大值5.故选B.12.已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3|与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑mi =1x i =( ) A .0 B .m C .2m D .4m解析:选B.根据函数y =f (x )与y =|x 2-2x -3|的图象都关于直线x =1对称求解. ∵f (x )=f (2-x ),∴函数f (x )的图象关于直线x =1对称.又y =|x 2-2x -3|=|(x -1)2-4|的图象关于直线x =1对称,∴两函数图象的交点关于直线x =1对称.当m 为偶数时,∑mi =1x i =2×m 2=m ; 当m 为奇数时,∑m i =1x i=2×m -12+1=m .故选B. 第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已知向量a =(m,4),b =(3,-2),且a ∥b ,则m =________.解析:利用两向量共线的坐标运算公式求解. ∵a =(m,4),b =(3,-2),a ∥b , ∴-2m -4×3=0.∴m =-6. 答案:-614.若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≥0,x -3≤0,则z =x -2y 的最小值为________.解析:作出不等式组表示的可行域,利用数形结合思想求解. 不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≥0,x -3≤0表示的可行域如图阴影部分所示.由z =x -2y 得y =12x -12z .平移直线y =12x ,易知经过点A (3,4)时,z 有最小值,最小值为z =3-2×4=-5.答案:-515.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.解析:利用正弦定理求解.在△ABC 中,∵cos A =45,cos C =513,∴sin A =35,sin C =1213,∴sin B =sin(A +C )=sin A cos C +cos A sin C =35×513+45×1213=6365.又∵a sin A =b sin B ,∴b =a sin Bsin A =1×636535=2113.答案:211316.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.解析:根据丙的说法及乙看了丙的卡片后的说法进行推理.由丙说“我的卡片上的数字之和不是5”,可推知丙的卡片上的数字是1和2或1和3.又根据乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”可知,乙的卡片不含1,所以乙的卡片上的数字为2和3.再根据甲的说法“我与乙的卡片上相同的数字不是2”可知,甲的卡片上的数字是1和3.答案:1和3三、解答题(解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6. (1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.【思路方法】 (1)设出等差数列的公差,根据已知条件列出方程组,求出首项与公差后再写出通项公式;(2)根据b n 与a n 的关系,分别将n =1,2,…,10代入,求出数列{b n }的前10项,再求和.解:(1)设数列{a n }的首项为a 1,公差为d ,由题意有⎩⎪⎨⎪⎧2a 1+5d =4,a 1+5d =3,解得⎩⎪⎨⎪⎧a 1=1,d =25.所以{a n }的通项公式为a n =2n +35.(2)由(1)知,b n =⎣⎢⎡⎦⎥⎤2n +35. 当n =1,2,3时,1≤2n +35<2,b n =1;当n =4,5时,2≤2n +35<3,b n =2;当n =6,7,8时,3≤2n +35<4,b n =3;当n =9,10时,4≤2n +35<5,b n =4.所以数列{b n }的前10项和为1×3+2×2+3×3+4×2=24.18.(本小题满分12分)某险种的基本保费为a (单位:元),继续购买该险种的投保人称(1)记A )的估计值;(2)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P (B )的估计值;(3)求续保人本年度平均保费的估计值.【思路方法】 (1)(2)根据频率估计概率;(3)根据题意列出保费与频率的关系,利用公式求平均保费.解:(1)事件A 发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P (A )的估计值为0.55.(2)事件B 发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3,故P (B )的估计值为0.3.(3)由所给数据得调查的 1.5a ×0.15+1.75a ×0.10+2a ×0.05=1.192 5a .因此,续保人本年度平均保费的估计值为1.192 5a . 19.(本小题满分12分)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置.(1)证明:AC ⊥HD ′;(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′-ABCFE 的体积.【思路方法】 (1)利用AC 与EF 平行,转化为证明EF 与HD ′垂直;(2)求五棱锥的体积需先求棱锥的高及底面的面积,结合图形特征可以发现OD ′是棱锥的高,而底面的面积可以利用菱形ABCD 与△DEF 面积的差求解,这样就将问题转化为证明OD ′与底面垂直以及求△DEF 的面积问题了.解:(1)证明:由已知得AC ⊥BD ,AD =CD .又由AE =CF 得AE AD =CFCD ,故AC ∥EF .由此得EF ⊥HD ,故EF ⊥HD ′,所以AC ⊥HD ′.(2)由EF ∥AC 得OH DO =AE AD =14.由AB =5,AC =6得DO =BO =AB 2-AO 2=4.所以OH =1,D ′H =DH =3.于是OD ′2+OH 2=(22)2+12=9=D ′H 2, 故OD ′⊥OH .由(1)知AC ⊥HD ′,又AC ⊥BD ,BD ∩HD ′=H , 所以AC ⊥平面BHD ′,于是AC ⊥OD ′.又由OD ′⊥OH ,AC ∩OH =O ,所以OD ′⊥平面ABC .又由EF AC =DH DO 得EF =92.五边形ABCFE 的面积S =12×6×8-12×92×3=694.所以五棱锥D ′-ABCFE 的体积V =13×694×22=2322.20.(本小题满分12分)已知函数f (x )=(x +1)ln x -a (x -1). (1)当a =4时,求曲线y =f (x )在(1,f (1))处的切线方程; (2)若当x ∈(1,+∞)时,f (x )>0,求a 的取值范围.【思路方法】 (1)根据导数的几何意义可得切线的斜率为f ′(1),再求出f (1)的值,进而可得曲线y =f (x )在(1,f (1))处的切线方程;(2)当x ∈(1,+∞)时,f (x )>0等价于ln x -a (x -1)x +1>0,构造函数g (x )=ln x -a (x -1)x +1,求使函数g (x )的最小值大于0的a 的取值范围. 解:(1)f (x )的定义域为(0,+∞). 当a =4时,f (x )=(x +1)ln x -4(x -1),f (1)=0,f ′(x )=ln x +1x-3,f ′(1)=-2.故曲线y =f (x )在(1,f (1))处的切线方程为2x +y -2=0. (2)当x ∈(1,+∞)时,f (x )>0等价于ln x -a (x -1)x +1>0.设g (x )=ln x -a (x -1)x +1,则g ′(x )=1x -2a(x +1)2=x 2+2(1-a )x +1x (x +1)2,g (1)=0.①当a ≤2,x ∈(1,+∞)时,x 2+2(1-a )x +1≥x 2-2x +1>0,故g ′(x )>0,g (x )在(1,+∞)单调递增,因此g (x )>0;②当a >2时,令g ′(x )=0得x 1=a -1-(a -1)2-1,x 2=a -1+(a -1)2-1.由x 2>1和x 1x 2=1得x 1<1,故当x ∈(1,x 2)时,g ′(x )<0,g (x )在(1,x 2)单调递减,因此g (x )<0.综上,a 的取值范围是(-∞,2].21.(本小题满分12分)已知A 是椭圆E :x 24+y 23=1的左顶点,斜率为k (k >0)的直线交E于A ,M 两点,点N 在E 上,MA ⊥NA .(1)当|AM |=|AN |时,求△AMN 的面积; (2)当2|AM |=|AN |时,证明:3<k <2.【思路方法】 (1)根据已知条件及椭圆的对称性得出直线AM 的方程,代入椭圆方程求得交点坐标后即可求得△AMN 的面积;(2)设出直线AM ,AN 的方程,代入椭圆方程中,求出|AM |,|AN |关于k 的关系式,利用已知条件建立关于k 的方程,再转化为函数的零点问题来解决.解:(1)设M (x 1,y 1),则由题意知y 1>0.由已知及椭圆的对称性知,直线AM 的倾斜角为π4.又A (-2,0),因此直线AM 的方程为y =x +2.将x =y -2代入x 24+y 23=1得7y 2-12y =0.解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)证明:设直线AM 的方程为y =k (x +2)(k >0),代入x 24+y 23=1得(3+4k 2)x 2+16k 2x +16k 2-12=0.由x 1·(-2)=16k 2-123+4k 2得x 1=2(3-4k 2)3+4k 2,故|AM |=|x 1+2|1+k 2=121+k 23+4k 2.由题意,设直线AN 的方程为y =-1k(x +2),故同理可得|AN |=12k1+k 23k 2+4.由2|AM |=|AN |得23+4k 2=k3k 2+4, 即4k 3-6k 2+3k -8=0.设f (t )=4t 3-6t 2+3t -8,则k 是f (t )的零点.f ′(t )=12t 2-12t +3=3(2t -1)2≥0,所以f (t )在(0,+∞)单调递增.又f (3)=153-26<0,f (2)=6>0,因此f (t )在(0,+∞)有唯一的零点,且零点k 在(3,2)内,所以3<k <2.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4-1:几何证明选讲如图,在正方形ABCD 中,E ,G 分别在边DA ,DC 上(不与端点重合),且DE =DG ,过D 点作DF ⊥CE ,垂足为F .(1)证明:B ,C ,G ,F 四点共圆;(2)若AB =1,E 为DA 的中点,求四边形BCGF 的面积.【思路方法】 (1)先证明△DGF ∽△CBF ,得到∠CGF +∠CBF =180°,进而证明B ,C ,G ,F 四点共圆;(2)把四边形BCGF 分割为两个全等的直角三角形,利用三角形的面积求四边形BCGF 的面积. 解:(1)证明:因为DF ⊥EC , 所以△DEF ∽△CDF ,则有∠GDF =∠DEF =∠FCB , DF CF =DE CD =DG CB , 所以△DGF ∽△CBF , 由此可得∠DGF =∠CBF .因此∠CGF +∠CBF =180°,所以B ,C ,G ,F 四点共圆.(2)由B ,C ,G ,F 四点共圆,CG ⊥CB 知FG ⊥FB .如图,连接GB .由G 为Rt △DFC 斜边CD 的中点,知GF =GC ,故Rt △BCG ≌Rt △BFG ,因此,四边形BCGF 的面积S 是△GCB 面积S △GCB 的2倍,即S =2S △GCB =2×12×12×1=12.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.【思路方法】 (1)把x =ρcos θ,y =ρsin θ代入圆C 的方程(x +6)2+y 2=25,化简即得C 的极坐标方程.(2)把直线l 的参数方程化为普通方程,根据垂径定理、点到直线的距离公式,借助勾股定理求出l 的斜率;或将直线的参数方程化为极坐标方程,与圆的极坐标方程联立求解.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0.(2)(方法一)由直线l 的参数方程⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),消去参数得y =x ·tan α.设直线l 的斜率为k ,则直线l 的方程为kx -y =0.由圆C 的方程(x +6)2+y 2=25知,圆心坐标为(-6,0),半径为5. 又|AB |=10,由垂径定理及点到直线的距离公式得 |-6k |1+k 2=25-⎝⎛⎭⎫1022,即36k 21+k 2=904,整理得k 2=53,解得k =±153,即l 的斜率为±153.(方法二)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0,于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44.由|AB |=10得cos 2α=38,tan α=±153.所以l 的斜率为153或-153.24.(本小题满分10分)选修4-5:不等式选讲已知函数f (x )=⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.【思路方法】 (1)先分段写出函数f (x )的解析式,再解不等式f (x )<2求出M ;(2)先证明(a +b )2-(1+ab )2<0,进而证明|a +b |<|1+ab |.解:(1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1;当-12<x <12时,f (x )<2;当x ≥12时,由f (x )<2得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)(1-b 2)<0.因此|a +b |<|1+ab |.数学(全国乙卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A ={1,3,5,7},B ={x |2≤x ≤5},则A ∩B =( ) A .{1,3} B .{3,5} C .{5,7} D .{1,7}解析:选B.根据交集的定义求解.集合A 与集合B 的公共元素有3,5,故A ∩B ={3,5},故选B.2.设(1+2i)(a +i)的实部与虚部相等,其中a 为实数,则a =( ) A .-3 B .-2 C .2 D .3解析:选A.先化简复数,再根据实部与虚部相等列方程求解.(1+2i)(a +i)=a -2+(1+2a )i ,由题意知a -2=1+2a ,解得a =-3,故选A.3.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A.13B.12C.23D.56解析:选C.先列出基本事件,再利用古典概型概率公式求解.从4种颜色的花中任选2种颜色的花种在一个花坛中,余下的2种颜色的花种在另一个花坛的种数有:红黄—白紫、红白—黄紫、红紫—白黄、黄白—红紫、黄紫—红白、白紫—红黄,共6种,其中红色和紫色的花不在同一花坛的种数有:红黄—白紫、红白—黄紫、黄紫—红白、白紫—红黄,共4种,求所求概率为P =46=23,故选C.4.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =5,c =2,cos A =23,则b=( )A. 2B. 3 C .2 D .3解析:选D.利用余弦定理列方程求解.由余弦定理得5=b 2+4-2×b ×2×23,解得b =3或b =-13(舍去),故选D.5.直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A.13B.12C.23D.34解析:选B.利用椭圆的几何性质列方程求离心率.不妨设直线l 经过椭圆的一个顶点B (0,b )和一个焦点F (c,0),则直线l 的方程为x c +y b =1,即bx +cy -bc =0.由题意知|-bc |b 2+c 2=14×2b ,解得c a =12,即e =12.故选B. 6.将函数y =2sin ⎝⎛⎭⎫2x +π6的图象向右平移14个周期后,所得图象对应的函数为( ) A .y =2sin ⎝⎛⎭⎫2x +π4 B .y =2sin ⎝⎛⎭⎫2x +π3 C .y =2sin ⎝⎛⎭⎫2x -π4 D .y =2sin ⎝⎛⎭⎫2x -π3 解析:选D.先求出函数的周期,再根据函数图象的平移变换规律求出对应的函数解析式.函数y =2sin ⎝⎛⎭⎫2x +π6的周期为π,将函数y =2sin ⎝⎛⎭⎫2x +π6的图象向右平移14个周期即π4个单位长度,所得图象对应的函数为y =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4+π6=2sin ⎝⎛⎭⎫2x -π3,故选D. 7.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A .17πB .18πC .20πD .28π 解析:选A.