概率统计习题课四
人教B版高中数学选择性必修第二册课后习题 第四章 概率与统计 4.1.1 条件概率

第四章 概率与统计4.1 条件概率与事件的独立性4.1.1 条件概率必备知识基础练1.已知P(B|A)=12,P(A)=35,则P(AB)等于( )A.56B.910C.310D.1102.把一枚质地均匀的硬币任意抛掷两次,事件A={第一次出现正面},事件B={第二次出现正面},则P(B|A)等于( ) A.14B.12C.16D.183.同时抛掷一个红骰子和一个蓝骰子,观察向上的点数,记“红骰子向上的点数为奇数”为事件A,“两颗骰子的点数之积为奇数”为事件B,则P(B|A)=( ) A.12B.13C.14D.164.已知在10支铅笔中,有8支正品,2支次品,从中任取2支,则在第一次抽的是次品的条件下,第二次抽的是正品的概率是( ) A.15B.845C.89D.455.一个家庭中有两个小孩,已知其中有一个是女孩,则另一个是男孩的概率为.6.从1,2,…,15中,甲、乙两人依次任取一数(不放回),在已知甲取到的数是5的倍数的条件下,甲取的数大于乙取的数的概率是.7.将三枚质地均匀的骰子各掷一次,设事件A=“三个点数之和等于15”,B=“至少出现一个5点”,则概率P(A|B)等于.关键能力提升练8.(浙江宁波高二课时练习)中秋节吃月饼是我国的传统习俗,若一盘中共有两种月饼,其中4块五仁月饼,6块枣泥月饼,现从盘中任取3块,在取到的都是同种月饼的条件下,都是五仁月饼的概率为( )A.34B.130C.12D.169.将三枚骰子各掷一次,设事件A为“三个点数都不相同”,事件B为“至少出现一个6点”,则P(A|B)等于( )A.6091B.12C.518D.9121610.(辽宁大连一模)我国中医药选出的“三药三方”对治疗某种疾病均有显著效果,“三药”分别为金花清感颗粒、连花清瘟胶囊、血必净注射液;“三方”分别为清肺排毒汤、化湿败毒方、宣肺败毒方,若某医生从“三药三方”中随机选出两种,事件A表示选出的两种中有一药,事件B 表示选出的两种中有一方,则P(B|A)= .11.将分别写有A,B,C,D,E的5张卡片排成一排,在第一张是A且第三张是C的条件下,第二张是E的概率为;第二张是E的条件下,第一张是A且第三张是C的概率为.12.由“0,1,2”组成的三位数密码中,若用A表示“第二位数字是2”的事件,用B表示“第一位数字是2”的事件,则P(A|B)= .学科素养创新练13.某校从学生文艺部6名成员(4男2女)中,挑选2人参加学校举办的文艺汇演活动.(1)男生甲被选中的概率为;(2)在已知男生甲被选中的条件下,女生乙被选中的概率为;(3)在要求被选中的两人中必须一男一女的条件下,女生乙被选中的概率为.参考答案第四章概率与统计4.1 条件概率与事件的独立性4.1.1 条件概率1.C 由条件概率计算公式得P(B|A)=P(AB)P(A),所以12=P(AB)35,所以P(AB)=12×35=310.故选C.2.B 第一次出现正面的概率是P(A)=12,第一次出现正面且第二次也出现正面的概率P(A∩B)=14.所以P(B|A)=P(A⋂B)P(A)=12.3.A P(A)=12,若事件A,B同时发生,则蓝色骰子向上点数为奇数,故P(AB)=14,所以P(B|A)=P(AB)P(A)=12.故选A.4.C 记事件A,B分别表示“第一次、第二次抽得正品”,则A B表示“第一次抽得次品,第二次抽得正品”.故P(B|A)=(ABP(A)=89.5.23一个家庭中有两个小孩,已知其中有一个是女孩,基本事件有(女,女),(女,男),(男,女),共3个,其中另一个是男孩包含的基本事件有2个,分别为(女,男),(男,女),则另一个是男孩的概率为23.6.914A={甲取的数是5的倍数},B={甲取的数大于乙取的数},P(B|A)=P (AB )P (A )=4+9+1415×143×1415×14=914.7.113至少出现一个5点的情况有63-53=91,至少出现一个5点的情况下,三个点数之和等于15有以下两类:①恰好一个5点,则另两个点数只能是4和6,共有C 31×C 21=6;②恰好出现两个5点,则另一个点数也只能是5点,共有1种情况. 所以P(A|B)=6+191=113.8.D 设“取到的都是同种月饼”为事件A,“都是五仁月饼”为事件B. 因为P(AB)=C 43C 103=4120=130,P(A)=C 43+C 63C 103=4+20120=24120=15.所以P(B|A)=P (AB )P (A )=13015=16.所以在取到的都是同种月饼的条件下,都是五仁月饼的概率为16.故选D. 9.A ∵P(A|B)=P (AB )P (B ),P(AB)=6063=60216,P(B)=1-P(B )=1-5363=1-125216=91216.∴P(A|B)=P (AB )P (B )=6021691216=6091.故选A.10.34某医生从“三药三方”中随机选出两种,事件A 表示选出的两种中有一药,事件B 表示选出的两种中有一方,则P(A)=C 32+C 31C 31C 62=45,P(AB)=C 31C 31C 62=35,所以P(B|A)=P (AB )P (A )=3545=34.11.13112A,B,C,D,E5张卡片排成一排,在第一张是A 且第三张是C 的条件下,第二张可以是B,D,E,所以第二张是E 的概率为13;第二张是E 的条件下,其余四张的可能结果有A 44=24(种),其中第一张是A 且第三张是C 的可能结果有A 22=2(种),所以所求的概率为224=112.12.13由“0,1,2”组成的三位数密码,共有3×3×3=27(个)基本事件,又由用A 表示“第二位数字是2”的事件,用B 表示“第一位数字是2”的事件,可得P(B)=3×327=13,P(A∩B)=327=19,所以P(A|B)=P (A⋂B )P (B )=1913=13.13.(1)13(2)15(3)12(1)从6名成员中挑选2名成员,共有C 62=15种情况,记“男生甲被选中”为事件A,事件A 所包含的基本事件数为C 51=5种,故P(A)=13.(2)记“男生甲被选中”为事件A,“女生乙被选中”为事件B,则P(AB)=115,由(1)知P(A)=13,故P(B|A)=P (AB )P (A )=15.(3)记“挑选的2人一男一女”为事件C,则P(C)=815,“女生乙被选中”为事件B,P(BC)=415,故P(B|C)=P (BC )P (C )=12.。
经济数学基础——概率统计课后习题答案

经济数学基础——概率统计课后习题答案1⽬录习题⼀ (1)习题⼆ (16)习题三 (44)习题四 (73)习题五 (97)习题六 (113)习题七 (133)1习题⼀写出下列事件的样本空间:(1) 把⼀枚硬币抛掷⼀次;(2) 把⼀枚硬币连续抛掷两次;(3) 掷⼀枚硬币,直到⾸次出现正⾯为⽌;(4) ⼀个库房在某⼀个时刻的库存量(假定最⼤容量为M ).解 (1) Ω={正⾯,反⾯} △ {正,反}(2) Ω={(正、正),(正、反),(反、正),(反、反)}(3) Ω={(正),(反,正),(反,反,正),…}(4) Ω={x ;0 ≤x ≤ m }掷⼀颗骰⼦的试验,观察其出现的点数,事件A =“偶数点”,B =“奇数点”,C =“点数⼩于5”,D =“⼩于5的偶数点”,讨论上述各事件间的关系.解 {}{}{}{}{}.4,2,4,3,2,1,5,3,1,6,4,2,6,5,4,3,2,1=====D C B A ΩA 与B 为对⽴事件,即B =A ;B 与D 互不相容;A ?D ,C ?D.3. 事件A i 表⽰某个⽣产单位第i 车间完成⽣产任务,i =1,2,3,B 表⽰⾄少有两个车间完成⽣产任务,C 表⽰最多只有两个车间完成⽣产任务,说明事件B 及B -C 的含义,并且⽤A i (i =1,2,3)表⽰出来. 解 B 表⽰最多有⼀个车间完成⽣产任务,即⾄少有两个车间没有完成⽣产任务.313221A A A A A A B ++=B -C 表⽰三个车间都完成⽣产任务321321321321+++A A A A A A A A A A A A B =321321321321321321321A A A A A A A A A A A A A A A A A A A A A C ++++++= 321A A A C B =-4. 如图1-1,事件A 、B 、C 都相容,即ABC ≠Φ,把事件A +B ,A +B +C ,AC +B ,C -AB ⽤⼀些互不相容事件的和表⽰出来.解 B A A B A +=+C B A B A A C B A ++=++C B A B B AC +=+BC A C B A C B A AB C ++=- 5.两个事件互不相容与两个事件对⽴的区别何在,举例说明.解两个对⽴的事件⼀定互不相容,它们不可能同时发⽣,也不可能同时不发⽣;两个互不相容的事件不⼀定是对⽴事件,它们只是不可能同时发⽣,但不⼀定同时不发⽣. 在本书第6页例2中A 与D 是对⽴事件,C 与D 是互不相容事件. 6.三个事件A 、B 、C 的积是不可能事件,即ABC =Φ,问这三个事件是否⼀定互不相容?画图说明.解不⼀定. A 、B 、C 三个事件互不相容是指它们中任何两个事件均互不相容,即两两互不相容.如图1-2,事件ABC =Φ,但是A 与B 相容.7. 事件A 与B 相容,记C =AB ,D =A+B ,F =A -B. 说明事件A 、C 、D 、F 的关系.解由于AB ?A ?A+B ,A -B ?A ?A+B ,AB 与A -B 互不相容,且A =AB +(A -B).因此有A =C +F ,C 与F 互不相容,D ?A ?F ,A ?C.8. 袋内装有5个⽩球,3个⿊球,从中⼀次任取两个,求取到的两个球颜⾊不同的概率.解记事件A 表⽰“取到的两个球颜⾊不同”. 则有利于事件A 的样本点数⽬#A =1315C C .⽽组成试验的样本点总数为#Ω=235+C ,由古典概率公式有图1-1 图1-22P (A )==Ω##A 2815281315=C C C (其中#A ,#Ω分别表⽰有利于A 的样本点数⽬与样本空间的样本点总数,余下同)9. 计算上题中取到的两个球中有⿊球的概率.解设事件B 表⽰“取到的两个球中有⿊球”则有利于事件B 的样本点数为#25C B =.1491)(1)(2825=-==C C B P B P - 10. 抛掷⼀枚硬币,连续3次,求既有正⾯⼜有反⾯出现的概率.解设事件A 表⽰“三次中既有正⾯⼜有反⾯出现”, 则A 表⽰三次均为正⾯或三次均为反⾯出现. ⽽抛掷三次硬币共有8种不同的等可能结果,即#Ω=8,因此43821#1)(1)(=-=Ω-=-=A A P A P # 11. 