根据三视图还原出几何体,再根据表面积公式求解.由三视图可知其对应几何体应为一个切去了18部分的球,由43πr 3×78=28π3,得r =2,所以此几何体的表面积为4πr 2×78+3×14πr 2=17π,故选A.8.若a >b >0,0<c <1,则( ) A .log a c <log b c B .log c a <log c b C .a c <b c D .c a >c b解析:选B.根据式子的特征,构造函数并利用其单调性进行比较.对于选项A :log a c =lg c lg a ,log b c =lg clg b,∵0<c <1,∴lg c <0.而a >b >0,∴lg a >lg b ,但不能确定lg a ,lg b 的正负,∴log a c 与log b c 的大小不能确定.对于选项B :log c a =lg a lg c ,log c b =lg blg c,而lg a >lg b ,两边同乘一个负数1lg c 不等号方向改变,∴log c a <log c b ,∴选项B 正确.对于选项C :利用y =x c (0<c <1)在第一象限内是增函数,可得a c >b c ,∴选项C 错误.对于选项D :利用y =c x (0<c <1)在R 上为减函数,可得c a <c b ,∴选项D 错误,故选B.9.函数y =2x 2-e |x |在[-2,2]的图象大致为( )解析:选D.利用导数研究函数y =2x 2-e |x |在[0,2]上的图象,再利用奇偶性判断.∵f (x )=2x 2-e |x |,x ∈[-2,2]是偶函数,又f (2)=8-e 2∈(0,1),故排除A ,B.设g (x )=2x 2-e x ,则g ′(x )=4x -e x .又g ′(0)<0,g ′(2)>0,∴g (x )在(0,2)内至少存在一个极值点,∴f (x )=2x 2-e |x |在(0,2)内至少存在一个极值点,排除C.故选D.10.执行右面的程序框图,如果输入的x =0,y =1,n =1,则输出x ,y 的值满足( ) A .y =2x B .y =3x C .y =4x D .y =5x解析:选C.执行程序框图,直至输出x ,y 的值.输入x =0,y =1,n =1,运行第一次,x =0,y =1,不满足x 2+y 2≥36;运行第二次,x =12,y =2,不满足x 2+y 2≥36;运行第三次,x =32,y =6,满足x 2+y 2≥36,输出x =32,y =6.由于点⎝⎛⎭⎫32,6在直线y =4x 上,故选C.11.平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为( )A.32 B.22 C.33 D.13 解析:选A.根据平面与平面平行的性质,将m ,n 所成的角转化为平面CB 1D 1与平面ABCD 的交线及平面CB 1D 1与平面ABB 1A 1的交线所成的角.设平面CB 1D 1∩平面ABCD =m 1. ∵平面α∥平面CB 1D 1,∴m 1∥m . 又平面ABCD ∥平面A 1B 1C 1D 1, 且平面CB 1D 1∩平面A 1B 1C 1D 1=B 1D 1, ∴B 1D 1∥m 1.∴B 1D 1∥m .∵平面ABB 1A 1∥平面DCC 1D 1,且平面CB 1D 1∩平面DCC 1D 1=CD 1,同理可证CD 1∥n . 因此直线m 与n 所成的角即直线B 1D 1与CD 1所成的角. 在正方体ABCD -A 1B 1C 1D 1中,△CB 1D 1是正三角形, 故直线B 1D 1与CD 1所成角为60°,其正弦值为32. 12.若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是( )A .[-1,1] B.⎣⎡⎦⎤-1,13 C.⎣⎡⎦⎤-13,13 D.⎣⎡⎦⎤-1,-13 解析:选C.根据四个选项的特点,用特殊值法判断.取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,但f ′(0)=1-23-1=-23<0,不具备在(-∞,+∞)单调递增的条件,故排除A ,B ,D.故选C. 第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x =________.解析:根据向量垂直的性质列方程求解. ∵a ⊥b ,∴a ·b =0,即x +2(x +1)=0,∴x =-23.答案:-2314.已知θ是第四象限角,且sin ⎝⎛⎭⎫θ+π4=35,则tan ⎝⎛⎭⎫θ-π4=________. 解析:将θ-π4转化为⎝⎛⎭⎫θ+π4-π2. 由题意知sin ⎝⎛⎭⎫θ+π4=35,θ是第四象限角,所以 cos ⎝⎛⎭⎫θ+π4>0,所以cos ⎝⎛⎭⎫θ+π4=1-sin 2⎝⎛⎭⎫θ+π4=45. tan ⎝⎛⎭⎫θ-π4=tan ⎝⎛⎭⎫θ+π4-π2=-1tan ⎝⎛⎭⎫θ+π4 =-cos ⎝⎛⎭⎫θ+π4sin ⎝⎛⎭⎫θ+π4=-4535=-43.答案:-4315.设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.解析:利用圆的弦长、弦心距、圆的半径之间的关系及勾股定理列方程求解. 圆C :x 2+y 2-2ay -2=0化为标准方程是C :x 2+(y -a )2=a 2+2, 所以圆心C (0,a ),半径r =a 2+2.|AB |=23,点C 到直线y =x +2a ,即x -y +2a =0的距离d =|0-a +2a |2,由勾股定理得⎝⎛⎭⎫2322+⎝ ⎛⎭⎪⎫|0-a +2a |22=a 2+2,解得a 2=2,所以r =2,所以圆C 的面积为π×22=4π.答案:4π16.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料,生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.解析:设出产品A 、产品B 的产量,列出产品A ,B 的产量满足的约束条件,转化为线性规划问题求解.设生产产品A x 件,产品B y 件,则⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,x ∈N *,y ≥0,y ∈N *.目标函数z =2 100x +900y .作出可行域为图中的阴影部分(包括边界)内的整数点,图中阴影四边形的顶点坐标分别为(60,100),(0,200),(0,0),(90,0).当直线z =2 100x +900y 经过点(60,100)时,z 取得最大值,z max =2 100×60+900×100=216 000(元).答案:216 000三、解答题(解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=13,a nb n +1+b n +1=nb n .(1)求{a n }的通项公式; (2)求{b n }的前n 项和.【思路方法】 (1)取n =1,先求出a 1,再求{a n }的通项公式.(2)将a n 代入a n b n +1+b n +1=nb n ,得出数列{b n }为等比数列,再求{b n }的前n 项和.解:(1)由已知,a 1b 2+b 2=b 1,b 1=1,b 2=13,得a 1=2.所以数列{a n }是首项为2,公差为3的等差数列,通项公式为a n =3n -1.(2)由(1)知a n b n +1+b n +1=nb n ,得b n +1=b n3,因此{b n }是首项为1,公比为13的等比数列.记{b n }的前n 项和为S n ,则S n =1-⎝⎛⎭⎫13n 1-13=32-12×3n -1.18.(本小题满分12分)如图,已知正三棱锥P -ABC 的侧面是直角三角形,P A =6,顶点P 在平面ABC 内的正投影为点D ,D 在平面P AB 内的正投影为点E ,连接PE 并延长交AB 于点G .(1)证明:G 是AB 的中点;(2)在图中作出点E 在平面P AC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.【思路方法】 (1)利用等腰三角形的“三线合一”性质,只需证明AB ⊥PG 即可.(2)过点E 作PB 的平行线交P A 于点F ,证明F 为点E 在平面P AC 内的正投影,再求四面体PDEF 的体积.解:(1)证明:因为P 在平面ABC 内的正投影为D , 所以AB ⊥PD .因为D 在平面P AB 内的正投影为E ,所以AB ⊥DE . 因为PD ∩DE =D ,所以AB ⊥平面PED ,故AB ⊥PG . 又由已知可得,P A =PB ,所以G 是AB 的中点.(2)在平面P AB 内,过点E 作PB 的平行线交P A 于点E ,F 即为E 在平面P AC 内的正投影.理由如下:由已知可得PB ⊥P A ,PB ⊥PC ,又EF ∥PB ,所以EF ⊥P A ,EF ⊥PC .又P A ∩PC =P ,因此EF ⊥平面P AC ,即点F 为E 在平面P AC 内的正投影.连接CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心.由(1)知,G 是AB 的中点,所以D 在CG 上,故CD =23CG .由题设可得PC ⊥平面P AB ,DE ⊥平面P AB ,所以DE ∥PC ,因此PE =23PG ,DE =13PC .由已知,正三棱锥的侧面是直角三角形且P A =6,可得DE =2,PE =2 2.在等腰直角三角形EFP 中,可得EF =PF =2,所以四面体PDEF 的体积V =13×12×2×2×2=43.19.(本小题满分12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x 表示1台机器在三年使用期内需要换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数.(1)若n =19,求y 与x 的函数解析式;(2)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值;(3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?【思路方法】 (1)根据题意写出分段函数的解析式.(2)根据柱状图结合频率的概念,求n 的最小值.(3)分别计算两种情况的平均数,并比较大小,作出决策.解:(1)当x ≤19时,y =3 800;当x >19时,y =3 800+500(x -19)=500x -5 700, 所以y 与x 的函数解析式为y =⎩⎪⎨⎪⎧3 800,x ≤19,500x -5 700,x >19(x ∈N ). (2)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故n 的最小值为19.(3)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3 800,20台的费用为4 300,10台的费用为4 800,因此这100台机器在购买易损零件上所需费用的平均数为1100(3 800×70+4 300×20+4 800×10)=4 000.若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4 000,10台的费用为4 500,因此这100台机器在购买易损零件上所需费用的平均数为1100(4 000×90+4 500×10)=4 050.比较两个平均数可知,购买1台机器的同时应购买19个易损零件.20.(本小题满分12分)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H .(1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其他公共点?说明理由.【思路方法】 (1)先求出N ,H 的坐标,再求|OH ||ON |.(2)将直线MH 的方程与抛物线C 的方程联立,根据方程的解的个数进行判断.解:(1)如图,由已知得M (0,t ),P ⎝⎛⎭⎫t 22p ,t .又N 为M 关于点P 的对称点,故N ⎝⎛⎭⎫t 2p ,t , 故直线ON 的方程为y =ptx ,将其代入y 2=2px 整理得px 2-2t 2x =0,解得x 1=0,x 2=2t 2p.因此H ⎝⎛⎭⎫2t 2p ,2t . 所以N 为OH 的中点,即|OH ||ON |=2.(2)直线MH 与C 除H 以外没有其他公共点.理由如下:直线MH 的方程为y -t =p 2t x ,即x =2tp (y -t ).代入y 2=2px 得y 2-4ty +4t 2=0,解得y 1=y 2=2t , 即直线MH 与C 只有一个公共点,所以除H 以外,直线MH 与C 没有其他公共点.21.(本小题满分12分)已知函数f (x )=(x -2)e x +a (x -1)2.(1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.【思路方法】 先求出f ′(x ),对f ′(x )中的字母参数分类讨论确定f ′(x )的符号,从而得出f (x )的单调性.(2)根据(1)中所得函数的单调性的结论,结合函数图象和零点存在性定理对参数a 分类讨论,得出f (x )有两个零点时a 的取值范围.解:(1)f ′(x )=(x -1)e x +2a (x -1)=(x -1)(e x +2a ). (ⅰ)设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增. (ⅱ)设a <0,由f ′(x )=0得x =1或x =ln(-2a ).①若a =-e2,则f ′(x )=(x -1)(e x -e),所以f (x )在(-∞,+∞)上单调递增.②若a >-e2,则ln(-2a )<1,故当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0; 当x ∈(ln(-2a ),1)时,f ′(x )<0.所以f (x )在(-∞,ln(-2a )),(1,+∞)上单调递增,在(ln(-2a ),1)上单调递减.③若a <-e2,则ln(-2a )>1,故当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0; 当x ∈(1,ln(-2a ))时,f ′(x )<0.所以f (x )在(-∞,1),(ln(-2a ),+∞)上单调递增,在(1,ln(-2a ))上单调递减. (2)(ⅰ)设a >0,则由(1)知,f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a 2,则f (b )>a2(b -2)+a (b -1)2=a ⎝⎛⎭⎫b 2-32b >0,所以f (x )有两个零点.(ⅱ)设a =0,则f (x )=(x -2)e x ,所以f (x )只有一个零点.(ⅲ)设a <0,若a ≥-e2,则由(1)知,f (x )在(1,+∞)上单调递增.又当x ≤1时f (x )<0,故f (x )不存在两个零点;若a <-e2,则由(1)知,f (x )在(1,ln(-2a ))上单调递减,在(ln(-2a ),+∞)上单调递增.又当x ≤1时,f (x )<0,故f (x )不存在两个零点.综上,a 的取值范围为(0,+∞).请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4-1:几何证明选讲如图,△OAB 是等腰三角形,∠AOB =120°.以O 为圆心,12OA 为半径作圆.(1)证明:直线AB 与⊙O 相切;(2)点C ,D 在⊙O 上,且A ,B ,C ,D 四点共圆,证明:AB ∥CD .【思路方法】 (1)利用圆心到直线的距离等于圆的半径证明直线与圆相切;(2)利用直线AB ,CD 均与直线OO ′垂直证明AB ,CD 平行.证明:(1)设E 是AB 的中点,连接OE . 因为OA =OB ,∠AOB =120°,所以OE ⊥AB ,∠AOE =60°.在Rt △AOE 中,OE =12AO ,即O 到直线AB 的距离等于⊙O 的半径,所以直线AB 与⊙O 相切.(2)因为OA =2OD ,所以O 不是A ,B ,C ,D 四点所在圆的圆心.设O ′是A ,B ,C ,D 四点所在圆的圆心,作直线OO ′. 由已知得O 在线段AB 的垂直平分线上,又O ′在线段AB 的垂直平分线上,所以OO ′⊥AB .同理可证,OO ′⊥CD ,所以AB ∥CD .23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t ,(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .【思路方法】 (1)消去参数,求出曲线C 1的直角坐标方程,利用极坐标与直角坐标互化公式求出曲线C 1的极坐标方程;(2)将曲线C 1,C 2的极坐标方程联立得方程组,解方程组求解.解:(1)消去参数t 得到C 1的普通方程为x 2+(y -1)2=a 2, 则C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ.若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0, 由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0, 从而1-a 2=0,解得a =-1(舍去)或a =1.。

历年高考数学真题汇编专题16 以基本不等式为背景的应用题(解析版)

历年高考数学真题汇编专题16  以基本不等式为背景的应用题(解析版)

历年高考数学真题汇编专题16 以基本不等式为背景的应用题1、【2017年高考江苏卷】某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是___________.【答案】30【解析】总费用为600900464()4240x x x x +⨯=+≥⨯=,当且仅当900x x=,即30x =时等号成立.在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.2、【2010年高考江苏卷】某兴趣小组要测量电视塔AE 的高度H (单位:m).示意图如图所示,垂直放置的标杆BC 的高度h =4 m ,仰角∠ABE =α,∠ADE =β.(1) 该小组已测得一组α,β的值,tan α=1.24,tan β=1.20,请据此算出H 的值;(2) 该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d (单位:m),使α与β之差较大,可以提高测量精确度.若电视塔的实际高度为125 m ,试问d 为多少时,α-β最大?规范解答 (1) 由AB =H tan α,BD =h tan β,AD =H tan β及AB +BD =AD ,得H tan α+h tan β=Htan β, 解得H =h tan αtan α-tan β=4×1.241.24-1.20=124.因此算出的电视塔的高度H 是124 m. (2) (1) 由题知d =AB ,则tan α=H d.由AB =AD -BD =H tan β-h tan β,得tan β=H -hd,所以tan(α-β)=tan α-tan β1+tan αtan β=()h hH H d d-+,当且仅当d =555时取等号. 又0<α-β<π2,所以当d =555时,tan(α-β)的值最大.因为0<β<α<π2,所以当d =555时,α-β的值最大.3、【2013年高考江苏卷】如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1 km.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1) 求炮的最大射程;(2) 设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2 km ,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.本小题主要考查函数、方程和基本不等式等基础知识,考查数学阅读能力和解决实际问题的能力.满分14分.规范解答 (1)令y =0,得kx -120(1+k 2)x 2=0,由实际意义和题设条件知x >0,k >0,故x =20k 1+k 2=20k +1k≤202=10,当且仅当k =1时取等号. 所以炮的最大射程为10km.(2) 因为a >0,所以炮弹可击中目标等价于存在k >0,使3.2=ka -120(1+k 2)a 2成立,即关于k 的方程a 2k 2-20ak +a 2+64=0有正根, 所以判别式Δ=(-20a )2-4a 2(a 2+64)≥0, 解得a ≤6,所以0<a ≤6.所以当a 不超过6km 时,炮弹可击中目标.一、解函数应用问题的步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)解模:求解数学模型,得出数学结论;(4)还原:将数学问题还原为实际问题的意义.以上过程用框图表示如下:二、在求实际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合.运用基本不等式解决应用题一定要注意满足三个条件:一、正;二、定;三、相等。

2016年高考数学理科真题试卷及答案(word版)

2016年高考数学理科真题试卷及答案(word版)

2016年普通高等学校招生考试真题试卷数 学(理科)参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A+B )=PA .+PB . S=4лR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径P (A ·B )=PA .+PB . 球的体积公式1+2+…+n 2)1(+n n V=334R π 12+22+…+n 2=6)12)(1(++n n n 其中R 表示球的半径 13+23++n 3=4)1(22+n n 第Ⅰ卷(选择题 共55分)一、选择题:本大题共11小题,每小题5分,共55分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列函数中,反函数是其自身的函数为A .[)+∞∈=,0,)(3x x x f B .[)+∞∞-∈=,,)(3x x x f C .),(,)(+∞-∞∈=x e x f x D .),0(,1)(+∞∈=x xx f 2.设l ,m ,n 均为直线,其中m ,n 在平面α内,“l ⊥α”是l ⊥m 且“l ⊥n ”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.若对任意∈x R,不等式x ≥ax 恒成立,则实数a 的取值范围是A .a <-1B .a ≤1C . a <1D .a ≥14.若a 为实数,iai212++=-2i ,则a 等于 A .2 B .—2 C .22 D .—225.若}{8222<≤Z ∈=-x x A ,{}1log R 2>∈=x x B ,则)(C R B A ⋂的元素个数为A .0B .1C .2D .3 6.函数)3π2sin(3)(-=x x f 的图象为C , ①图象C 关于直线π1211=x 对称; ②函灶)(x f 在区间)12π5,12π(-内是增函数; ③由x y 2sin 3=的图象向右平移3π个单位长度可以得到图象C .以上三个论断中,正确论断的个数是A .0B .1C .2D .37.如果点P 在平面区域⎪⎩⎪⎨⎧≤-+≤+-≥+-02012022y x y x y x 上,点Q 在曲线1)2(22=++y x 上,那么Q P 的最小值为A .15-B .154- C .122- D .12-8.半径为1的球面上的四点D C B A ,,,是正四面体的顶点,则A 与B 两点间的球面距离为A .)33arccos(-B .)36arccos(-C .)31arccos(- D .)41arccos(- 9.如图,1F 和2F 分别是双曲线)0,0(12222>>=-b a br a x 的两个焦点,A 和B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个交点,且△AB F 2是等边三角形,则双曲线的离心率为A .3B .5C .25D .31+10.以)(x φ表示标准正态总体在区间(x ,∞-)内取值的概率,若随机变量ξ服从正态分布),(2σμN ,则概率)(σμξ<-P 等于 A .)(σμφ+-)(σμφ-B .)1()1(--φφC .)1(σμφ-D .)(2σμφ+ 11.定义在R 上的函数)(x f 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程0)(=x f 在闭区间][T T ,-上的根的个数记为n ,则n 可能为A .0B .1C .3D .5二、填空题:本大题共4小题,每小题4分,共16分。