10把钥匙中有3把能打开⼀个门锁,今任取两把,求能打开门锁的概率.解设事件A 表⽰“门锁能被打开”. 则事件A 发⽣就是取的两把钥匙都不能打开门锁.15811)(1)(21027==Ω-=-=C C A A P A P -##从9题-11题解中可以看到,有些时候计算所求事件的对⽴事件概率⽐较⽅便.12. ⼀副扑克牌有52张,不放回抽样,每次⼀张,连续抽取4张,计算下列事件的概率:(1)四张花⾊各异;(2)四张中只有两种花⾊.解设事件A 表⽰“四张花⾊各异”;B 表⽰“四张中只有两种花⾊”.,113113113113452##C C C C A , C Ω==)+#2132131133131224C C C C C C B (= 105013##)(4524.C ΩA A P === 30006048+74366##)(452 )(.C ΩB B P === 13. ⼝袋内装有2个伍分、3个贰分,5个壹分的硬币共10枚,从中任取5枚,求总值超过壹⾓的概率. 解设事件A 表⽰“取出的5枚硬币总值超过壹⾓”.)+(+C =##25231533123822510C C C C C C A C Ω , = 50252126)(.ΩA A P ==##= 14. 袋中有红、黄、⿊⾊球各⼀个,每次任取⼀球,有放回地抽取三次,求下列事件的概率:A =“三次都是红球” △ “全红”,B =“全⽩”,C =“全⿊”,D =“⽆红”,E =“⽆⽩”,F =“⽆⿊”,G =“三次颜⾊全相同”,H =“颜⾊全不相同”,I =“颜⾊不全相同”.解#Ω=33=27,#A =#B =#C =1,#D =#E =#F =23=8,#G =#A +#B +#C =3,#H =3!=6,#I =#Ω-#G =243271)()()(===C P B P A P 278)()()(===F P E P D P 982724)(,92276)(,91273)(======I P H P G P 15. ⼀间宿舍内住有6位同学,求他们中有4个⼈的⽣⽇在同⼀个⽉份的概率.解设事件A 表⽰“有4个⼈的⽣⽇在同⼀个⽉份”.#Ω=126,#A =21124611C C 0073.01221780##)(6==ΩA A P = 16. 事件A 与B 互不相容,计算P )(B A +.解由于A 与B 互不相容,有AB =Φ,P (AB )=0.1)(1)()(=-==+AB P AB P B A P17. 设事件B ?A ,求证P (B )≥P (A ).证∵B ?A∴P (B -A )=P (B ) - P (A )∵P (B -A )≥0∴P (B )≥P (A )18. 已知P (A )=a ,P (B )=b ,ab ≠0 (b >0.3a ),P (A -B )=0.7a ,求P (B +A ),P (B -A ),P (B +A ).解由于A -B 与AB 互不相容,且A =(A -B )+AB ,因此有P (AB )=P (A )-P (A -B )=0.3aP (A +B )=P (A )+P (B )-P (AB )=0.7a +bP (B -A )=P (B )-P (AB )=b -0.3a P(B +A )=1-P (AB )=1-0.3a19. 50个产品中有46个合格品与4个废品,从中⼀次抽取三个,计算取到废品的概率.解设事件A 表⽰“取到废品”,则A 表⽰没有取到废品,有利于事件A 的样本点数⽬为#A =346C ,因此P (A )=1-P (A )=1-3503461C C ΩA -=##=0.225520. 已知事件B ?A ,P (A )=ln b ≠ 0,P (B )=ln a ,求a 的取值范围.解因B ?A ,故P (B )≥P (A ),即ln a ≥ln b ,?a ≥b ,⼜因P (A )>0,P (B )≤1,可得b >1,a ≤e ,综上分析a 的取值范围是:1<b ≤a ≤e21. 设事件A 与B 的概率都⼤于0,⽐较概率P (A ),P (AB ),P (A +B ),P (A )+P (B )的⼤⼩(⽤不等号把它们连接起来).解由于对任何事件A ,B ,均有AB ?A ?A +B且P (A +B )=P (A )+P (B )-P (AB ),P (AB )≥0,因此有P (AB )≤P (A )≤P (A +B )≤P (A )+P (B )22. ⼀个教室中有100名学⽣,求其中⾄少有⼀⼈的⽣⽇是在元旦的概率(设⼀年以365天计算).解设事件A 表⽰“100名学⽣的⽣⽇都不在元旦”,则有利于A 的样本点数⽬为#A =364100,⽽样本空间中样本点总数为#Ω=365100,所求概率为1001003653641##1)(1)(-=Ω-=-=A A P A P = 0.239923. 从5副不同⼿套中任取4只⼿套,求其中⾄少有两只⼿套配成⼀副的概率.解设事件A 表⽰“取出的四只⼿套⾄少有两只配成⼀副”,则A 表⽰“四只⼿套中任何两只均不能配成⼀副”.21080##)(4101212121245===C C C C C C ΩA A P 62.0)(1)(=-=A P A P24. 某单位有92%的职⼯订阅报纸,93%的⼈订阅杂志,在不订阅报纸的⼈中仍有85%的职⼯订阅杂志,从单位中任找⼀名职⼯求下列事件的概率:(1)该职⼯⾄少订阅⼀种报纸或期刊;(2)该职⼯不订阅杂志,但是订阅报纸.解设事件A 表⽰“任找的⼀名职⼯订阅报纸”,B 表⽰“订阅杂志”,依题意P (A )=0.92,P (B )=0.93,P (B |A )=0.85P (A +B )=P (A )+P (A B )=P (A )+P (A )P (B |A )=0.92+0.08×0.85=0.988P (A B )=P (A +B )-P (B )=0.988-0.93=0.05825. 分析学⽣们的数学与外语两科考试成绩,抽查⼀名学⽣,记事件A 表⽰数学成绩优秀,B 表⽰外语成绩优秀,若P (A )=P (B )=0.4,P (AB )=0.28,求P(A |B ),P (B |A ),P (A +B ).解 P (A |B )=7.04.028.0)()(==B P AB P P (B |A)=7.0)()(=A P AB P P (A +B )=P (A )+P (B )-P (AB )=0.5226. 设A 、B 是两个随机事件. 0<P (A )<1,0<P (B )<1,P (A |B )+P (A |B )=1. 求证P (AB )=P (A )P (B ).证∵P ( A |B )+P (A |B )=1且P ( A |B )+P (A |B )=1∴P ( A |B )=P (A |B ))(1)()()()()()(B P AB P A P B P B A P B P AB P --== P (AB )[1-P (B )]=P ( B )[P ( A )-P ( AB )]整理可得P (AB )=P ( A ) P ( B )27. 设A 与B 独⽴,P ( A )=0.4,P ( A +B )=0.7,求概率P (B ).解 P ( A +B )=P (A )+P (A B )=P ( A )+P (A ) P ( B ) ? 0.7=0.4+0.6P ( B )P ( B )=0.528. 设事件A 与B 的概率都⼤于0,如果A 与B 独⽴,问它们是否互不相容,为什么?解因P ( A ),P ( B )均⼤于0,⼜因A 与B 独⽴,因此P ( AB )=P ( A ) P ( B )>0,故A 与B 不可能互不相容.29. 某种电⼦元件的寿命在1000⼩时以上的概率为0.8,求3个这种元件使⽤1000⼩时后,最多只坏了⼀个的概率.解设事件A i 表⽰“使⽤1000⼩时后第i 个元件没有坏”, i =1,2,3,显然A 1,A 2,A 3相互独⽴,事件A 表⽰“三个元件中最多只坏了⼀个”,则A =A 1A 2A 3+1A A 2A 3+A 12A A 3+A 1A 23A ,上⾯等式右边是四个两两互不相容事件的和,且P (A 1)=P (A 2)=P (A 3)=0.8P ( A )=[][])()(3)(12131A P A P A P +=0.83+3×0.82×0.2=0.89630. 加⼯某种零件,需经过三道⼯序,假定第⼀、⼆、三道⼯序的废品率分别为0.3,0.2,0.2,并且任何⼀道⼯序是否出现废品与其他各道⼯序⽆关,求零件的合格率.解设事件A 表⽰“任取⼀个零件为合格品”,依题意A 表⽰三道⼯序都合格.P (A )=(1-0.3)(1-0.2)(1-0.2)=0.44831. 某单位电话总机的占线率为0.4,其中某车间分机的占线率为0.3,假定⼆者独⽴,现在从外部打电话给该车间,求⼀次能打通的概率;第⼆次才能打通的概率以及第m 次才能打通的概率(m 为任何正整数). 解设事件A i 表⽰“第i 次能打通”,i =1,2,…,m ,则P (A 1)=(1-0.4)(1-0.3)=0.42P (A 2)=0.58 × 0.42=0.2436P (A m )=0.58m -1 × 0.4232. ⼀间宿舍中有4位同学的眼镜都放在书架上,去上课时,每⼈任取⼀副眼镜,求每个⼈都没有拿到⾃⼰眼镜的概率.解设A i 表⽰“第i ⼈拿到⾃⼰眼镜”,i =1,2,3,4. P ( A i )=41,设事件B 表⽰“每个⼈都没有拿到⾃⼰的眼镜”. 显然B 则表⽰“⾄少有⼀⼈拿到⾃⼰的眼镜”. 且B =A 1+A 2+A 3+A 4.P (B )=P (A 1+A 2+A 3+A 4)=∑∑∑-+-=≤≤≤≤4141414321)()()()(i j i k j i k j i i i i A A A A P A A A P A A P A p <<<P (A i A j )=P (A i )P (A j |A i ) =)41(1213141≤≤=?j i < P (A i A j A k )=P (A i )P (A j |A i )P (A k |A i A j ) =41×31×21=241(1≤i <j <k ≤4) P (A 1A 2A 3A 4) =P (A 1)P (A 2|A 1)P (A 3|A 1A 2)×P (A 4|A 1A 2A 3) =2411213141= 85241241121414)(3424=-?+?-?=C C B P 83)(1)(=-=B P B P 33. 在1,2,…,3000这3000个数中任取⼀个数,设A m =“该数可以被m 整除”,m =2,3,求概率P (A2A 3),P (A 2+A 3),P (A 2-A 3).解依题意P (A 2)=21,P (A 3)=31 P (A 2A 3)=P (A 6)=61 P (A 2+A 3)=P (A 2)+P (A 3)-P (A 2A 3) =32613121=-+ P (A 2-A 3)=P (A 2)-P (A 2A 3)=316121=- 34. 甲、⼄、丙三⼈进⾏投篮练习,每⼈⼀次,如果他们的命中率分别为0.8,0.7,0.6,计算下列事件的概率:(1)只有⼀⼈投中;(2)最多有⼀⼈投中;(3)最少有⼀⼈投中.解设事件A 、B 、C 分别表⽰“甲投中”、“⼄投中”、“丙投中”,显然A 、B 、C 相互独⽴.设A i 表⽰“三⼈中有i ⼈投中”,i =0,1,2,3,依题意,)()()() ()(0C P B P A P C B A P A P ===0.2×0.3×0.4×=0.024P ( A 3 )=P ( ABC )=P ( A ) P ( B ) P ( C )=0.8×0.7×0.6=0.336P (A 2)=P (AB C )+P (A B C )+P (A BC )=0.8×0.7×0.4+0.8×0.3×0.6+0.2×0.7×0.6=0.452(1) P (A 1)=1-P (A 0)-P (A 2)-P (A 3)=1-0.024-0.452-0.336=0.188(2) P (A 0+A 1)=P (A 0)+P (A 1)=0.024+0.188=0.212(3) P (A +B +C )=P (0A )=1-P (A 0)=0.97635. 甲、⼄⼆⼈轮流投篮,甲先开始,假定他们的命中率分别为0.4及0.5,问谁先投中的概率较⼤,为什么?解设事件A 2n -1B 2n 分别表⽰“甲在第2n -1次投中”与“⼄在第2n 次投中”,显然A 1,B 2,A 3,B 4,…相互独⽴.设事件A 表⽰“甲先投中”.+++=)()()()(543213211A B A B A P A B A P A P A P=+++0.40.5)(0.60.40.50.60.42743.014.0=-= 计算得知P (A )>0.5,P (A )<0.5,因此甲先投中的概率较⼤.36. 某⾼校新⽣中,北京考⽣占30%,京外其他各地考⽣占70%,已知在北京学⽣中,以英语为第⼀外语的占80%,⽽京外学⽣以英语为第⼀外语的占95%,今从全校新⽣中任选⼀名学⽣,求该⽣以英语为第⼀外语的概率.解设事件A 表⽰“任选⼀名学⽣为北京考⽣”,B 表⽰“任选⼀名学⽣,以英语为第⼀外语”. 依题意P (A )=0.3,P (A )=0.7,P (B |A)=0.8,P (B |A )=0.95. 由全概率公式有P (B )=P (A )P (B |A )+P (A )P (B |A )=0.3×0.8+0.7×0.95=0.90537. A 地为甲种疾病多发区,该地共有南、北、中三个⾏政⼩区,其⼈⼝⽐为9 : 7 : 4,据统计资料,甲种疾病在该地三个⼩区内的发病率依次为4‰,2‰,5‰,求A 地的甲种疾病的发病率.解设事件A 1,A 2,A 3分别表⽰从A 地任选⼀名居民其为南、北、中⾏政⼩区,易见A 1,A 2,A 3两两互不相容,其和为Ω.设事件B 表⽰“任选⼀名居民其患有甲种疾病”,依题意:P (A 1)=0.45,P (A 2)=0.35,P (A 3)=0.2,P (B |A 1)=0.004,P (B |A 2)=0.002,P (B |A 3)=0.005=∑=31)|()(i i i A B P A P= 0.45 × 0.004 + 0.35 × 0.002 + 0.2 × 0.005=0.003538. ⼀个机床有三分之⼀的时间加⼯零件A ,其余时间加⼯零件B ,加⼯零件A 时,停机的概率为0.3,加⼯零件B 时停机的概率为0.4,求这个机床停机的概率.解设事件A 表⽰“机床加⼯零件A ”,则A 表⽰“机床加⼯零件B ”,设事件B 表⽰“机床停⼯”.)|()()|()()(A B P A P A B P A P B P +=37.0324.0313.0=?+?= 39. 有编号为Ⅰ、Ⅱ、Ⅲ的3个⼝袋,其中Ⅰ号袋内装有两个1号球,1个2号球与1个3号球,Ⅱ号袋内装有两个1号球和1个3号球,Ⅲ号袋内装有3个1号球与两个2号球,现在先从Ⅰ号袋内随机地抽取⼀个球,放⼊与球上号数相同的⼝袋中,第⼆次从该⼝袋中任取⼀个球,计算第⼆次取到⼏号球的概率最⼤,为什么?解设事件A i 表⽰“第⼀次取到i 号球”,B i 表⽰第⼆次取到i 号球,i =1,2,3.依题意,A 1,A 2,A 3构成⼀个完全事件组.41)()(,21)(321===A P A P A P 41)|()|(,21)|(131211===A B P A B P A B P 41)|()|(,21)|(232221===A B P A B P A B P 61)|(,31)|(,21)|(333231===A B P A B P A B P 应⽤全概率公式∑==31)|()()(i i j i j A B P A P B P 可以依次计算出4811)(,4813)(,21)(321===B P B P B P . 因此第⼆次取到1号球的概率最⼤.40. 接37题,⽤⼀种检验⽅法,其效果是:对甲种疾病的漏查率为5%(即⼀个甲种疾病患者,经此检验法未查出的概率为5%);对⽆甲种疾病的⼈⽤此检验法误诊为甲种疾病患者的概率为1%,在⼀次健康普查中,某⼈经此检验法查为患有甲种疾病,计算该⼈确实患有此病的概率.解设事件A 表⽰“受检⼈患有甲种疾病”,B 表⽰“受检⼈被查有甲种疾病”,由37题计算可知P (A )=0.0035,应⽤贝叶斯公式)|()()|()()|()()|(A B P A P A B P A P A B P A P B A P += 01.09965.095.00035.095.00035.0=+ 25.0=41. 甲、⼄、丙三个机床加⼯⼀批同⼀种零件,其各机床加⼯的零件数量之⽐为5 : 3 : 2,各机床所加⼯的零件合格率,依次为94%,90%,95%,现在从加⼯好的整批零件中检查出⼀个废品,判断它不是甲机床加⼯的概率.解设事件A 1,A 2,A 3分别表⽰“受检零件为甲机床加⼯”,“⼄机床加⼯”,“丙机床加⼯”,B 表⽰“废品”,应⽤贝叶斯公式有∑==31111)|()()|()()|(i i i A B P A P A B P A P B A P 7305020+1030+06.05.006.05.0== (7)4)|(1)|(11=-=B A P B A P 42. 某⼈外出可以乘坐飞机、⽕车、轮船、汽车4种交通⼯具,其概率分别为5%,15%,30%,50%,乘坐这⼏种交通⼯具能如期到达的概率依次为100%,70%,60%与90%,已知该旅⾏者误期到达,求他是乘坐⽕车的概率.解设事件A 1,A 2,A 3,A 4分别表⽰外出⼈“乘坐飞机”,“乘坐⽕车”,“乘坐轮船”,“乘坐汽车”,B 表⽰“外出⼈如期到达”.∑==41222)|()()|()()|(i i i A B P A P A B P A P B A P 1.05.04.03.03.015.0005.03.015.0?+?+?+??==0.20943. 接39题,若第⼆次取到的是1号球,计算它恰好取⾃Ⅰ号袋的概率.解 39题计算知P (B 1)=21,应⽤贝叶斯公式 21212121)()|()()|(111111=?==B P A B P A P B A P 44. ⼀箱产品100件,其次品个数从0到2是等可能的,开箱检验时,从中随机地抽取10件,如果发现有次品,则认为该箱产品不合要求⽽拒收,若已知该箱产品已通过验收,求其中确实没有次品的概率. 解设事件A i 表⽰⼀箱中有i 件次品,i =0, 1, 2. B 表⽰“抽取的10件中⽆次品”,先计算P ( B )∑++?===20101001098101001099)1(31)|()()(i i i C C C C A B P A P B P 37.0)(31)|(0==B P B A P 45. 设⼀条昆⾍⽣产n 个卵的概率为λλ-=e !n p nn n =0, 1, 2, … 其中λ>0,⼜设⼀个⾍卵能孵化为昆⾍的概率等于p (0<p <1). 如果卵的孵化是相互独⽴的,问此⾍的下⼀代有k 条⾍的概率是多少?解设事件A n =“⼀个⾍产下⼏个卵”,n =0,1,2….B R =“该⾍下⼀代有k 条⾍”,k =0,1,….依题意λλ-==e !)(n p A P nn n ≤≤=-n k q p C n k A B P k n k k nn k 00)|(>其中q =1-p . 应⽤全概率公式有∑∑∞=∞===k n n k n n n k n k A B P A P A B P A P B P )|()()|()()(0∑∞=-λ--λ=l n k n k n q p k n k n n !)(!!e !∑∞=-λ--λλk n k n k k n q k p !)()(e !)( 由于q k n kn k n k n k n q k n q λ∞=--∞=-∑∑=-λ=-λe !)()(!)()(0,所以有,2,1,0e )(e e !)()(===--k k p k p B P p pq kk λλλλλ习题⼆1. 已知随机变量X 服从0-1分布,并且P {X ≤0}=0.2,求X 的概率分布.解 X 只取0与1两个值,P {X =0}=P {X ≤0}-P {X <0}=0.2,P {X =1}=1-P {X =0}=0.8.2. ⼀箱产品20件,其中有5件优质品,不放回地抽取,每次⼀件,共抽取两次,求取到的优质品件数X的概率分布.解 X 可以取0, 1, 2三个值. 由古典概型公式可知{})2,1,0(2202155===-m C C C m X P m m 依次计算得X 的概率分布如下表所⽰:3. 上题中若采⽤重复抽取,其他条件不变,设抽取的两件产品中,优质品为X 件,求随机变量X 的概率分布.解 X 的取值仍是0, 1, 2.每次抽取⼀件取到优质品的概率是1/4,取到⾮优质品的概率是3/4,且各次抽取结果互不影响,应⽤伯努利公式有{}1694302=??? ??==X P {}1664341112=??==C X P {}1614122=??? ??==X P 4. 第2题中若改为重复抽取,每次⼀件,直到取得优质品为⽌,求抽取次数X 的概率分布.解 X 可以取1, 2, …可列个值. 且事件{X = n }表⽰抽取n 次,前n -1次均未取到优质品且第n 次取到优质品,其概率为41431???? ??-n .因此X 的概率分布为{}?=??==-,2,143411n n X P n 5. 