2016年高考数学(新课标版) 专题06 三角化简求值 含解析

2016年高考数学(新课标版) 专题06 三角化简求值 含解析

2016年高考三轮复习系列:讲练测之核心热点 【全国通用版】 热点六 三角化简求值 【名师精讲指南篇】 【高考真题再现】1.【2013⋅新课标全国】设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=______【答案】;2.【2013⋅新课标全国】已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( )(A )10(B )9(C )8(D )5【答案】D ;【解析】因为225cos 10A -=,且锐角△ABC,故1cos 5A =,故2222cos a b c bc A =+-,解得5b =.3.【2014高考全国1文】若0tan >α,则( )A. 0sin >αB. 0cos >αC. 02sin >αD. 02cos >α 【答案】C 【解析】试题分析:由sin tan 0cos ααα=>,可得:sin ,cos αα同正或同负,即可排除A 和B,又由sin 22sin cos ααα=⋅,故sin 20α>.4.【2014全国1高考理】设(0,),(0,),22ππαβ∈∈且1sin tan ,cos βαβ+=则( ) (A ) 32παβ-= (B )32παβ+=(C )22παβ-=(D )22παβ+=【答案】C5.【2015全国1理】sin 20cos10cos160sin10-=( ).A..12- D .12B.原式sin 20cos10cos 20sin10=+=1sin 302=.故选D . 【热点深度剖析】三角函数的化简、求值及最值问题,主要考查同角三角函数的基本关系式,三角函数的诱导公式,和、差、倍、半、和积互化公式在求三角函数值时的应用,考查利用三角公式进行恒等变形的技能,以及基本运算的能力,特别突出算理方法的考查. 2013年试题主要考查三角恒等变换,及倍角公式的灵活运用、同角的三角函数关系等知识以及相应的运算能力. 2014年的试题文主要考查三角函数的同角的三角函数关系,理科考查三角函数的同角的三角函数关系,三角恒等变换.2015主要考查两角和与差的三角函数公式.通过三年试题来看,二倍角公式,同角的三角函数关系是考试的重点.从近几年的高考试题来看,利用同角三角函数的关系改变三角函数的名称,利用诱导公式、和差角公式及二倍角公式改变角的恒等变换是高考的热点,常与三角函数式的求值、三角函数的图象与性质、三角形中三角恒等变化,向量等知识综合考查,既有选择题、填空题,又有解答题,属中低档题.预测2016年会加大对三角客观题考查的力度,同角三角函数基本关系式、诱导公式及三角恒等变换是考查重点. 【重点知识整合】 一.三角函数诱导公式1.对于形如2,,()k a a a k Z ππ±-±∈即满足2nπα+中n 取偶数时:等于角α的同名三角函数,前面加上一个把α看成是锐角时,该角所在象限的符号; 2.对于形如3,()22a a k Z ππ±±∈即满足2nπα+中n 取奇数时:等于角α的余名三角函数,前面加上一个把α看成是锐角时,该角所在象限的符号.3.口诀:奇变偶不变,符号看象限(看原函数,同时可把α看成是锐角).4.运用诱导公式转化角的一般步骤:(1)负化正:当已知角为负角时,先利用负角的诱导公式把这个角的三角函数化为正角的三角函数值;(2)正化负:当已知角是大于360的角时,可用360k α⋅+的诱导公式把这个角的三角函数值化为主区间0360→内的三角函数值;(3)主化锐:当已知角是90到360内的角时,可利用180,270,360ααα---的诱导公式把这个角的三角函数值化为0到90内的角. 二. 两角和与差的三角函数公式1. 两角和与差的正弦公式:()sin αβ±=sin cos cos sin αβαβ±. 变形式:()()sin sin αβαβ++-=2sin cos αβ()();sin sin αβαβ+--=2cos sin αβ;2.两角和与差的余弦公式:()cos αβ±=cos cos sin sin αβαβ变形式:()()cos cos αβαβ++-=2cos cos αβ;()()cos cos αβαβ+--=2sin sin αβ;3.两角和与差的正切公式:()tan αβ±=tan tan 1tan tan αβαβ±())2k k Z παβαβπ+≠+∈(、、.变形式:tan tan αβ±=()()tan 1tan tan αβαβ±.注意:运用两角和与差的三角函数公式的关键是熟记公式,我们不仅要记住公式,更重要的是抓住公式的特征,如角的关系,次数关系,三角函数名等抓住公式的结构特征对提高记忆公式的效率起到至关重要的作用,而且抓住了公式的结构特征,有利于在解题时观察分析题设和结论等三角函数式中所具有的相似性的结构特征,联想到相应的公式,从而找到解题的切入点.三.二倍角公式的正弦、余弦、正切1.二倍角的正弦公式:sin 2α=2sin cos αα;二倍角的余弦公式:cos 2α=22cos sin αα-=22cos 1α-=212sin α-;二倍角的正切公式:tan 2α= 22tan 1tan αα- .2. 降幂公式:sin cos αα=1sin 22α;2sin α=1cos 22α-;2cos α=1cos 22α+. 3.升幂公式:1sin 2α+=2(sin cos )αα+;1cos 2α+=22cos α;1cos 2α-=22sin α.注意:在二倍角公式中,两个角的倍数关系,不仅限于2α是α的二倍,要熟悉多种形式的两个角的倍数关系,同时还要注意απαπα-+442,,三个角的内在联系的作用,⎪⎭⎫⎝⎛±⎪⎭⎫ ⎝⎛±=⎪⎭⎫⎝⎛±=απαπαπα4cos 4sin 222sin 2cos 是常用的三角变换. 【应试技巧点拨】1. 利用诱导公式求值:给角求值的原则和步骤 (1)原则:负化正、大化小、化到锐角为终了.(2)步骤:利用诱导公式可以把任意角的三角函数转化为02π:之间角的三角函数,然后求值,其步骤为:给值求值的原则:寻求所求角与已知角之间的联系,通过相加或相减建立联系,若出现2π的倍数,则通过诱导公式建立两者之间的联系,然后求解. 常见的互余与互补关系 (1)常见的互余关系有:3πα+与6πα-;3πα-与6πα+;4πα+与4πα-等.(2)常见的互补关系有:3πα+ 与23πα-;4πα+与34πα-等.遇到此类问题,不妨考虑两个角的和,要善于利用角的变换的思想方法解决问题. 2.利用诱导公式化简三角函数的原则和要求(1)原则:遵循诱导公式先行的原则,即先用诱导公式化简变形,达到角的统一,再进行三角函数名称转化,以保证三角函数名称最少.(2)要求:①化简过程是恒等变形;②结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.2. 利用诱导公式证明三角恒等式的主要思路 (1)由繁到简法:由较繁的一边向简单一边化简.(2)左右归一法:使两端化异为同,把左右式都化为第三个式子. (3)转化化归法:先将要证明的结论恒等变形,再证明.提醒:由终边相同的角的关系可知,在计算含有2π的整数倍的三角函数式中可直接将2π的整数倍去掉后再进行运算,如()()cos 5cos cos παπαα-=-=-. 4. 正、余弦三兄妹“sin cos x x ±、sin cos x x ⋅”的应用sin cos x x ±与sin cos x x ⋅通过平方关系联系到一起,即2(sin cos )12sin cos x x x x ±=±,2(sin cos )1sin cos ,2x x x x +-=21(sin cos )sin cos .2x x x x --=因此在解题中若发现题设条件有三者之一,就可以利用上述关系求出或转化为另外两个. 5.如何利用“切弦互化”技巧(1)弦化切:把正弦、余弦化成切得结构形式,这样减少了变量,统一为“切”得表达式,进行求值. 常见的结构有:① sin ,cos αα的二次齐次式(如22sin sin cos cos a b c αααα++)的问题常采用“1”代换法求解;②sin ,cos αα的齐次分式(如sin cos sin cos a b c d αααα++)的问题常采用分式的基本性质进行变形.(2)切化弦:利用公式tan α=sin cos αα,把式子中的切化成弦.一般单独出现正切、余切的时候,采用此技巧.6.三角函数的化简、计算、证明的恒等变形的基本思路基本思路是:一角二名三结构.即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心.第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点.基本的技巧有:(1)巧变角:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--,22αβαβ++=⋅,()()222αββααβ+=---等. (2)三角函数名互化:切割化弦,弦的齐次结构化成切. (3)公式变形使用:如()()()()()()()()cos cos sin sin cos tan 1tan tan tan tan tan tan tan tan tan tan tan tan tan tan tan tan .αββαββααβαβαβαβαβαβαβαβαβαβαβ+++=+-=++=+--+++=+,,,(4)三角函数次数的降升:降幂公式与升幂公式. (5)式子结构的转化.(6)常值变换主要指“1”的变换:221sin cos x x =+22sec tan tan cot x x x x =-=⋅tan sin 42ππ===等.(7)辅助角公式:()sin cos a x b x x θ+=+(其中θ角所在的象限由a b 、的符号确定,θ的值由tan baθ=确定.在求最值、化简时起着重要作用,这里只要掌握辅助角θ为特殊角的情况即可.如sin cos ),sin 2sin(cos 2sin()436x x x x x x x x x πππ±=±±=±±=±等.【考场经验分享】1.在利用三角函数定义时,点P 可取终边上任一点,如有可能则取终边与单位圆的交点.OP r =一定是正值.2.同角三角函数关系及诱导公式要注意象限角对三角函数符号的影响,尤其是利用平方关系在求三角函数值时,进行开方时要根据角的象限或范围判断符号,正确取舍.3.使用诱导公式时一定要注意三角函数值在各象限的符号,特别是在具体题目中出现类似kπ±α(k ∈Z)的形式时,需要对k 的取值进行分类讨论,从而确定三角函数值的正负.4.重视三角函数的“三变”: “三变”是“变角”,“ 变名”,“ 变式”;变角为:对角的拆分要尽可能化为同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.4.两角和与两角差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式在学习时应注意以下几点:(1)不仅对公式的正用逆用要熟悉,而且对公式的变形应用也要熟悉; (2)善于拆角、拼角如()ββαα-+=,()()()αβαβαβαβαα++=+-++=22,等; (3)注意倍角的相对性 (4)要时时注意角的范围(5)化简要求熟悉常用的方法与技巧,如切化弦,异名化同名,异角化同角等.5.证明三角等式的思路和方法.(1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式.(2)证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等.6.解答三角高考题的策略.(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”.(2)寻找联系:运用相关公式,找出差异之间的内在联系.(3)合理转化:选择恰当的公式,促使差异的转化.7.加强三角函数应用意识的训练由于考生对三角函数的概念认识肤浅,不能将以角为自变量的函数迅速与三角函数之间建立联系,造成思维障碍,思路受阻.实际上,三角函数是以角为自变量的函数,也是以实数为自变量的函数,它产生于生产实践,是客观实际的抽象,同时又广泛地应用于客观实际,故应培养实践第一的观点.总之,三角部分的考查保持了内容稳定,难度稳定,题量稳定,题型稳定,考查的重点是三角函数的概念、性质和图象,三角函数的求值问题以及三角变换的方法. 8.变为主线、抓好训练变是本章的主题,在三角变换考查中,角的变换,三角函数名的变换,三角函数次数的变换,三角函数式表达形式的变换等比比皆是,在训练中,强化变意识是关键,但题目不可太难,较特殊技巧的题目不做,立足课本,掌握课本中常见问题的解法,把课本中习题进行归类,并进行分析比较,寻找解题规律.针对高考中题目看,还要强化变角训练,经常注意收集角间关系的观察分析方法.另外如何把一个含有不同名或不同角的三角函数式化为只含有一个三角函数关系式的训练也要加强,这也是高考的重点.同时应掌握三角函数与二次函数相结合的题目.三角函数求值中要特别注意角的范围,如根据21cos2sin2αα-=求sinα的值时,sinα=中的符号是根据角的范围确定的,即当α的范围使得sin0α≥时,取正号,反之取负号.注意在运用同角三角函数关系时也有类似问题.9.本热点一般难度不大,属于得全分的题目,一般放在选择题与填空题的中间位置,但是因题目解法的灵活性造成在紧张的考试氛围里面,容易一时的思路堵塞,需冷静处理,如果一时想不到化简的方向,可暂且放一放,不要钻牛角尖,否则可能造成心理负担,情绪受到影响,因新课标高考对这个热点考查难度已经降低,学生应有必胜的信心.【名题精选练兵篇】ns s i2cos B +2sin B =,B.tanα=2,则=. B . C . D .=sinαcosα===,tanx=,(+x .B .C .D .tanx=+x==+ ++=,10.【2016届甘肃省河西五市部分普通高中高三第一次联考】已知sin 2cos αα=,则tanα=2tan则= 【答案】:∵tanα=2tan,======== ,故答案为:.sincos22sin cos22παπαπαπα++-=---( )A .12 B .12- C .2 D .2- 【答案】B.【解析】由题意3sin 5α=-,因为α是第三象限的角,所以4cos 5α=-,因此222sincoscossin(cossin )1sin 1222222cos 2sin cos cos sin cos sin 222222παπααααααπαπαααααα++-+++====------. 13. 【惠安一中、养正中学、安溪一中2015届高三上学期联合考试】已知角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边上一点()1,2P --,则sin 2θ 等于( ) A .45-B .35-C .35D .45【答案】D.【解析】根据任意角的三角函数的定义,sin θ=,cos θ=4sin 22sin cos 5θθθ==.14. 【宿迁市2015届高三年级摸底考试】若1cos()33απ-=,则sin(2)απ-6的值是 . 【答案】97-. 【解析】9719121)3(cos 2)322cos()2322sin()62sin(2-=-⨯=--=-=+-=-παπαππαπα.15. 【浙江省效实中学2015届高三上学期期末考试】化简:22cos ()12πα--=A .cos αB .cos α-C .cos 2αD .cos 2α- 【答案】D 【解析】22cos ()12πα--=ααπαπ2cos )2cos()2(2cos -=-=-,答案D.16. 【拉萨中学高三年级(2015届)第三次月考试卷】若⎥⎦⎤⎢⎣⎡∈24ππθ,, 8732sin =θ,则θsin =( )A. 53B. 54C. 47D. 43或47【答案】D.17. 若202παβπ<<<<-,1cos()43πα+=,cos()42πβ-=则cos()2βα+= A .33B .33-C .935 D .96-【答案】C. 【解析】因为202παβπ<<<<-,1cos()43πα+=,所以4344παππ<+<,且322)4sin(=+απ;又因为cos()42πβ-=且02<<-βπ,所以2244πβππ<-<,且36)24sin(=-βπ.又因为)24()4(2βπαπβα--+=+,所以)24sin()4sin()24cos()4cos()]24()4cos[()2cos(βπαπβπαπβπαπβα-++-+=--+=+935363223331=⨯+⨯=.故应选C. 18. 【北京101中学2014—2015学年度高三第一学期期中模拟】在ABC ∆中,若=+=C B C B A tan tan ,cos cos 2sin 则 .【答案】2【解析】因为C B A cos cos 2sin =,所以()2tan tan cos sin cos sin sin cos cos 2=+⇒+=+=C B B C C B C B C B【名师原创测试篇】1. 若锐角θ满足3sin 5θ=,则tan(2)4πθ-的值为( ) A.1731 B.1625 C.3117- D.2516- 【答案】A2. 已知1sin 22α=,则11tan tan 2αα-=____. 【答案】2【解析】由已知得2222sin cos 2tan 1sin 2sin cos 1tan 2ααααααα===++,所以11tan tan 2αα-=2211tan 1tan 2tan 2tan 2tan ααααα-+-==. 3. 已知第三象限角α的终边经过点P ()3,4a a ,则cos α=( ) A.35 B.45 C.35- D.45- 【答案】C【解析】由题可得,因为角α是第三象限角,所以0a <,根据三角函数的概念可得33cos 55a a α===--,故选C. 4. 执行如图所示的程序框图,则输出结果S 的值为( )C.12- D.12cos3。