盒内有12个乒乓球,其中9个是新球,3个为旧球,采取不放回抽取,每次⼀个直到取得新球为⽌,求下列随机变量的概率分布.(1)抽取次数X ; (2)取到的旧球个数Y .解 (1)X 可以取1, 2, 3, 4各值.{}{}4491191232431=?====X P X P {}22091091121233=??==X P {}2201991011121234===X P (2) Y 可以取0, 1, 2, 3各值 .{}{}4310====X P Y P{}{}44921====X P Y P {}{}220932====X P Y P {}{}220143====X P Y P 6. 上题盒中球的组成不变,若⼀次取出3个,求取到的新球数⽬X 的概率分布.解 X 可以取0, 1, 2, 3各值.{}2201031233===C C X P {}2202713122319===C C C X P {}22010823121329===C C C X P {}22084331239===C C X P 7. 已知P {X =n }=p n ,n =1, 2, 3, …, 求p 的值.解根据{}∑=∞=11n n X P =, 有 ∑-==∞=111n n pp P 解上⾯关于p 的⽅程,得p =0.5.8. 已知P {X =n }=p n , n =2, 4, 6, …,求p 的值.解 1122642=-=?+++p p p p p 解⽅程,得p =2±/29. 已知P {X =n }=cn , n =1, 2, …, 100, 求c 的值.解 ∑=+?++==10015050)10021(1n cc cn =解得 c =1/5050 .10. 如果p n =cn _2,n =1, 2, …, 问它是否能成为⼀个离散型概率分布,为什么?解 ,1121∑=∑∞=∞=n n n n c p 由于级数∑∞=121n n 收敛, 若记∑∞=121n n =a ,只要取ac 1=, 则有∑∞=1n n p =1, 且p n >0. 所以它可以是⼀个离散型概率分布.11. 随机变量X 只取1, 2, 3共三个值,其取各个值的概率均⼤于零且不相等并⼜组成等差数列,求X 的概率分布. 解设P {X =2}=a ,P {X =1}=a -d , P {X =3}=a +d . 由概率函数的和为1,可知a =31, 但是a -d 与a +d 均需⼤于零,因此|d |<31, X 的概率分布为其中d 应满⾜条件:0<|d |<312. 已知{}λ-==e !m c λm X P m ,m =1, 2, …, 且λ>0, 求常数c .解 {}∑∑∞=-∞====11e !1m mm m c m X p λλ由于∑∑∞=∞==+=10e !1!m mm m m m λλλ, 所以有∑∞=---=-=-=11)e 1(e )1e (e !m m c c m c λλλλλ解得λ--=e 11c 13. 甲、⼄⼆⼈轮流投篮,甲先开始,直到有⼀⼈投中为⽌,假定甲、⼄⼆⼈投篮的命中率分别为0.4及0.5,求:(1)⼆⼈投篮总次数Z 的概率分布;(2)甲投篮次数X 的概率分布;(3)⼄投篮次数Y 的概率分布.解设事件A i 表⽰在第i 次投篮中甲投中,j 表⽰在第j 次投篮中⼄投中,i =1, 3, 5, …, j =2, 4, 6,…,且A 1, B 2, A 3, B 4,…相互独⽴.(1){}{}1222321112---=-=k k k A B A B A p k Z P = (0.6×0.5)1-k ·0.4= 0.4(0.3)1-k k=1, 2, …{})(2212223211k k k k B A B A B A p k Z P ---===0.5×0.6×(0.6×0.5)1-k =0.3kk=1, 2, …(2) {}{}12223211---==n n n A B A B A p n X P{}n n n n B A B A B A p 212223211---+)5.06.04.0()5.06.0(1?+?=-n,2,13.07.01=?=-n n (3) {}4.0)(01===A P Y P{}{}{}122121121211+--+==n n n n n A B A B A P B A B A P n Y P)4.05.05.0(6.0)5.06.0(1?+=-n,2,13.042.01=?=-n n 14. ⼀条公共汽车路线的两个站之间,有四个路⼝处设有信号灯,假定汽车经过每个路⼝时遇到绿灯可顺利通过,其概率为0.6,遇到红灯或黄灯则停⽌前进,其概率为0.4,求汽车开出站后,在第⼀次停车之前已通过的路⼝信号灯数⽬X 的概率分布(不计其他因素停车).解 X 可以取0, 1, 2, 3, 4 .P { X =0 } =0.4 P { X =1 }=0.6×0.4=0.24P { X =2 } =0.62×0.4=0.144P { X =3 } =0.63×0.4=0.0864P { X =4 } =0.64=0.1296 15. ∈=.,0],[,sin )(其他,b a x x x f 问f (x )是否为⼀个概率密度函数,为什么?如果 (1).π23 ,)3( ;π,0)2( ;2π,0======b a b a b a π解在[0, 2π]与[0, π]上,sin x ≥0,但是,1d sin π0≠?x x ,1d sin 2π0=?x x ⽽在??π23,π上,sin x ≤0.因此只有(1)中的a , b 可以使f (x )是⼀个概率密度函数.16. ≤=-.0,00e )(,22x x c x x f c x ,>其中c >0,问f (x )是否为密度函数,为什么?解易见对任何x ∈(-∞ , +∞) , f ( x ) ≥ 0,⼜1d e 202=?-∞+x c x c x f (x )是⼀个密度函数 .17. +=.0.2<<,2)(其他,a x a x x f 问f ( x )是否为密度函数,若是,确定a 的值;若不是,说明理由.解如果f ( x )是密度函数,则f ( x )≥0,因此a ≥0,但是,当a ≥0时,444|d 2222≥+==??++a x x a a a a由于x x f d )(?+∞∞-不是1,因此f ( x )不是密度函数.18. 设随机变量X ~f ( x )∞++=.,0,,)1(π2)(2其他<<x a x x f 确定常数a 的值,如果P { a < x < b } =0.5,求b 的值.解 )arctan 2π(2arctan π2d )1(π22a x x x a a -π==+??+∞+∞ 解⽅程π2??a arctan - 2π=1 得 a = 0{}b x x x f b x P b b arctan π2|arctan π2d )(000==?=<<解关于b 的⽅程:π2arctan b =0.5 得 b =1.19. 某种电⼦元件的寿命X 是随机变量,概率密度为≥=.100,0,100100)(2<x x x x f 3个这种元件串联在⼀个线路中,计算这3个元件使⽤了150⼩时后仍能使线路正常⼯作的概率. 解串联线路正常⼯作的充分必要条件是3个元件都能正常⼯作. ⽽三个元件的寿命是三个相互独⽴同分布的随机变量,因此若⽤事件A 表⽰“线路正常⼯作”,则3])150([)(>X P A P ={}32d 1001502150=?∞+x x X P => 278)(=A P 20. 设随机变量X ~f ( x ),f ( x )=A e -|x|,确定系数A ;计算P { |X | ≤1 }.解 A x A x A x x 2d e 2d e 10||=?=?=∞+-∞+∞--解得 A =21 {}??---==≤10||11d e d e 211||x x X P x x632.0e 11≈-=-21. 设随机变量Y 服从[0, 5]上的均匀分布,求关于x 的⼆次⽅程4x 2+4xY +Y +2=0有实数根的概率. 解 4x 2+4xY +Y +2=0.有实根的充分必要条件是△=b 2-4ac =16Y 2-16(Y +2)=16Y 2-16Y -32≥0设事件P (A )为所求概率.则{}{}{}120321616)(2-≤+≥=≥--=Y P Y P Y Y P A P=0.622. 设随机变量X ~ f ( x ),-=.,01||,1)(2其他,<x x cx f确定常数c ,计算.21||≤X P解π|arcsin d 1111211c x c x x c==-?=--c =π131arcsin 2d 1121||0212121 2=π=-π=≤?-x x x X P23. 设随机变量X 的分布函数F ( x )为≥=.1,1,10,0,0)(x x x A x x F <<,<确定系数A ,计算{}25.00≤≤X P ,求概率密度f ( x ).解连续型随机变量X 的分布函数是连续函数,F (1)= F (1-0),有A =1. =.,0,10,21)(其他<<x x x f{}5.0)0()25.0(25.00=-=≤≤F F X P24. 求第20题中X 的分布函数F ( x ) .解 {}t x X P x F t x d e 21)(||-∞-?=≤=当t ≤ 0时,x t x t x F e 21d e 21)(=?=∞-当t >0时,t t t x F tx t t x d e 21d e 21d e 21)(-00||?+?=?=-∞--∞-x x ---=-+=e 211)e 1(212125. 函数(1+x 2)-1可否为连续型随机变量的分布函数,为什么?解不能是分布函数,因F (-∞)= 1 ≠ 0.26. 随机变量X ~f ( x ),并且)1(π)(2x ax f +=,确定a 的值;求分布函数F ( x );计算{}1||<X P .解 a x a x x a ==?+=∞+∞-∞+∞-arctan πd )1(π12 因此a =1x x t t t x F ∞-∞-=?+=arctan π1d )1(π1)(2 x arctan π121+= {}?+=?+=-102112d )1(π12d )1(π11||x x x x X P < 21arctan π210==x 27. 随机变量X 的分布函数F ( x ) 为:≤-=.2,02,1)(2x x x A x F ,>确定常数A 的值,计算{}40≤≤X P .解由F ( 2+0 )=F ( 2 ),可得4,041==-A A {}{})0()4(4X 040F F P X P -=≤=≤≤<28. 随机变量X ~f ( x ),f ( x )=,ee x x A -+确定A 的值;求分布函数F ( x ) . 解 ?+=?+=∞∞-∞∞--x A x A x x x x d e 1e d e e 12 A A x 2πe a r c t a n ==∞∞- 因此 A =π2, xtx t t t x F ∞-∞--=+=?e arctan π2d )e e (π2)(x e arctan π2= 29. 随机变量X ~f ( x ),=.,00,π2)(2其他<<a x x x f确定a 的值并求分布函数F ( x ) .解 220222ππd π21a x x x a a ==?= 因此,a = π当0<x <π时,=x x t t x F 0222πd π2)( 其他≥≤=π1,π0,π0,0)(22x x xx x F <<30. 随机变量X 的分布函数为)0(0,e 22210,0)(22>>a x ax x a x x F ax ++-≤=-求X 的概率密度并计算a X P 10<<.解当x ≤ 0时,X 的概率密度f ( x ) =0;当x > 0时,f ( x ) =F′ ( x )≤=-.0,e 2,0,0)(23> x x a x x f ax(1010F a F a x P a x P -=≤=?<<<08.0e 2511≈-=-31. 随机变量X 服从参数为0.7的0-1分布,求X 2,X 2-2X 的概率分布.解 X 2仍服从0-1分布,且P { X 2=0 } =P { X =0 } =0.3,P {X 2=1}=P {X =1}=0.7X 2-2X 的取值为-1与0 , P {X 2-2X =0}=P { X =0 } =0.3P { X 2-2X =-1 } =1-P { X =0 } =0.732. 已知P { X =10n } =P { X =10-n }=,,2,1,31=n nY =l gX ,求Y 的概率分布.解 Y 的取值为±1, ±2 , …P { Y =n } =P { l gX =n } =P { X =10n } =31P { Y =-n } =P { l gX =-n } =P { x =10-n } =31n =1 , 2 , …33. X 服从[a , b ]上的均匀分布,Y =ax +b (a ≠0),求证Y 也服从均匀分布.证设Y 的概率密度为f Y ( y ) ,X 的概率密度为f X ( x ),只要a ≠ 0,y = ax + b 都是x 的单调函数. 当a >0时,Y 的取值为[a 2+b , ab +b ],a x y hb y a y h x y 1)(,)(1)(='='-==],,[,)(1])([)()(2b ab b a y a b a y h f y h y f X Y ++∈-='=当],[2b ab b a y ++∈时,f Y ( y ) =0.类似地,若a <0,则Y 的取值为[ ab +b , a 2+b ]+≤≤+--=.,0,,)(1)(2其他b a y b ab a b a y f Y因此,⽆论a >0还是a <0,ax +b 均服从均匀分布.34. 随机变量X 服从[0 ,2π]上的均匀分布Y =cos X , 求Y 的概率密度f Y ( y ). 解 y =cos x 在[0, 2π]上单调,在(0 , 1)上,h ( y ) = x =arccos y h′ ( y ) = 211y -- , f x ( x ) = π2 , 0 ≤ x ≤ 2π . 因此 -=.0,10,1π2)(2其他,<<y yy f Y35. 随机变量X 服从(0 , 1)上的均匀分布,Y =e x , Z =|ln X |,分别求随机变量Y 与Z 的概率密度f Y ( y ) 及f Z ( z ) .解 y = e x 在(0 , 1)内单调 , x =ln y 可导,且x′y = y1 , f X ( x ) =1 0 < x < 1 , 因此有.,0,e 1,1)(其他 <<y y y f Y在(0 , 1)内ln x < 0|ln x |=-ln x 单调,且x = e z -,x′z =-e z -,因此有∞+=-.,0,0e )(其他<<,z z f z z 36. 随机变量X ~f ( x ) ,≤=-0,00,e )(x x x f x > Y = X , Z = X 2 , 分别计算随机变量Y 与Z 的概率密度f y ( y ) 与f Z ( z ) .解当x > 0时,y =x 单调,其反函数为x = y 2 , x′y = 2y≤=-.0,0,0,e 2)(2y y y y f y Y >当x > 0时z =x 2也是单调函数,其反函数为x =z , x′ z =z 21 ≤=-.0,00e 21)(z ,z z z f z z > 37.随机变量X ~f ( x ),当x ≥ 0时,)1(2)(2x x f +=π, Y =arctan X , Z = X1,分别计算随机变量Y 与Z 的概率密度f Y ( y ) 与fz ( z ) . 解由于y = arctan x 是单调函数,其反函数x =tan y , x′ y =sec 2y 在?? -2π,0内恒不为零,因此,当0 < y <π2时,π2)tan 1(π2sec )(22=+=y yy f Y 即Y 服从区间(0 , 2π)上的均匀分布. z = x 1在x >0时也是x 的单调函数,其反函数x =z 1, x′ z =21z-. 因此当z >0时, )1(π2])1(1[π21)(222z zz z fz +=+-= ??≤+=0,00,)1(π2)(2z z z z f z >即Z = X1 与X 同分布. 38. ⼀个质点在半径为R ,圆⼼在原点的圆的上半圆周上随机游动. 求该质点横坐标X 的密度函数f X ( x ) . 解如图,设质点在圆周位置为M ,弧MA 的长记为L ,显然L 是⼀个连续型随机变量,L 服从[0,πR ]上的均匀分布.≤≤=.,0π0,π1)(其他,R l R l f L M 点的横坐标X 也是⼀个随机变量,它是弧长L 的函数,且 X = R cos θ= R cos RL 函数x = R cos l / R 是l 的单调函数 ( 0< l <πR ) ,其反函数为 l = R arccos Rx 22xR R l x --=' 当-R < x < R 时,L′x ≠ 0,此时有2222π1π1)(xR R x R R x f X -=?--= 当x ≤ -R 或x ≥ R 时,f X ( x ) =0 .39. 计算第2 , 3 , 5 , 6 , 11各题中的随机变量的期望.解根据第2题中所求出的X 概率分布,有2138223815138210=?+?+?=EX 亦可从X 服从超⼏何分布,直接计算2120521=?==N N n EX 在第3题中21161216611690=?+?+?=EX 亦可从X 服从⼆项分布(2,41),直接⽤期望公式计算: 21412=?==np EX 在第5题中图2-1(1) 3.122014220934492431=?+?+?+?=EX (2) 3.022013220924491430=?+?+?+?=EY 在第6题中,25.2220843220108222027122010=?+?+?+?=EX 在第11题中,??+++ -=d 313312d 311EX 31 |<d <|0 d 22+= 40. P { X = n } =nc , n =1, 2, 3, 4, 5, 确定C 的值并计算EX . 解 160137543251==++++=∑=c c c c c c n c n13760=C 137300551==∑?==C n c n EX n 41. 随机变量X 只取-1, 0, 1三个值,且相应概率的⽐为1 : 2 : 3,计算EX . 解设P { X =-1 } = a ,则P { X =0 } =2a , P { X =1 }=3a ( a >0 ) ,因a + 2a + 3a = 1 , 故a =1/631631620611=?+?+?-=EX 42. 随机变量X 服从参数为0.8的0-1分布,通过计算说明EX 2是否等于( EX )2 ? 解 EX =P { X =1 } =0.8,( EX )2 =0.64EX 2=1×0.8=0.8>( EX )243. 随机变量X ~f ( x ) ,f ( x ) =0.5e - | x |,计算EX n ,n 为正整数. 解当n 为奇数时,)(x f x n 是奇函数,且积分x x x n d e 0-∞?收敛,因此0d e 5.0||=?=-∞+∞-x x EX x n n 当n 为偶数时,x x x x EX x n x n n d e 5.02d e 5.00||-∞+-∞+∞-?=?=!)1(d e 0n n x x x n =+Γ=?=-∞+44. 随机变量X ~f ( x ) ,-≤≤=.,0,21,2,10,)(<<x x x x x f计算EX n (n 为正整数) .解 x x x x x x x f x EX n n n n d )2(d d )(21101?-+?=?=+∞+∞-1)2(21)12(122121-+--+++=++n n n n n )2()1(222++-=+n n n 45. 随机变量X ~f ( x ) ,≤≤=.,0,10,)(其他x cx x f b b ,c 均⼤于0,问EX 可否等于1,为什么?其他其他。
概率论与数理统计课后习题答案 第四章

(2) ρxy.
(1)
(2)(X,Y)的分布律为
Y X
0
1
-1
0
1
习题 4.1 1. 设随机变量 X 的概率密度为
(1) 求 E(X)
其他
(2)
解: (1)
(2) 2. 设连续型随机变量 X 的分布函数为
试确定常数 a,b,并求 E(X). 解:
(1)
其他
又因当
时
(2) 3. 设轮船横向摇摆的随机振幅 X 的概率密度为
的导数为 的导数为
即 即
求 E(X). 解:
4. 设 X1, X2,….. Xn 独立同分布,均值为 ,且设
D. (X,Y)~N(
)
解: 与 不相关 ρ
5. 设二维随机变量(X,Y)~N(
A.
B. 3
C. 18
解: ρ
),则 Cov(X,Y)= B . D. 36
6. 已知随机变量 X 与 Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则 E(XY)= A .
A. 3
B. 6
C. 10
解: Cov(X,Y)=0
2. 设随机变量 X 的分布律为 3 .
X
-1
0
1
2
P
0.1 0.2 0.3 0.4
令 Y=2X+1,则 E(Y)=
3
.