2016年高考数学试卷附标准答案与解析

2016年高考数学试卷附标准答案与解析

高考数学试卷一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)(2016•真题)设i是虚数单位,则复数在复平面内对应的点位于()3.(5分)(2016•真题)设p:1<x<2,q:2x>1,则p是q成立的()=1 .﹣y2=1﹣x2=1=15.(5分)(2016•真题)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正6.(5分)(2016•真题)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()7.(5分)(2016•真题)一个四面体的三视图如图所示,则该四面体的表面积是()+++228.(5分)(2016•真题)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()|=1 .⊥•=1 4+)⊥9.(5分)(2016•真题)函数f(x)=的图象如图所示,则下列结论成立的是()10.(5分)(2016•真题)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()二.填空题(每小题5分,共25分)11.(5分)(2016•真题)(x3+)7的展开式中的x5的系数是(用数字填写答案)12.(5分)(2016•真题)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是.13.(5分)(2016•真题)执行如图所示的程序框图(算法流程图),输出的n为14.(5分)(2016•真题)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于.15.(5分)(2016•真题)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.三.解答题(共6小题,75分)16.(12分)(2016•真题)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.17.(12分)(2016•真题)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)18.(12分)(2016•真题)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标(Ⅰ)求数列{x n}的通项公式;(Ⅱ)记T n=x12x32…x2n﹣12,证明:T n≥.19.(13分)(2016•真题)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣AD﹣B1的余弦值.20.(13分)(2016•真题)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A 的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.21.(13分)(2016•真题)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f n(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D2(Ⅲ)在(Ⅱ)中,取a n=b n=0,求s=b﹣满足条件D≤1时的最大值.高考数学试卷一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)(2016•真题)设i是虚数单位,则复数在复平面内对应的点位于()=i3.(5分)(2016•真题)设p:1<x<2,q:2x>1,则p是q成立的()=1 .﹣y2=1﹣x2=1=1y=5.(5分)(2016•真题)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正6.(5分)(2016•真题)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()则对应的标准差为=7.(5分)(2016•真题)一个四面体的三视图如图所示,则该四面体的表面积是()+++22×2×1+2××+×2×1.8.(5分)(2016•真题)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()|=1.⊥•=1 4+)⊥,根据已知三角形为等边三角形解之.的等边三角形,,满足=2,=2+,又,,=4×1×2×cos120°=﹣,=4,所以4),所以9.(5分)(2016•真题)函数f(x)=的图象如图所示,则下列结论成立的是(),∴b>﹣﹣10.(5分)(2016•真题)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()x=2x+=2x=∴2×+φ=2kπ+,,可解得:φ=2kπ+(2x+2kπ+)2x+))﹣4+2π)>4+=Asin>>﹣4+2π>>,而2x+)在区间(,二.填空题(每小题5分,共25分)11.(5分)(2016•真题)(x3+)7的展开式中的x5的系数是35 (用数字填写答案)=;∴r=4,可得:12.(5分)(2016•真题)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是 6 .θ=y=xθ=θ=y=xd=(ρ∈13.(5分)(2016•真题)执行如图所示的程序框图(算法流程图),输出的n为 4时不满足条件,,,14.(5分)(2016•真题)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于2n﹣1 .项和为:15.(5分)(2016•真题)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是①③④⑤(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.三.解答题(共6小题,75分)16.(12分)(2016•真题)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.解:∵∠A=AC=3…4中,由正弦定理可得:,…8AD=== (12)17.(12分)(2016•真题)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)=.=.=.=200 300 400+300×+400×18.(12分)(2016•真题)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标(Ⅰ)求数列{x n}的通项公式;(Ⅱ)记T n=x12x32…x2n﹣12,证明:T n≥.,时,时,因为=19.(13分)(2016•真题)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣AD﹣B1的余弦值.=的一个法向量为===,,得=∴cos(,==的余弦值为20.(13分)(2016•真题)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A 的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.即,可得=1,线段,∴=.,∴==1NS,解得∴a=3的方程为:21.(13分)(2016•真题)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f n(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D2(Ⅲ)在(Ⅱ)中,取a n=b n=0,求s=b﹣满足条件D≤1时的最大值.的最大值.,)递增,,f′((;或,当时,参与本试卷答题和审题的老师有:刘长柏;changq;双曲线;maths;742048;w3239003;qiss;孙佑中;雪狼王;cst(排名不分先后)菁优网2016年6月13日。

高考数学历年(2018-2022)真题按知识点分类(解三角形)练习(附答案)

高考数学历年(2018-2022)真题按知识点分类(解三角形)练习(附答案)

高考数学历年(2018-2022)真题按知识点分类(解三角形)练习一、单选题1.(2021ꞏ全国ꞏ统考高考真题)2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影,,A B C '''满足45A C B ∠'''=︒,60A B C ''∠'=︒.由C 点测得B 点的仰角为15︒,BB '与CC '的差为100;由B 点测得A 点的仰角为45︒,则A ,C 两点到水平面A B C '''的高度差AA CC ''- 1.732≈)( )A .346B .373C .446D .4732.(2020ꞏ山东ꞏ统考高考真题)在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若222sin a b c ab C +=+,且sin cos +a B C sin cos 2c B A =,则tan A 等于( ) A .3B .13-C .3或13- D .-3或133.(2020ꞏ全国ꞏ统考高考真题)在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( ) A .19B .13C .12D .234.(2020ꞏ全国ꞏ统考高考真题)在△ABC 中,cos C =23,AC =4,BC =3,则tan B =( )A B .C .D .5.(2018ꞏ全国ꞏ高考真题)ABC 的内角A B C ,,的对边分别为a ,b ,c ,若ABC 的面积为2224a b c +-,则C =A .π2B .π3C .π4D .π66.(2019ꞏ全国ꞏ高考真题)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A-b sin B =4c sin C ,cos A =-14,则b c =A .6B .5C .4D .37.(2018ꞏ全国ꞏ高考真题)在ABC ∆中,cos 25C =,BC=1,AC=5,则AB=A.B C D .8.(2019ꞏ北京ꞏ高考真题)如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB ∠是锐角,大小为β.图中阴影区域的面积的最大值为A .4β+4cos βB .4β+4sin βC .2β+2cos βD .2β+2sin β二、多选题9.(2022ꞏ全国ꞏ统考高考真题)双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为( )AB .32C D三、填空题10.(2022ꞏ浙江ꞏ统考高考真题)我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是S =其中a ,b ,c 是三角形的三边,S 是三角形的面积.设某三角形的三边2a b c ===,则该三角形的面积S =___________.11.(2022ꞏ全国ꞏ统考高考真题)已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当ACAB取得最小值时,BD =________. 12.(2021ꞏ全国ꞏ统考高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,面积60B =︒,223a c ac +=,则b =________.13.(2020ꞏ江苏ꞏ统考高考真题)在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+-(m 为常数),则CD 的长度是________.14.(2020ꞏ全国ꞏ统考高考真题)如图,在三棱锥P –ABC 的平面展开图中,AC =1,AB AD ==AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB =______________.15.(2019ꞏ全国ꞏ高考真题)ABC 的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC 的面积为__________. 16.(2018ꞏ全国ꞏ高考真题)△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________.17.(2019ꞏ全国ꞏ高考真题)ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________.18.(2018ꞏ江苏ꞏ高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________.四、解答题19.(2022ꞏ天津ꞏ统考高考真题)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ===-.(1)求c 的值; (2)求sin B 的值;(3)求sin(2)A B -的值.20.(2022ꞏ全国ꞏ统考高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知12313S S S B -+==.(1)求ABC 的面积;(2)若sin sin 3A C =,求b .21.(2022ꞏ北京ꞏ统考高考真题)在ABC 中,sin 2C C =. (1)求C ∠;(2)若6b =,且ABC 的面积为ABC 的周长.22.(2022ꞏ全国ꞏ统考高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-.(1)若2A B =,求C ; (2)证明:2222a b c =+23.(2022ꞏ全国ꞏ统考高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+; (2)若255,cos 31a A ==,求ABC 的周长. 24.(2022ꞏ浙江ꞏ统考高考真题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知34,cos 5a C ==. (1)求sin A 的值;(2)若11b =,求ABC 的面积.25.(2022ꞏ全国ꞏ统考高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B =++.(1)若23C π=,求B ; (2)求222a b c +的最小值.26.(2021ꞏ天津ꞏ统考高考真题)在ABC ,角 ,,A B C 所对的边分别为,,a b c ,已知sin :sin :sin 2A B C =b =. (I )求a 的值; (II )求cos C 的值;(III )求sin 26C π⎛⎫- ⎪⎝⎭的值.27.(2021ꞏ全国ꞏ统考高考真题)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+..(1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.28.(2021ꞏ北京ꞏ统考高考真题)在ABC 中,2cos c b B =,23C π=. (1)求B ∠;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求BC 边上中线的长.条件①:c =;条件②:ABC 的周长为4+条件③:ABC 29.(2021ꞏ全国ꞏ统考高考真题)记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=. (1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.30.(2020ꞏ天津ꞏ统考高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c .已知5,a b c ==(Ⅰ)求角C 的大小; (Ⅱ)求sin A 的值;(Ⅲ)求sin 24A π⎛⎫+ ⎪⎝⎭的值.31.(2020ꞏ北京ꞏ统考高考真题)在ABC 中,11a b +=,再从条件①、条件②这两个条件中选择一个作为已知,求: (Ⅰ)a 的值:(Ⅱ)sin C 和ABC 的面积.条件①:17,cos 7c A ==-;条件②:19cos ,cos 816A B ==.注:如果选择条件①和条件②分别解答,按第一个解答计分.32.(2020ꞏ浙江ꞏ统考高考真题)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 0b A =. (I )求角B 的大小;(II )求cos A +cos B +cos C 的取值范围.33.(2020ꞏ海南ꞏ高考真题)在①ac ②sin 3c A =,③=c 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC ,它的内角,,A B C 的对边分别为,,a b c ,且sin A B =,6C π=,________?注:如果选择多个条件分别解答,按第一个解答计分.34.(2020ꞏ江苏ꞏ统考高考真题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,45a c B ==︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.35.(2020ꞏ全国ꞏ统考高考真题)ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a,b ,求ABC 的面积;(2)若sin AC =2,求C . 36.(2020ꞏ全国ꞏ统考高考真题)ABC 中,sin 2A -sin 2B -sin 2C =sin B sin .C (1)求A ;(2)若BC =3,求ABC 周长的最大值.37.(2020ꞏ全国ꞏ统考高考真题)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=.(1)求A ;(2)若3b c a -=,证明:△ABC 是直角三角形. 38.(2019ꞏ全国ꞏ统考高考真题)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sinsin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围.39.(2019ꞏ全国ꞏ高考真题)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-. (1)求A ;(22b c +=,求sin C .40.(2018ꞏ全国ꞏ高考真题)在平面四边形ABCD 中,90ADC ∠= ,45A ∠= ,2AB =,5BD =.(1)求cos ADB ∠; (2)若DC =,求BC .41.(2019ꞏ北京ꞏ高考真题)在△ABC 中,a =3,b −c =2,cos B =12-.(Ⅰ)求b ,c 的值; (Ⅱ)求sin (B –C )的值.42.(2018ꞏ天津ꞏ高考真题)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin cos 6b A a B π⎛⎫=- ⎪⎝⎭.(1)求角B 的大小;(2)设a =2,c =3,求b 和()sin 2A B -的值.43.(2019ꞏ江苏ꞏ高考真题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b cos B =23,求c 的值;(2)若sin cos 2A B a b=,求sin(2B π+的值.44.(2018ꞏ北京ꞏ高考真题)在ABC 中,17,8,cos 7a b B ===-.(1)求A ∠; (2)求AC 边上的高.五、双空题45.(2021ꞏ浙江ꞏ统考高考真题)在ABC 中,60,2B AB ∠=︒=,M 是BC 的中点,AM =AC =___________,cos MAC ∠=___________.46.(2019ꞏ浙江ꞏ高考真题)在ABC 中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =____;cos ABD ∠=________.47.(2018ꞏ北京ꞏ高考真题)若ABC 222)a c b +-,且∠C 为钝角,则∠B =_________;ca的取值范围是_________.48.(2018ꞏ浙江ꞏ高考真题)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =b =2,A=60°,则sin B=___________,c =___________.参考答案1.B【要点分析】通过做辅助线,将已知所求量转化到一个三角形中,借助正弦定理,求得''A B ,进而得到答案.【过程详解】过C 作'CH BB ⊥,过B 作'BD AA ⊥,故()''''''100100AA CC AA BB BH AA BB AD -=--=-+=+, 由题,易知ADB 为等腰直角三角形,所以AD DB =. 所以''100''100AA CC DB A B -=+=+. 因为15BCH ∠=︒,所以100''tan15CH C B ==︒在'''A B C 中,由正弦定理得:''''100100sin 45sin 75tan15cos15sin15A B C B ===︒︒︒︒︒,而sin15sin(4530)sin 45cos30cos 45sin 30︒=︒-︒=︒︒-︒︒=,所以1004''1)273A B ⨯==+≈,所以''''100373AA CC A B -=+≈. 故选:B .【名师点睛】本题关键点在于如何正确将''AA CC -的长度通过作辅助线的方式转化为''100A B +.2.A【要点分析】利用余弦定理求出tan 2C =,并进一步判断4C π>,由正弦定理可得sin()sin A C B +=⇒=,最后利用两角和的正切公式,即可得到答案; 【过程详解】 222sin cos tan 222a b c C C C ab +-==⇒=,4C π∴>, 2sin sin sin a b cR A B C===,sin sin cos sin sin cos sin 2A B C C B A B ∴⋅⋅+⋅⋅=,sin()sin 22A CB ∴+=⇒=,4B π∴=, tan 1B ∴=,∴tan tan tan tan()31tan tan B CA B C B C+=-+=-=-⋅,故选:A. 3.A【要点分析】根据已知条件结合余弦定理求得AB ,再根据222cos 2AB BC AC B AB BC +-=⋅,即可求得答案.【过程详解】 在ABC 中,2cos 3C =,4AC =,3BC = 根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅ 2224322433AB =+-⨯⨯⨯可得29AB = ,即3AB =由 22299161cos 22339AB BC AC B AB BC +-+-===⋅⨯⨯故1cos 9B =.故选:A.【名师点睛】本题主要考查了余弦定理解三角形,考查了要点分析能力和计算能力,属于基础题. 4.C【要点分析】先根据余弦定理求c ,再根据余弦定理求cos B ,最后根据同角三角函数关系求tan .B【过程详解】设,,AB c BC a CA b ===22222cos 916234933c a b ab C c =+-=+-⨯⨯⨯=∴=2221cos sin tan 299a c b B B B ac +-==∴==故选:C【名师点睛】本题考查余弦定理以及同角三角函数关系,考查基本要点分析求解能力,属基础题. 5.C【过程详解】要点分析:利用面积公式12ABC S absinC = 和余弦定理2222a b c abcosC +-=进行计算可得.过程详解:由题可知222124ABC a b c S absinC +-==所以2222absinC a b c +-= 由余弦定理2222a b c abcosC +-= 所以sinC cosC =()C 0,π∈C 4π∴=故选C.名师点睛:本题主要考查解三角形,考查了三角形的面积公式和余弦定理. 6.A【要点分析】利用余弦定理推论得出a ,b ,c 关系,在结合正弦定理边角互换列出方程,解出结果.【过程详解】过程详解:由已知及正弦定理可得2224a b c -=,由余弦定理推论可得 22222141313cos ,,,464224242b c a c c c b A bc bc b c +---==∴=-∴=∴=⨯=,故选A .【名师点睛】本题考查正弦定理及余弦定理推论的应用. 7.A【过程详解】要点分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB.过程详解:因为223cos 2cos 12(1,255C C =-=⨯-=-所以22232cos 125215()325c a b ab C c =+-=+-⨯⨯⨯-=∴= A.名师点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的. 8.B【要点分析】由题意首先确定面积最大时点P 的位置,然后结合扇形面积公式和三角形面积公式可得最大的面积值.【过程详解】观察图象可知,当P 为弧AB 的中点时,阴影部分的面积S 取最大值,此时∠BOP =∠AOP =π-β, 面积S 的最大值为2222βππ⨯⨯+S △POB + S △POA =4β+1||sin()2OP OB πβ-‖1||sin()2OP OA πβ+-‖ 42sin 2sin 44sin βββββ=++=+⋅.故选B .【名师点睛】本题主要考查阅读理解能力、数学应用意识、数形结合思想及数学式子变形和运算求解能力,有一定的难度.关键观察要点分析区域面积最大时的状态,并将面积用边角等表示.9.AC【要点分析】依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G ,利用正弦定理结合三角变换、双曲线的定义得到23b a =或2a b =,即可得解,注意就,M N 在双支上还是在单支上分类讨论.【过程详解】[方法一]:几何法,双曲线定义的应用情况一M 、N 在双曲线的同一支,依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为B ,所以1OB F N ⊥,因为123cos 05F NF ∠=>,所以N 在双曲线的左支, OB a =,1OF c =, 1FB b =,设12F NF α∠=,由即3cos 5α=,则4sin 5α=, 235NA NF 22a a ==, 21NF NF 2a -=532222a a b a ⎛⎫--= ⎪⎝⎭,2b e a =∴=, 选A 情况二若M 、N 在双曲线的两支,因为123cos 05F NF ∠=>,所以N 在双曲线的右支, 所以OB a =,1OF c =, 1FB b =,设12F NF α∠=, 由123cos 5F NF ∠=,即3cos 5α=,则4sin 5α=, 235NA NF 22a a ==, 12NF NF 2a -= 352222a b a a +-=, 所以23b a =,即32b a =,所以双曲线的离心率c e a ===选C[方法二]:答案回代法A e 2=选项 特值双曲线())22121,F ,F 4x y -=∴,过1F 且与圆相切的一条直线为(y 2x =,两交点都在左支,N ⎛∴ ⎝,2112NF 5,NF 1,FF ∴===, 则123cos 5F NF ∠=,C e 2=选项特值双曲线())2212x y 1,F ,F 49-=∴,过1F 且与圆相切的一条直线为(2y x 3=+,两交点在左右两支,N 在右支,N ∴,2112NF 5,NF 9,F F ∴===, 则123cos 5F NF ∠=, [方法三]:依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G , 若,M N 分别在左右支, 因为1OG NF ⊥,且123cos 05F NF ∠=>,所以N 在双曲线的右支, 又OG a =,1OF c =,1GF b =, 设12F NF α∠=,21F F N β∠=, 在12F NF △中,有()212sin sin sin NF NF cβαβα==+, 故()122sin sin sin NF NF cαββα-=+-即()sin sin sin a c αββα=+-,所以sin cos cos sin sin sin a cαβαββα=+-,而3cos 5α=,sin ac β=,cos b c β=,故4sin 5α=,代入整理得到23b a =,即32b a =,所以双曲线的离心率2c e a ===若,M N 均在左支上,同理有()212sin sin sin NF NF c βαβα==+,其中β为钝角,故cos bcβ=-,故()212sin sin sin NF NF c βαβα-=-+即sin sin cos cos sin sin a cβαβαβα=--,代入3cos 5α=,sin ac β=,4sin 5α=,整理得到:1424a b a =+, 故2a b =,故e ==故选:AC.10【要点分析】根据题中所给的公式代值解出.【过程详解】因为S =S ==111##-【要点分析】设220CD BD m ==>,利用余弦定理表示出22AC AB 后,结合基本不等式即可得解.【过程详解】[方法一]:余弦定理 设220CD BD m ==>,则在ABD △中,22222cos 42AB BD AD BD AD ADB m m =+-⋅∠=++, 在ACD 中,22222cos 444AC CD AD CD AD ADC m m =+-⋅∠=+-,所以()()()2222224421214441243424211m m m AC m m AB m m m mm m ++-++-===-+++++++44≥=- 当且仅当311mm +=+即1m =时,等号成立,所以当ACAB取最小值时,1m=. 1.[方法二]:建系法令 BD=t ,以D 为原点,OC 为x 轴,建立平面直角坐标系. 则C (2t,0),A (1,B (-t,0)()()()2222222134441244324131111t AC t t AB t t t t t t BD -+-+∴===-≥-++++++++==当且仅当即时等号成立。