解: E(2X+1)=(2*-1+1)*0.1+(2*0+1)*0.2+(2*1+1)*0.3+(2*2+1)*0.4=3
3. 已知随机变量 X 服从泊松分布,且 D(X)=1,则 P{X=1}=
《概率论与数理统计 B》习题四答案

E Y 2 02 0.7 12 0.3 0.3,D Y 0.3 0.3 0.21
2
E X 2Y E X 2 E Y 0.5 2 0.3 0.1 E 3 XY 3E XY 3 0 0 0.3 0 1 0.2 1 0 0.4 11 0.1 3 0.1 0.3 cov X , Y E XY E X E Y 0.1 0.5 0.3 0.05 cov X , Y D X D Y 0.05 21 21 0.25 0.21
E ( XY ) , E ( X 2 Y 2 ) , D( X ) , D(Y ) 。
4
西南交通大学 2017—2018 学年第(一)学期《概率论与数理统计 B》课程习题答案
1 4 3 x 4 x3dx , E Y y 12 y 2 1 y dy , 0 0 5 5 1 X 1 E XY xy 12 y 2 dydx , 0 0 2
Y Pr
0.5
0.5
0 0.7
1 0.3
E X 0 0.5 1 0.5 0.5,E X 2 02 0.5 12 0.5 0.5 ,
D X 0.5 0.5 0.。
1 1 1 2 2 (2) E X x 2(1 x)dx , x 2(1 x)dx ; 0 0 3 6 1 1 2 1 2 2 故 D( X ) E ( X ) ( E ( X )) ( ) 。 6 3 18
解: (1) E X
西南交通大学 2017—2018 学年第(一)学期《概率论与数理统计 B》课程习题答案
概率论与数理统计习题含解答,答案)

概率论与数理统计复习题(1)一.填空.1.3.0)(,4.0)(==B P A P 。
若A 与B 独立,则=-)(B A P ;若已知B A ,中至少有一个事件发生的概率为6.0,则=-)(B A P 。
2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。
3.设),(~2σμN X ,且3.0}42{ },2{}2{=<<≥=<X P X P X P ,则=μ ;=>}0{X P 。
4.1)()(==X D X E 。
若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。
5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。
7.)16,1(~),9,0(~N Y N X ,且X 与Y 独立,则=-<-<-}12{Y X P (用Φ表示),=XY ρ 。
8.已知X 的期望为5,而均方差为2,估计≥<<}82{X P 。
9.设1ˆθ和2ˆθ均是未知参数θ的无偏估计量,且)ˆ()ˆ(2221θθE E >,则其中的统计量 更有效。
10.在实际问题中求某参数的置信区间时,总是希望置信水平愈 愈好,而置信区间的长度愈 愈好。
但当增大置信水平时,则相应的置信区间长度总是 。
二.假设某地区位于甲、乙两河流的汇合处,当任一河流泛滥时,该地区即遭受水灾。
设某时期内甲河流泛滥的概率为0.1;乙河流泛滥的概率为0.2;当甲河流泛滥时,乙河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受水灾的概率;(2)当乙河流泛滥时,甲河流泛滥的概率。
三.高射炮向敌机发射三发炮弹(每弹击中与否相互独立),每发炮弹击中敌机的概率均为0.3,又知若敌机中一弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。
九年级数学下册第四章统计与概率阶段专题复习习题课件北师大版

【解析】(1)设去B地的人数为x,
则由题意有:
x 解得40:%x, =40.
30 x 20 10
∴去B地的人数为40人.
(2)列表:
1
2
3
4
3 (1,3)
(2,3)
(3,3)
(4,3)
2 (1,2)
(2,2)
(3,2)
(4,2)
1 (1,1)
(2,1)
(3,1)
(4,1)
4 (1,4)
频数分布表:
分组 2.0<x≤3.5 3.5<x≤5.0 5.0<x≤6.5 6.5<x≤8.0 8.0<x≤9.5
合计
划记 正正 正正正
频数 11 19
2 50
(1)把上面的频数分布表和频数分布直方图补充完整. (2)从直方图中你能得到什么信息?(写出两条即可) (3)为了鼓励节约用水,要确定一个用水量的标准,超出这个 标准的部分按1.5倍价格收费.若要使60%的家庭收费不受影响, 你觉得家庭月均用水量应该定为多少?为什么?
50
【归纳整合】细读统计图表 ①注重整体阅读.先对材料或图表资料等有一个整体的了解,把 握大体方向.要通过整体阅读,搜索有效信息;②重视数据变化. 数据的变化往往说明了某项问题,而这可能正是这个材料的重 要之处;③注意图表细节.图表中一些细节不能忽视,它往往起 提示作用.如图表下的“注”“数字单位”等.
【解析】选D.∵只有上城区的人口小于40万,∴选项A错误;∵ 萧山区、余杭区的人口超过100万,∴选项B错误;∵上城区的 人口<40万,下城区的人口<60万,∴上城区与下城区的人口 之和小于100万,而江干区的人口=100万,∴上城区的人口 +下城区的人口<江干区的人口,选项C错误;选项D正确.
概率论与数理统计统计课后习题答案-总主编-邹庭荣-主编-程述汉-舒兴明-第四章

概率论与数理统计统计课后习题答案-总主编-邹庭荣-主编- 程述汉-舒兴明-第四章第四章习题解答11 •设随机变量X〜B (30,-),则E (X)=( D ).6A.-;D.5.1E (X) = np = 30 562 •已知随机变量X和Y相互独立,且它们分别在区间[-1 , 3]和[2, 4]上服从均匀分布,则E(XY)=( A ).A. 3;B. 6;C. 10;D. 12.E(X) =1 E(Y) =3因为随机变量X和Y相互独立所以E(XY) = E(X)E(Y) = 33.设X表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,贝U X2的数学期望E(X 2) = 1&4 .X LI B(10,0.4) E(X) =4 D(X) =2.42 2E(X ) =(E(X)) D(X) =18.44.某射手有3发子弹,射一次命中的概率为-,如果命中了就停止射击,3否则一直射到子弹用尽.设表示X耗用的子弹数.求E (X).解:X123P2/32/91/92 2 1 13E(X)=—十—:2 +3 9 9 95 .设X的概率密度函数为x, 0ExE1f (x) - x, 1 :: x 乞2[0, 其它求 E(X) , E(X2).解: E(X) = J xf(x)dx = J x2dx + J x(2-x)dx =1,0 ' 11 32 27f (x)dx x dx 亠 i x (2「x)dx .- -bo -E(X 2)「;x 2求 E(X) , E(Y),E(XY).解:X-12P 0.650.35E(X)二「0.65 0.35 2 =0.05 .Y-112P0.40.250.35E(Y) = -0.4 0.25 1 0.35 2 =0.55E(XY)=(-1) (-1) 0.25 (-1) 1 0.1 (-1) 2 0.32 (-1) 0.15 2 1 0.15 2 2 0.05 =-0.257 •设二维随机向量(X, Y)的联合概率密度为求(1)E(X Y); (2) E(XY).E(XY) = _;.;(xy)f(x,y)dxdy=讥(广(xy)「dy)dx = 38.设随机变量X与Y相互独立,且D(X)=1, D(Y)=2 , J则D(X-Y)= 3 .D(X _Y) = D(X) D(Y) =39.设正方形的边长在区间]0, 2]服从均匀分布,则正方形面积A=X2的f(x,y)二e0,1°,0 :x y其它解: y) dxdy( x x y )e y d y dx 3方差为64/45 _________ .4 1E(X)=1, D(X) ,12 3X的密度函数f(x)= 102,0乞x乞26 •设随机向量(X, Y)的联合分布律为:E(X Y)=二y)求 D(X ),D(Y ),D(X-Y ).解:由本章习题5知E(X)=1 , E(X 2)=7,于是有62 21D(X)二 E(X )-(E(X)).6221 4E (XTE (X)「D (X)n 〒.4"be 42E(X )= x f(x)dx = 01 4 16x dx =2 5D(X 2) =E(X 4)—[E(X 2)]210•设随机变量X 的分布律为X -1 0 1 2P1/5 1/2 1/5 1/10求 D(X).解:D(X) = E(X 2) -(E(X))2, E(X2 21 2 1 2E(X ) =(-1) -01- 2 551 19 224D(X)=E (X 2)-(E(X))2=5 25 2511•设随机变量X 的概率密度函数为f(x)亠1,求 D(X ).::1I解:E(X) xf (x) dxxe*dx=0, 2E(X 2)x 2f(x)dx=2 x 2e^dx = 2 ,0 212•设随机变量X , Y 相互独立,其概率密度函数分别为x,f x (x)二 2 -x,0 _x _1 1 :: x _ 2y_ 0其它16 564 45由Y LI E(1)知 E(X) =D(X) =1.由于随机变量X , Y 相互独立,所以D(X -Y)二 D(X) D(Y) =7.613•设 D(X)=1,D(Y)=4,相关系数 P XY =0.5,则 cov(X,Y)=_1 __________ covX,Y)= » D(X)D(Y) =114•设二维随机变量(X, Y )的联合密度函数为求 cov(X,Y ), ?XY •DJI nI 22。
概率论与数理统计(茆诗松)第二版课后第四章习题参考答案

第四章 大数定律与中心极限定理习题4.11. 如果X X Pn →,且Y X Pn →.试证:P {X = Y } = 1.证:因 | X − Y | = | −(X n − X ) + (X n − Y )| ≤ | X n − X | + | X n − Y |,对任意的ε > 0,有⎭⎬⎫⎩⎨⎧≥−+⎭⎬⎫⎩⎨⎧≥−≤≥−≤2||2||}|{|0εεεY X P X X P Y X P n n ,又因X X Pn →,且Y X Pn →,有02||lim =⎭⎬⎫⎩⎨⎧≥−+∞→εX X P n n ,02||lim =⎭⎫⎩⎨⎧≥−+∞→εY X P n n ,则P {| X − Y | ≥ ε} = 0,取k 1=ε,有01||=⎭⎬⎫⎩⎨⎧≥−k Y X P ,即11||=⎭⎬⎫⎩⎨⎧<−k Y X P , 故11||lim1||}{1=⎭⎬⎫⎩⎨⎧<−=⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧<−==+∞→+∞=k Y X P k Y X P Y X P k k I . 2. 如果X X Pn →,Y Y Pn →.试证:(1)Y X Y X Pn n +→+; (2)XY Y X Pn n →.证:(1)因 | (X n + Y n ) − (X + Y ) | = | (X n − X ) + (Y n − Y )| ≤ | X n − X | + | Y n − Y |,对任意的ε > 0,有⎭⎫⎩⎨⎧≥−+⎭⎬⎫⎩⎨⎧≥−≤≥+−+≤2||2||}|)()({|0εεεY Y P X X P Y X Y X P n n n n ,又因X X P n →,Y Y P n →,有02||lim =⎭⎫⎩⎨⎧≥−+∞→εX X P n n ,02||lim =⎭⎬⎫⎩⎨⎧≥−+∞→εY Y P n n ,故0}|)()({|lim =≥+−++∞→εY X Y X P n n n ,即Y X Y X Pn n +→+;(2)因 | X n Y n − XY | = | (X n − X )Y n + X (Y n − Y ) | ≤ | X n − X | ⋅ | Y n | + | X | ⋅ | Y n − Y |,对任意的ε > 0,有⎭⎬⎫⎩⎨⎧≥−⋅+⎭⎬⎫⎩⎨⎧≥⋅−≤≥−≤2||||2||||}|{|0εεεY Y X P Y X X P XY Y X P n n n n n ,对任意的h > 0,存在M 1 > 0,使得4}|{|1h M X P <≥,存在M 2 > 0,使得8}|{|2hM Y P <≥, 存在N 1 > 0,当n > N 1时,8}1|{|h Y Y P n <≥−, 因| Y n | = | (Y n − Y ) + Y | ≤ | Y n − Y | + | Y |,有4}|{|}1|{|}1|{|22h M Y Y Y P M Y P n n <≥+≥−≤+≥, 存在N 2 > 0,当n > N 2时,4)1(2||2h M X X P n <⎭⎬⎫⎩⎨⎧+≥−ε,当n > max{N 1, N 2}时,有244}1|{|)1(2||2||||22h h h M Y P M X X P Y X X P n n n n =+<+≥+⎭⎬⎫⎩⎨⎧+≥−≤⎭⎬⎫⎩⎨⎧≥⋅−εε,存在N 3 > 0,当n > N 3时,42||1hM Y Y P n <⎭⎬⎫⎩⎨⎧≥−ε,有244}|{|2||2||||11h h h M X P M Y Y P X Y Y P n n =+<≥+⎭⎬⎫⎩⎨⎧≥−≤⎭⎬⎫⎩⎨⎧≥⋅−εε,则对任意的h > 0,当n > max{N 1, N 2, N 3} 时,有h h h Y Y X P Y X X P XY Y X P n n n n n =+<⎭⎬⎫⎩⎨⎧≥−⋅+⎭⎬⎫⎩⎨⎧≥⋅−≤≥−≤222||||2||||}|{|0εεε,故0}|{|lim =≥−+∞→εXY Y X P n n n ,即XY Y X Pn n →.3. 如果X X Pn →,g (x )是直线上的连续函数,试证:)()(X g X g Pn →. 证:对任意的h > 0,存在M > 0,使得4}|{|h M X P <≥, 存在N 1 > 0,当n > N 1时,4}1|{|h X X P n <≥−, 因| X n | = | (X n − X ) + X | ≤ | X n − X | + | X |,则244}|{|}1|{|}1|{|h h h M X P X X P M X P n n =+<≥+≥−≤+≥, 因g (x ) 是直线上的连续函数,有g (x ) 在闭区间 [− (M + 1), M + 1] 上连续,必一致连续, 对任意的ε > 0,存在δ > 0,当 | x − y | < δ 时,有 | g (x ) − g ( y ) | < ε ,存在N 2 > 0,当n > N 2时,4}|{|hX X P n <≥−δ,则对任意的h > 0,当n > max{N 1, N 2} 时,有{}}|{|}1|{|}|{|}|)()({|0M X M X X X P X g X g P n n n ≥+≥≥−≤≥−≤U U δεh hh h M X P M X P X X P n n =++<≥++≥+≥−≤424}|{|}1|{|}|{|δ, 故0}|)()({|lim =≥−+∞→εX g X g P n n ,即)()(X g X g Pn →.4. 如果a X P n →,则对任意常数c ,有ca cX Pn →. 证:当c = 0时,有c X n = 0,ca = 0,显然ca cX Pn →;当c ≠ 0时,对任意的ε > 0,有0||||lim =⎭⎬⎫⎩⎨⎧≥−+∞→c a X P n n ε, 故0}|{|lim =≥−+∞→εca cX P n n ,即ca cX Pn →.5. 试证:X X P n →的充要条件为:n → +∞ 时,有0||1||→⎟⎟⎠⎞⎜⎜⎝⎛−+−XX X X E n n .证:以连续随机变量为例进行证明,设X n − X 的密度函数为p ( y ),必要性:设X X Pn →,对任意的ε > 0,都有0}|{|lim =≥−+∞→εX X P n n ,对012>+εε,存在N > 0,当n > N 时,εεε+<≥−1}|{|2X X P n , 则∫∫∫≥<∞+∞−+++=+=⎟⎟⎠⎞⎜⎜⎝⎛−+−εε||||)(||1||)(||1||)(||1||||1||y y n n dy y p y y dy y p y y dy y p y y XX X X E εεεεεεεεεεεεε=+++<≥−+<−+=++≤∫∫≥<11}|{|}|{|1)()(12||||X X P X X P dy y p dy y p n n y y ,故n → +∞ 时,有0||1||→⎟⎟⎠⎞⎜⎜⎝⎛−+−XX X X E n n ; 充分性:设n → +∞ 时,有0||1||→⎟⎟⎠⎞⎜⎜⎝⎛−+−XX X X E n n , 因∫∫∫≥≥≥++≤++==≥−εεεεεεεεεε||||||)(||1||1)(11)(}|{|y y y n dy y p y y dy y p dy y p X X P ⎟⎟⎠⎞⎜⎜⎝⎛−+−+=++≤∫∞+∞−||1||1)(||1||1X X X X E dy y p y y n n εεεε, 故0}|{|lim =≥−+∞→εX X P n n ,即X X Pn →.6. 设D (x )为退化分布:⎩⎨⎧≥<=.0,1;0,0)(x x x D试问下列分布函数列的极限函数是否仍是分布函数?(其中n = 1, 2, ….)(1){D (x + n )}; (2){D (x + 1/n )}; (3){D (x − 1/n )}.解:(1)对任意实数x ,当n > −x 时,有x + n > 0,D (x + n ) = 1,即1)(lim =++∞→n x D n ,则 {D (x + n )} 的极限函数是常量函数f (x ) = 1,有f (−∞) = 1 ≠ 0,故 {D (x + n )} 的极限函数不是分布函数; (2)若x ≥ 0,有01>+n x ,11=⎟⎠⎞⎜⎝⎛+n x D ,即11lim =⎟⎠⎞⎜⎝⎛++∞→n x D n ,若x < 0,当x n 1−>时,有01<+n x ,01=⎟⎠⎞⎜⎝⎛+n x D ,即01lim =⎟⎠⎞⎜⎝⎛++∞→n x D n ,则⎩⎨⎧≥<=⎟⎠⎞⎜⎝⎛++∞→.0,1;0,01lim x x n x D n 这是在0点处单点分布的分布函数,满足分布函数的基本性质,故⎭⎬⎫⎩⎨⎧⎟⎠⎞⎜⎝⎛+n x D 1的极限函数是分布函数;(3)若x ≤ 0,有01<−n x ,01=⎟⎠⎞⎜⎝⎛−n x D ,即01lim =⎟⎠⎞⎜⎝⎛−+∞→n x D n ,若x > 0,当x n 1>时,有01>−n x ,11=⎟⎠⎞⎜⎝⎛−n x D ,即11lim =⎟⎠⎞⎜⎝⎛−+∞→n x D n ,则⎩⎨⎧>≤=⎟⎠⎞⎜⎝⎛−+∞→.0,1;0,01lim x x n x D n 在x = 0处不是右连续,故⎭⎬⎫⎩⎨⎧⎟⎠⎞⎜⎝⎛−n x D 1的极限函数不是分布函数.7. 设分布函数列 {F n (x )} 弱收敛于连续的分布函数F (x ),试证:{F n (x )} 在 (−∞, +∞) 上一致收敛于分布函数F (x ). 证:因F (x ) 为连续的分布函数,有F (−∞) = 0,F (+∞) = 1,对任意的ε > 0,取正整数ε2>k ,则存在分点x 1 < x 2 < … < x k −1,使得1,,2,1,)(−==k i kix F i L ,并取x 0 = −∞,x k = +∞, 可得k k i k x F x F i i ,1,,2,1,21)()(1−=<=−−L ε, 因 {F n (x )} 弱收敛于F (x ),且F (x ) 连续,有 {F n (x )} 在每一点处都收敛于F (x ),则存在N > 0,当n > N 时,1,,2,1,2|)()(|−=<−k i x F x F i i n L ε,且显然有20|)()(|00ε<=−x F x F n ,20|)()(|ε<=−k k n x F x F ,对任意实数x ,必存在j ,1 ≤ j ≤ k ,有x j −1 ≤ x < x j ,因2)()()()(2)(11εε+<≤≤<−−−j j n n j n j x F x F x F x F x F ,则εεεε−=−−>−−>−−222)()()()(1x F x F x F x F j n ,且εεεε=+<+−<−222)()()()(x F x F x F x F j n ,即对任意的ε > 0和任意实数x ,总存在N > 0,当n > N 时,都有 | F n (x ) − F (x ) | < ε , 故 {F n (x )} 在 (−∞, +∞) 上一致收敛于分布函数F (x ).8. 如果X X Ln →,且数列a n → a ,b n → b .试证:b aX b X a Ln n n +→+. 