2016年上海高考数学真题(理科)试卷(word解析版)

 2016年上海高考数学真题(理科)试卷(word解析版)

绝密★启用前 2016年普通高等学校招生全国统一考试(上海卷)数学试卷(理工农医类)(满分150分,考试时间120分钟)考生注意1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.设x R ∈,则不等式13<-x 的解集为_____________.2.设32iz i +=,其中i 为虚数单位,则Im z =_____________.3.已知平行直线012:,012:21=++=-+y x l y x l ,则l 1与l 2的距离是_____________. 4.某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是_________(米).5.已知点(3,9)在函数x a x f +=1)(的图像上,则________)()(1=-x f x f 的反函数. 6.如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成的角的大小为32arctan,则该正四棱柱的高等于____________.7.方程3sin 1cos 2x x =+在区间[]0,2π上的解为___________ .8.在nx x ⎪⎭⎫ ⎝⎛-23的二项展开式中,所有项的二项式系数之和为256,则常数项等于_________.9.已知ABC ∆的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.10.设.0,0>>b a 若关于,x y 的方程组11ax y x by +=⎧⎨+=⎩,无解,则b a +的取值范围是____________. 11.无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意N n *∈,{}3,2∈n S ,则k 的最大值为________.12.在平面直角坐标系中,已知A (1,0),B (0,-1),P 是曲线21x y -=上一个动点,则BA BP ⋅的取值范围是_____________.13.设[),,0,2πa b R c ∈∈.若对任意实数x 都有()c bx a x +=⎪⎭⎫ ⎝⎛-sin 33sin 2π,则满足条件的有序实数组()c b a ,,的组数为 .14.如图,在平面直角坐标系xOy 中,O 为正八边形821A A A 的中心,()0,11A .任取不同的两点ji A A ,,点P 满足=++j i OA OA OP ,则点P 落在第一象限的概率是_____________.二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得五分,否则一律得零分.15.设R a ∈,则“1>a ”是“12>a ”的( ).(A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分也非必要条件 16.下列极坐标方程中,对应的曲线为如图的是( ).(A )θρcos 56+= (B )65sin ρθ=+ (C )θρcos 56-= (D )65sin ρθ=- 17.已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞→lim .下列条件中,使得()2N n S S n *<∈恒成立的是( ).7.06.0,01<<>q a (B )6.07.0,01-<<-<q a(C )8.07.0,01<<>q a (D )7.08.0,01-<<-<q a18.设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均是增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是( ).(A )①和②均为真命题 (B )①和②均为假命题(C )①为真命题,②为假命题 (D )①为假命题,②为真命题三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19. (本题满分12分)本题共有2个小题,第一小题满分6分,第二小题满分6分.将边长为1的正方形11AAO O (及其内部)绕的1OO 旋转一周形成圆柱,如图,AC长为23π,11A B 长为3π,其中1B 与C 在平面11AAO O的同侧.(1)求三棱锥111C O A B 的体积;(2)求异面直线1B C 与1AA 所成的角的大小.20.(本题满分14)本题共有2个小题,第1小题满分6分,第2小题满分8分. 有一块正方形菜地EFGH ,EH 所在直线是一条小河.收获的蔬菜可送到F 点或河边运走.于是,菜地分为两个区域1S 和2S ,其中1S 中的蔬菜运到河边较近,2S 中的蔬菜运到F 点较近,而菜地内1S 和2S 的分界线C 上的点到河边与到F 点的距离相等,现建立平面直角坐标系,其中原点O 为EF 的中点,点F 的坐标为(1,0),如图.(1)求菜地内的分界线C 的方程;(2)菜农从蔬菜运量估计出1S 面积是2S 面积的两倍,由此得到1S 面积的“经验值”为38.设M 是C 上纵坐标为1的点,请计算以EH 为一边、另有一边过点M 的矩形的面积,及五边形EOMGH 的面积,并判断哪一个更接近于1S 面积的经验值.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.双曲线2221(0)y x b b -=>的左、右焦点分别为12F F 、,直线l 过2F 且与双曲线交于A B 、两点.(1)若l 的倾斜角为π2,1F AB ∆是等边三角形,求双曲线的渐近线方程;(2)设b =,若l 的斜率存在,且11()0F A F B AB +⋅=,求l 的斜率.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知a R ∈,函数21()log ()f x a x =+.(1)当5a =时,解不等式()0f x >; (2)若关于x 的方程2()log [(4)25]0f x a x a --+-=的解集中恰好有一个元素,求a的取值范围;(3)设0a >,若对任意1[,1]2t ∈,函数()f x 在区间[,1]t t +上的最大值与最小值的差不超过1,求a 的取值范围.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.若无穷数列{}n a 满足:只要*(,N )p q a a p q =∈,必有11p q a a ++=,则称{}n a 具有性质P . (1)若{}n a 具有性质P ,且12451,2,3,2a a a a ====,67821a a a ++=,求3a ;(2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为正数的等比数列,151b c ==,5181b c ==,n n n a b c =+,判断{}n a 是否具有性质P ,并说明理由;(3)设{}n b 是无穷数列,已知*1sin (N )n n n a b a n +=+∈.求证:“对任意1,{}n a a 都具有性质P”的充要条件为“{}nb是常数列”.考生注意:1. 本试卷共4页,23道试题,满分150分.考试时间120分钟.2. 本考试分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3. 答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.设x R ∈,则不等式13<-x 的解集为_____________.【答案】(2,4) 【解析】试题分析:由题意得:1x 31-<-<,解得2x 4<<. 考点:绝对值不等式的基本解法.2.设32iz i +=,其中i 为虚数单位,则Im z =_____________.【答案】-3 【解析】 试题分析:32i23,Im z= 3.i z i +==--考点:1.复数的运算;2.复数的概念.3.已知平行直线012:,012:21=++=-+y x l y x l ,则l 1与l 2的距离是_____________.【解析】试题分析:利用两平行线间的距离公式得d ===.考点:两平行线间距离公式.4.某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是_________(米). 【答案】1.76考点:中位数的概念.5.已知点(3,9)在函数x a x f +=1)(的图像上,则________)()(1=-x f x f 的反函数. 【答案】2log (1)x -【解析】试题分析: 将点(3,9)代入函数()xf x 1a =+中得a 2=,所以()xf x 12=+,用y 表示x 得2x log (y 1)=-,所以()12log (f x x 1)-=-.考点:反函数的概念以及指、对数式的转化.6.如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成的角的大小为32arctan,则该正四棱柱的高等于____________.【答案】【解析】试题分析:连结BD,则由题意得11122tan 33DD DBD DD BD ∠==⇒=⇒=.考点:线面角7.方程3sin 1cos 2x x =+在区间[]0,2π上的解为___________ .【答案】566ππ, 【解析】试题分析:化简3sinx 1cos 2x =+得:23sinx 22sin x =-,所以22sin x 3sinx 20+-=,解得1sinx 2=或sinx 2=-(舍去),又[]0,2πx ∈,所以566x ππ=或. 考点:二倍角公式及三角函数求值.8.在nx x ⎪⎭⎫ ⎝⎛-23的二项展开式中,所有项的二项式系数之和为256,则常数项等于_________. 【答案】112 【解析】试题分析:由二项式定理得:所有项的二项式系数之和为n2,即n2256=,所以n 8=,又二项展开式的通项为84r r 8rr r r 33r 1882T C ()(2)C x x --+=-=-,令84r 033-=,所以r 2=,所以3T 112=,即常数项为112.考点:二项式定理.9.已知ABC ∆的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.【解析】试题分析:利用余弦定理可求得最大边7所对应角的余弦值为22235712352+-=-⨯⨯,所以此角的正弦值2R=,所以R=.考点:正弦、余弦定理.10.设.0,0>>ba若关于,x y的方程组11ax yx by+=⎧⎨+=⎩,无解,则ba+的取值范围是____________.【答案】2+∞(,)【解析】试题分析:将方程组中上面的式子化简得y1ax=-,代入下面的式子整理得(1ab)x1b-=-,方程组无解应该满足1ab0-=且1b0-≠,所以ab1=且b1≠,所以由基本不等式得a b2+>=,即ba+的取值范围是2+∞(,).考点:方程组的思想以及基本不等式的应用.11.无穷数列{}na由k个不同的数组成,nS为{}na的前n项和.若对任意Nn*∈,{}3,2∈nS,则k的最大值为________.【答案】4考点:数列的项与和.12.在平面直角坐标系中,已知A(1,0),B(0,-1),P是曲线21xy-=上一个动点,则BABP⋅的取值范围是_____________.【答案】【解析】试题分析:由题意设(cos ,sin )P αα, ,则(cos ,1sin )BP αα=+,又,所以π=cos sin )+1[0,14BP BA ααα⋅+++∈+.考点:1.数量积的运算;2.数形结合的思想.13.设[),,0,2πa b R c ∈∈.若对任意实数x 都有()c bx a x +=⎪⎭⎫ ⎝⎛-sin 33sin 2π,则满足条件的有序实数组()c b a ,,的组数为 . 【答案】4【解析】试题分析:当2a =时,5sin(3)sin(32)sin(3)333πππx x πx -=-+=+,5(,)(3,)3πb c =,又4sin(3)sin[(3)]sin(3)333πππx πx x -=--=-+,4(,)(3,)3πb c =-,注意到[0,2)c π∈,所以只有2组:5(23,)3π,, 4(23,)3π-,满足题意;当2a =-时,同理可得出满足题意的()c b a ,,也有2组,故共有4组.考点:三角函数14.如图,在平面直角坐标系xOy 中,O 为正八边形821A A A 的中心,()0,11A .任取不同的两点ji A A ,,点P 满足=++j i OA OA OP ,则点P 落在第一象限的概率是_____________.【答案】528【解析】试题分析:[0,π]α∈(1,1)BA =共有2828C =种基本事件,其中使点P 落在第一象限的情况有2325C +=种,故所求概率为528.考点:古典概型三、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得五分,否则一律得零分.15.设R a ∈,则“1>a ”是“12>a ”的( ).(B )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分也非必要条件 【答案】A【解析】试题分析:2211,111a a a a a >⇒>>⇒><-或,所以“1>a ”是“12>a ”的充分非必要条件,选A.考点:充要条件17.下列极坐标方程中,对应的曲线为如图的是( ).(B )θρcos 56+= (B )65sin ρθ=+ (C )θρcos 56-= (D )65sin ρθ=- 【答案】D【解析】试题分析:依次取30,,,22ππθπ=,结合图形可知只有65sin ρθ=-满足,选D.考点:极坐标方程18.已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞→lim .下列条件中,使得()2N n S S n *<∈恒成立的是( ).7.06.0,01<<>q a (B )6.07.0,01-<<-<q a(C )8.07.0,01<<>q a (D )7.08.0,01-<<-<q a 【答案】B考点:1.数列的极限;2.等比数列求和.18.设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均是增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是( ).(A )①和②均为真命题 (B )①和②均为假命题(C )①为真命题,②为假命题 (D )①为假命题,②为真命题【答案】D 【解析】 试题分析:因为[()g(x)][()(x)][g()(x)]()2f x f x h x h f x +++-+=,所以[(+)g(+)][(+)(+)][g(+)(+)](+)2f x T x T f x T h x T x T h x T f x T +++-+=,又()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,所以[()g()][()()][g()()](+)=()2f x x f x h x x h x f x T f x +++-+=,所以()f x 是周期为T 的函数,同理可得()g x 、()h x 均是以T 为周期的函数,②正确;()f x 、()g x 、()h x 中至少有一个增函数包含一个增函数、两个减函数;两个增函数、一个减函数;三个增函数,其中当三个函数中一个为增函数、另两个为减函数时,由于减函数加减函数一定为减函数,所以①不正确.选D.考点:1.抽象函数;2.函数的单调性;3.函数的周期性.三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19. (本题满分12分)本题共有2个小题,第一小题满分6分,第二小题满分6分. 将边长为1的正方形11AAO O (及其内部)绕的1OO 旋转一周形成圆柱,如图,AC 长为23π,11A B长为3π,其中1B 与C 在平面11AAOO 的同侧. (1)求三棱锥111C O A B -的体积;(2)求异面直线1B C 与1AA 所成的角的大小.【答案】(1;(2)π4.【解析】试题分析:(1)由题意可知,圆柱的高1h =,底面半径1r =,1113π∠A O B =,再由三角形面积公式计算111S ∆O A B 后即得.(2)设过点1B 的母线与下底面交于点B ,根据11//BB AA ,知1C ∠B B或其补角为直线1CB 与1AA 所成的角,再结合题设条件确定πC 3∠OB =,C 1B =.得出1πC 4∠B B =即可.试题解析:(1)由题意可知,圆柱的高1h =,底面半径1r =.由11A B 的长为π3,可知111π3∠A O B =.11111111111sin 2S ∆O A B =O A ⋅O B ⋅∠A O B =111111C 1V 3S h -O A B ∆O A B =⋅=.从而直线1C B 与1AA 所成的角的大小为π4.考点:1.几何体的体积;2.空间角.20.(本题满分14)本题共有2个小题,第1小题满分6分,第2小题满分8分. 有一块正方形菜地EFGH ,EH 所在直线是一条小河.收获的蔬菜可送到F 点或河边运走.于是,菜地分为两个区域1S 和2S ,其中1S 中的蔬菜运到河边较近,2S 中的蔬菜运到F 点较近,而菜地内1S 和2S 的分界线C 上的点到河边与到F 点的距离相等,现建立平面直角坐标系,其中原点O 为EF 的中点,点F 的坐标为(1,0),如图.(3)求菜地内的分界线C 的方程;(4)菜农从蔬菜运量估计出1S 面积是2S 面积的两倍,由此得到1S 面积的“经验值”为38.设M 是C 上纵坐标为1的点,请计算以EH 为一边、另有一边过点M 的矩形的面积,及五边形EOMGH 的面积,并判断哪一个更接近于1S 面积的经验值.【答案】(1)24y x =(02y <<);(2)矩形面积为52,五边形面积为114,五边形面积更接近于1S 面积的“经验值”.【解析】试题分析:(1)由C 上的点到直线EH 与到点F 的距离相等,知C 是以F 为焦点、以EH 为准线的抛物线在正方形FG E H 内的部分.(2)通过计算矩形面积,五边形面积,以及计算矩形面积与“经验值”之差的绝对值,五边形面积与“经验值”之差的绝对值,比较二者大小即可.试题解析:(1)因为C 上的点到直线EH 与到点F 的距离相等,所以C 是以F 为焦点、以EH 为准线的抛物线在正方形FG E H 内的部分,其方程为24y x =(02y <<).(2)依题意,点M 的坐标为1,14⎛⎫⎪⎝⎭.所求的矩形面积为52,而所求的五边形面积为114.矩形面积与“经验值”之差的绝对值为581236-=,而五边形面积与“经验值”之差 的绝对值为11814312-=,所以五边形面积更接近于1S 面积的“经验值”. 考点:1.抛物线的定义及其标准方程;2.面积计算.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.双曲线2221(0)y x b b -=>的左、右焦点分别为12F F 、,直线l 过2F 且与双曲线交于A B 、两点.(1)若l 的倾斜角为π2,1F AB ∆是等边三角形,求双曲线的渐近线方程;(2)设b =,若l 的斜率存在,且11()0F A F B AB +⋅=,求l 的斜率.【答案】(1)y =;(2).【解析】 试题分析:(1)设(),x y A A A ,根据题设条件得到()24413b b +=,从而解得2b 的值.(2)设()11,x y A ,()22,x y B ,直线:l ()2y k x =-与双曲线方程联立,得到一元二次方程,根据l 与双曲线交于两点,可得230k -≠,且()23610k ∆=+>.再设AB 的中点为(),x y M M M ,由()11F F 0A +B ⋅AB =即1F 0M ⋅AB =,从而得到1F 1kk M⋅=-,进而构建关于k 的方程求解即可. 试题解析:(1)设(),x y A A A .由()22132y x y k x ⎧-=⎪⎨⎪=-⎩,得()222234430kx k x k --++=.因为l 与双曲线交于两点,所以230k -≠,且()23610k ∆=+>.设AB 的中点为(),x y M M M .由()11F F 0A +B ⋅AB =即1F 0M ⋅AB =,知1F M ⊥AB ,故1F 1k k M⋅=-.而2122223x x k x k M +==-,()2623k y k x k M M =-=-,1F 2323k k k M =-,所以23123k k k ⋅=--,得235k =,故l 的斜率为155±. 考点:1.双曲线的几何性质;2.直线与双曲线的位置关系;3.平面向量的数量积.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知a R ∈,函数21()log ()f x a x =+.(1)当5a =时,解不等式()0f x >; (2)若关于x 的方程2()log [(4)25]0f x a x a --+-=的解集中恰好有一个元素,求a的取值范围;(3)设0a >,若对任意1[,1]2t ∈,函数()f x 在区间[,1]t t +上的最大值与最小值的差不超过1,求a 的取值范围.【答案】(1)()1,0,4x ⎛⎫∈-∞-+∞ ⎪⎝⎭;(2)(]{}1,23,4;(3)2,3⎡⎫+∞⎪⎢⎣⎭.【解析】试题分析:(1)由21log 50x ⎛⎫+> ⎪⎝⎭,得151x +>,从而得解.(2)将其转化为()()24510a x a x -+--=,讨论当4a =、3a =时,以及3a ≠且4a ≠时的情况即可.(3)讨论()f x 在()0,+∞上的单调性,再确定函数()f x 在区间[],1t t +上的最大值与最小值之差,从而得到()2110at a t ++-≥,对任意1,12t ⎡⎤∈⎢⎥⎣⎦成立. 试题解析:(1)由21log 50x ⎛⎫+> ⎪⎝⎭,得151x +>, 解得()1,0,4x ⎛⎫∈-∞-+∞ ⎪⎝⎭.(2)()1425a a x a x +=-+-,()()24510a x a x -+--=,当4a =时,1x =-,经检验,满足题意. 当3a =时,121x x ==-,经检验,满足题意.当3a ≠且4a ≠时,114x a =-,21x =-,12x x ≠.1x 是原方程的解当且仅当11a x +>,即2a >; 2x 是原方程的解当且仅当21a x +>,即1a >.于是满足题意的(]1,2a ∈.综上,a 的取值范围为(]{}1,23,4.因为0a >,所以函数()211y at a t =++-在区间1,12⎡⎤⎢⎥⎣⎦上单调递增,12t =时,y 有最小值3142a -,由31042a -≥,得23a ≥. 故a 的取值范围为2,3⎡⎫+∞⎪⎢⎣⎭.考点:1.对数函数的性质;2.函数与方程;3.二次函数的性质.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.若无穷数列{}n a 满足:只要*(,N )p q a a p q =∈,必有11p q a a ++=,则称{}n a 具有性质P . (1)若{}n a 具有性质P ,且12451,2,3,2a a a a ====,67821a a a ++=,求3a ;(2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为正数的等比数列,151b c ==,5181b c ==,n n n a b c =+,判断{}n a 是否具有性质P ,并说明理由;(3)设{}n b 是无穷数列,已知*1sin (N )n n n a b a n +=+∈.求证:“对任意1,{}n a a都具有性质P ”的充要条件为“{}n b 是常数列”.【答案】(1)16;(2){}n a 不具有性质P ,理由见解析;(3)见解析.【解析】 试题分析:(1)根据已知条件,得到678332a a a a ++=++,结合67821a a a ++=求解即可.(2)根据{}n b 的公差为20,{}n c 的公比为13,写出通项公式,从而可得520193nn n n a b c n -=+=-+.通过计算1582a a ==,248a =,63043a =,26a a ≠,即知{}n a 不具有性质P .(3)从充分性、必要性两方面加以证明,其中必要性用反证法证明. 试题解析:(1)因为52a a =,所以63a a =,743a a ==,852a a ==. 于是678332a a a a ++=++,又因为67821a a a ++=,解得316a =.(2){}n b 的公差为20,{}n c 的公比为13,所以()12012019n b n n =+-=-,1518133n n n c --⎛⎫=⋅= ⎪⎝⎭.520193nn n n a b c n -=+=-+. 1582a a ==,但248a =,63043a =,26a a ≠, 所以{}n a 不具有性质P .[证](3)充分性:当{}n b 为常数列时,11sin n n a b a +=+.对任意给定的1a ,只要p q a a =,则由11sin sin p q b a b a +=+,必有11p q a a ++=.充分性得证.必要性:用反证法证明.假设{}n b 不是常数列,则存在k *∈N , 使得12k b b b b ==⋅⋅⋅==,而1k b b +≠.下面证明存在满足1sin n n n a b a +=+的{}n a ,使得121k a a a +==⋅⋅⋅=,但21k k a a ++≠.设()sin f x x x b =--,取m *∈N ,使得πm b >,则()0f m m b ππ=->,()0f m m b ππ-=--<,故存在c 使得()0f c =.考点:1.等差数列、等比数列的通项公式;2.充要条件的证明;3.反证法.祝福语祝你考试成功!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年高考题全国Ⅰ卷文数题干+解析1.(2016·全国Ⅰ卷,文1)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B等于( B )(A){1,3} (B){3,5} (C){5,7} (D){1,7}解析:集合A与集合B公共元素有3,5,故A∩B={3,5},选B.2.(2016·全国Ⅰ卷,文2)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a等于( A )(A)-3 (B)-2 (C)2 (D)3解析:(1+2i)(a+i)=a-2+(1+2a)i,由已知,得a-2=1+2a,解得a=-3,选A.3.(2016·全国Ⅰ卷,文3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( C ) (A)错误!未找到引用源。

(B)错误!未找到引用源。

(C)错误!未找到引用源。

(D)错误!未找到引用源。

解析:将4种颜色的花中任选两种种在一个花坛中,余下2种种在另一个花坛,有6种种法,其中红色和紫色不在一个花坛的种数有4种,故概率为错误!未找到引用源。

,选C.4.(2016·全国Ⅰ卷,文4)△ABC的内角A,B,C的对边分别为a,b,c.已知a=错误!未找到引用源。

,c=2,cos A=错误!未找到引用源。

,则b等于( D )(A)错误!未找到引用源。

(B)错误!未找到引用源。

(C)2 (D)3解析:由余弦定理得5=b2+4-2×b×2×错误!未找到引用源。

,解得b=3(b=-错误!未找到引用源。

舍去),选D.5.(2016·全国Ⅰ卷,文5)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的错误!未找到引用源。

,则该椭圆的离心率为( B )(A)错误!未找到引用源。

(B)错误!未找到引用源。

(C)错误!未找到引用源。

(D)错误!未找到引用源。

解析:设椭圆方程为错误!未找到引用源。

+错误!未找到引用源。

=1(a>b>0)(-c,0),B(0,b)F1点O到直线l的距离为OM,则OM=错误!未找到引用源。

.所以∠OBM=30°,在△BF1O中,错误!未找到引用源。

=sin 30°,错误!未找到引用源。

=错误!未找到引用源。

,所以e=错误!未找到引用源。

.故选B.6.(2016·全国Ⅰ卷,文6)若将函数y=2sin(2x+错误!未找到引用源。

)的图象向右平移错误!未找到引用源。

个周期后,所得图象对应的函数为( D )(A)y=2sin(2x+错误!未找到引用源。

) (B)y=2sin(2x+错误!未找到引用源。

)(C)y=2sin(2x-错误!未找到引用源。

) (D)y=2sin(2x-错误!未找到引用源。

)解析:因为T=错误!未找到引用源。

=π,错误!未找到引用源。

=错误!未找到引用源。

,所以y=2sin(2x+错误!未找到引用源。

)y=2sin[2(x-错误!未找到引用源。

)+错误!未找到引用源。

],所以y=2sin(2x-错误!未找到引用源。

).故选D.7.(2016·全国Ⅰ卷,文7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是错误!未找到引用源。

,则它的表面积是( A )(A)17π(B)18π(C)20π(D)28π解析:因为错误!未找到引用源。

·错误!未找到引用源。

πR3=错误!未找到引用源。

π,所以R=2.S=错误!未找到引用源。

·4π·R2+3·错误!未找到引用源。

πR2=17π,故选A.8.(2016·全国Ⅰ卷,文8)若a>b>0,0<c<1,则( B )(A)loga c<logbc (B)logca<logcb(C)a c<b c (D)c a>c b解析:由题意令a=4,b=2,c=错误!未找到引用源。

.A选项:loga c=-错误!未找到引用源。

,logbc=-1,logac>logbc,A错误.B选项:logc a=-2,logcb=-1,logca<logcb,B正确.同理C,D选项错误,故选B.9.(2016·全国Ⅰ卷,文9)函数y=2x2-e|x|在[-2,2]的图象大致为( D )解析:结合图象f(-x)=f(x),函数为偶数,在[0,2]区间内,f(x)=2x2-e x,f′(x)=4x-e x.当0<x<错误!未找到引用源。

时,f′(x)<0.当错误!未找到引用源。

<x<2时,f′(x)>0.得出f(x)在(0,错误!未找到引用源。

)上为减函数,在(错误!未找到引用源。

,2)上为增函数. 故选D.10.(2016·全国Ⅰ卷,文10)执行如图所示的程序框图,如果输入的x=0,y=1,n=1,则输出x,y 的值满足( C )(A)y=2x (B)y=3x (C)y=4x (D)y=5x解析:当x=0,y=1,n=1,x=0,y=1,x2+y2=1<36,当n=2时,x=错误!未找到引用源。

,y=2,x2+y2<36,当n=3时,x=错误!未找到引用源。

+错误!未找到引用源。

=错误!未找到引用源。

,y=2×3=6,x2+y2>36, 输出x=错误!未找到引用源。

,y=6,令y=kx,得k=4,所以y=4x.故选C.11.(2016·全国Ⅰ卷,文11)平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为( A )(A)错误!未找到引用源。

(B)错误!未找到引用源。

(C)错误!未找到引用源。

(D)错误!未找到引用源。

解析:在正方体ABCD A1B1C1D1中,由题意,直线m∥BD,直线n∥A1B,则△A1DB为等边三角形,∠DBA1=60°,sin 60°=错误!未找到引用源。

,所以m,n所成角的正弦值为错误!未找到引用源。

,故选A.12.(2016·全国Ⅰ卷,文12)若函数f(x)=x-错误!未找到引用源。

sin 2x+asin x在(-∞,+∞)单调递增,则a的取值范围是( C )(A)[-1,1] (B)[-1,错误!未找到引用源。

](C)[-错误!未找到引用源。

,错误!未找到引用源。

] (D)[-1,-错误!未找到引用源。

]解析:排除法:令a=-1,f(x)=x-错误!未找到引用源。

sin 2x-sin x=x-错误!未找到引用源。

sin xcos x-sin x,f′(x)=错误!未找到引用源。

-错误!未找到引用源。

cos 2x-cos x=错误!未找到引用源。

-错误!未找到引用源。

(cos x+错误!未找到引用源。

)2,当cos x=1时,f′(x)=错误!未找到引用源。

-错误!未找到引用源。

<0,因为f(x)在(-∞,+∞)上为增函数,所以f′(x)>0在(-∞,+∞)上恒成立,所以a=-1不正确,排除A,B,D.故选C.13.(2016·全国Ⅰ卷,文13)设向量a=(x,x+1),b=(1,2),且a⊥b,则x= .解析:因为a⊥b,所以a·b=(x,x+1)·(1,2)=x+2x+2=0,x=-错误!未找到引用源。

.答案:-错误!未找到引用源。

14.(2016·全国Ⅰ卷,文14)已知θ是第四象限角,且sin(θ+错误!未找到引用源。

)=错误!未找到引用源。

,则tan(θ-错误!未找到引用源。

)= .解析:因为θ+错误!未找到引用源。

-(θ-错误!未找到引用源。

)=错误!未找到引用源。

, 所以(θ-错误!未找到引用源。

)=错误!未找到引用源。

.因为θ在第四象限,所以sin(θ-错误!未找到引用源。

)=-错误!未找到引用源。

,tan(θ-错误!未找到引用源。

)=错误!未找到引用源。

=-错误!未找到引用源。

.答案:-错误!未找到引用源。

15.(2016·全国Ⅰ卷,文15)设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若|AB|=2错误!未找到引用源。

,则圆C的面积为.解析:因为x2+y2-2ay-2=0,所以x2+(y-a)2=2+a2,点(0,a)到直线y=x+2a的距离h=错误!未找到引用源。

=错误!未找到引用源。

.2+a2-错误!未找到引用源。

=3,所以a2=2,所以r2=2+a2=4,圆面积S=πr2=4π.答案:4π16.(2016·全国Ⅰ卷,文16)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时,生产一件产品A的利润为2 100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.解析:设生产A产品x件,B产品y件,产品A,B的利润之和为z.则z=2 100x+900y.画出可行域.解得错误!未找到引用源。

所以z=2 100×60+900×100=216 000,所以生产产品A、产品B的利润之和的最大值为216 000元. 答案:216 00017.(本小题满分12分)(2016·全国Ⅰ卷,文17)已知{an }是公差为3的等差数列,数列{bn}满足b1=1,b2=错误!未找到引用源。

,an bn+1+bn+1=nbn.(1)求{an}的通项公式;(2)求{bn}的前n项和.解:(1)由已知a1b2+b2=b1,b1=1,b2=错误!未找到引用源。

,得a1=2.所以数列{an }是首项为2,公差为3的等差数列,通项公式为an=3n-1.(2)由(1)和an bn+1+bn+1=nbn得bn+1=错误!未找到引用源。

,因此{bn}是首项为1,公比为错误!未找到引用源。

的等比数列.记{bn }的前n项和为Sn,则Sn=错误!未找到引用源。

=错误!未找到引用源。

-错误!未找到引用源。

.18.(本小题满分12分)(2016·全国Ⅰ卷,文18)如图,在已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点E,连接PE并延长交AB于点G.(1)证明G是AB的中点;(2)作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.解:(1)因为P在平面ABC内的正投影为D,所以AB⊥PD.因为D在平面PAB内的正投影为E,所以AB⊥DE.所以AB⊥平面PED,故AB⊥PG.又由已知可得PA=PB,从而G是AB的中点.(2)在平面PAB内,过点E作PB的平行线交PA于点F,F即为E在平面PAC内的正投影.理由如下:由已知可得PB⊥PA,PB⊥PC,又EF∥PB,所以EF⊥PA,EF⊥PC,因此EF⊥平面PAC,即点F为E在平面PAC内的正投影.连接CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(1)知,G是AB的中点,所以D在CG上,故CD=错误!未找到引用源。

相关文档
最新文档