证:设y 0是F aX + b ( y ) 的任一连续点,则对任意的ε > 0,存在h > 0,当 | y − y 0 | < h 时,4|)()(|0ε<−++y F y F b aX b aX ,又设y 是满足 | y − y 0 | < h 的F aX + b ( y ) 的任一连续点,因⎟⎠⎞⎜⎝⎛−=⎭⎬⎫⎩⎨⎧−≤=≤+=+a b y F a b y X P y b aX P y F X b aX }{)(,有a b y x −=是F X (x )的连续点,且X X L n→, 有)()(lim x F x F X X n n =+∞→,存在N 1,当n > N 1时,4|)()(|ε<−x F x F X X n ,即4|)()(|ε<−++y F y F b aX b aX n ,则当n > N 1且 | y − y 0 | < h 时,2|)()(||)()(||)()(|00ε<−+−≤−++++++y F y F y F y F y F y F b aX b aX b aX b aX b aX b aX n n , 因X 的分布函数F X (x ) 满足F X (−∞) = 0,F X (+∞) = 1,F X (x ) 单调不减且几乎处处连续, 存在M ,使得F X (x ) 在x = ± M 处连续,且41)(ε−>M F X ,4)(ε<−M F X ,因X X Ln →,有41)()(lim ε−>=+∞→M F M F X X n n ,4)()(lim ε<−=−+∞→M F M F X X n n ,则存在N 2,当n > N 2时,41)(ε−>M F n X ,4)(ε<−M F n X ,可得2)(1)(}|{|ε<−+−=>M F M F M X P n n X X n ,因数列a n → a ,b n → b ,存在N 3,当n > N 3时,M h a a n 4||<−,4||h b b n <−, 可得当n > max{N 2, N 3}时,⎭⎫⎩⎨⎧>−+−=⎭⎬⎫⎩⎨⎧>+−+2|)()(|2|)()(|h b b X a a P h b aX b X a P n n n n n n n2}|{|24||42||||||ε<>=⎭⎬⎫⎩⎨⎧>+⋅≤⎭⎬⎫⎩⎨⎧>−+⋅−≤M X P h h X M hP h b b X a a P nn n n n , 则⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧>+−+⎭⎬⎫⎩⎨⎧+≤+≤≤+=+2|)()(|2}{)(000h b aX b X a h y b aX P y b X a P y F n n n n n n n n b X a n n n U222|)()(|200ε+⎟⎠⎞⎜⎝⎛+<⎭⎬⎫⎩⎨⎧>+−++⎭⎬⎫⎩⎨⎧+≤+≤+h y F h b aX b X a P h y b aX P b aX n n n n n n , 且⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧>+−+≤+≤⎭⎬⎫⎩⎨⎧−≤+=⎟⎠⎞⎜⎝⎛−+2|)()(|}{22000h b aX b X a y b X a P h y b aX P h y F n n n n n n n n b aX n U2)(2|)()(|}{00ε+<⎭⎬⎫⎩⎨⎧>+−++≤+≤+y F h b aX b X a P y b X a P n n n b X a n n n n n n n , 即22)(22000εε+⎟⎠⎞⎜⎝⎛+<<−⎟⎠⎞⎜⎝⎛−+++h y F y F h y F b aX b X a b aX n n n n n ,因当n > N 1且 | y − y 0 | < h 时,2)()(2)(00εε+<<−+++y F y F y F b aX b aX b aX n ,在区间⎟⎠⎞⎜⎝⎛++h y h y 00,2取F aX + b ( y ) 的任一连续点y 1,满足 | y 1 − y 0 | < h ,当n > max{N 1, N 2, N 3}时,εεε+<+≤+⎟⎠⎞⎜⎝⎛+<++++)(2)(22)(0100y F y F h y F y F b aX b aX b aX b X a n n n n n ,在区间⎟⎠⎞⎜⎝⎛−−2,00h y h y 取F aX + b ( y ) 的任一连续点y 2,满足 | y 2 − y 0 | < h ,当n > max{N 1, N 2, N 3}时,εεε−>−≥−⎟⎠⎞⎜⎝⎛−>++++)(2)(22)(0200y F y F h y F y F b aX b aX b aX b X a n n n n n ,即对于F aX + b ( y ) 的任一连续点y 0,当n > max{N 1, N 2, N 3}时,ε<−++|)()(|00y F y F b aX b X a n n n , 故)()(y F y F b aX Wb X a n n n ++→,b aX b X a Ln n n +→+. 9. 如果X X Ln →,a Y Pn →,试证:a X Y X Ln n +→+. 证:设y 0是F X + a ( y ) 的任一连续点,则对任意的ε > 0,存在h > 0,当 | y − y 0 | < h 时,4|)()(|0ε<−++y F y F a X a X ,又设y 是满足 | y − y 0 | < h 的F X + a ( y )的任一连续点,因F X + a ( y ) = P {X + a ≤ y } = P {X ≤ y − a } = F X ( y − a ),有x = y − a 是F X (x )的连续点,且X X Ln →, 有)()(lim x F x F X X n n =+∞→,存在N 1,当n > N 1时,4|)()(|ε<−x F x F X X n ,即4|)()(|ε<−++y F y F a X a X n , 则当n > N 1且 | y − y 0 | < h 时,2|)()(||)()(||)()(|00ε<−+−≤−++++++y F y F y F y F y F y F a X a X a X a X a X a X n n ,因a Y Pn →,有02||lim =⎭⎫⎩⎨⎧>−+∞→h a Y P n n ,存在N 2,当n > N 2时,22||ε<⎭⎬⎫⎩⎨⎧>−h a Y P n , 则⎭⎬⎫⎩⎨⎧⎭⎫⎩⎨⎧>−⎭⎬⎫⎩⎨⎧+≤+≤≤+=+2||2}{)(000h a Y h y a X P y Y X P y F n n n n Y X n n U222||200ε+⎟⎠⎞⎜⎝⎛+<⎭⎬⎫⎩⎨⎧>−+⎭⎬⎫⎩⎨⎧+≤+≤+h y F h a Y P h y a X P a X n n n , 且⎭⎬⎫⎩⎨⎧⎭⎫⎩⎨⎧>−≤+≤⎭⎬⎫⎩⎨⎧−≤+=⎟⎠⎞⎜⎝⎛−+2||}{22000h a Y y Y X P h y a X P h y F n n n n a X n U2)(2||}{00ε+<⎭⎬⎫⎩⎨⎧>−+≤+≤+y F h a Y P y Y X P n n Y X n n n , 即22)(22000εε+⎟⎠⎞⎜⎝⎛+<<−⎟⎠⎞⎜⎝⎛−+++h y F y F h y F a X Y X a X n n n n ,因当n > N 1且 | y − y 0 | < h 时,2)()(2)(00εε+<<−+++y F y F y F a X a X a X n ,在区间⎟⎠⎞⎜⎝⎛++h y h y 00,2取F X + a ( y ) 的任一连续点y 1,满足 | y 1 − y 0 | < h ,当n > max{N 1, N 2}时,εεε+<+≤+⎟⎠⎞⎜⎝⎛+<++++)(2)(22)(0100y F y F h y F y F a X a X a X Y X n n n n ,在区间⎟⎠⎞⎜⎝⎛−−2,00h y h y 取F X + a ( y ) 的任一连续点y 2,满足 | y 2 − y 0 | < h ,当n > max{N 1, N 2}时,εεε−>−≥−⎟⎠⎞⎜⎝⎛−>++++)(2)(22)(0200y F y F h y F y F a X a X a X Y X n n n n ,即对于F X + a ( y ) 的任一连续点y 0,当n > max{N 1, N 2}时,ε<−++|)()(|00y F y F a X Y X n n , 故)()(y F y F a X WY X n n ++→,a X Y X Ln n +→+. 10.如果X X Ln →,0Pn Y →,试证:0Pn n Y X →.证:因X 的分布函数F X (x ) 满足F X (−∞) = 0,F X (+∞) = 1,F X (x ) 单调不减且几乎处处连续,则对任意的h > 0,存在M ,使得F X (x ) 在x = ± M 处连续,且41)(h M F X −>,4)(hM F X <−, 因X X L n →,有41)()(lim h M F M F X X n n −>=+∞→,4)()(lim h M F M F X X n n <−=−+∞→,则存在N 1,当n > N 1时,41)(h M F n X −>,4)(hM F n X <−,可得2)(1)(}|{|hM F M F M X P n n X X n <−+−=>,因0Pn Y →,对任意的ε > 0,有0||lim =⎭⎬⎫⎩⎨⎧>+∞→M Y P n n ε,存在N 2,当n > N 2时,2||h M Y P n <⎭⎬⎫⎩⎨⎧>ε, 则当n > max{N 1, N 2}时,有h M Y P M X P M Y M X P Y X P n n n n n n <⎭⎬⎫⎩⎨⎧>+>≤⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧>>≤>εεε||}|{|||}|{|}|{|U ,故0}|{|lim =>+∞→εn n n Y X P ,即0Pn n Y X →.11.如果X X Ln →,a Y Pn →,且Y n ≠ 0,常数a ≠ 0,试证:aXY X L n n →. 证:设y 0是F X / a ( y ) 的任一连续点,则对任意的ε > 0,存在h > 0,当 | y − y 0 | < h 时,4|)()(|0//ε<−y F y F a X a X ,又设y 是满足 | y − y 0 | < h 的F X / a ( y ) 的任一连续点,因)(}{)(/ay F ay X P y a X P y F X a X =≤=⎭⎬⎫⎩⎨⎧≤=,有x = ay 是F X (x )的连续点,且X X Ln →,有)()(lim x F x F X X n n =+∞→,存在N 1,当n > N 1时,4|)()(|ε<−x F x F X X n ,即4|)()(|//ε<−y F y F a X a X n ,则当n > N 1且 | y − y 0 | < h 时,2|)()(||)()(||)()(|0////0//ε<−+−≤−y F y F y F y F y F y F a X a X a X a X a X a X n n ,因X 的分布函数F X (x )满足F X (−∞) = 0,F X (+∞) = 1,F X (x )单调不减且几乎处处连续,存在M ,使得F X (x ) 在x = ± M 处连续,且121)(ε−>M F X ,12)(ε<−M F X ,因X X Ln →,有121)()(lim ε−>=+∞→M F M F X X n n ,12)()(lim ε<−=−+∞→M F M F X X n n ,则存在N 2,当n > N 2时,121)(ε−>M F n X ,12)(ε<−M F n X ,可得6)(1)(}|{|ε<−+−=>M F M F M X P n n X X n ,因0≠→a Y Pn ,有02||lim =⎭⎬⎫⎩⎨⎧>−+∞→h a Y P n n ,存在N 3 > 0,当n > N 3时,62||||ε<⎭⎬⎫⎩⎨⎧>−a a Y P n ,有62||||ε<⎭⎬⎫⎩⎨⎧<a Y P n ,且64||2ε<⎭⎬⎫⎩⎨⎧>−M h a a Y P n , 可得当n > max{N 1, N 2, N 3}时,⎭⎬⎫⎩⎨⎧>⋅−⋅=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−2||||||||2)(2h Y a a Y X P h aY Y a X P h a X Y X P n n n n n n n n n ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎭⎬⎫⎩⎨⎧<⎭⎬⎫⎩⎨⎧>−>≤2||||4||}|{|2a Y M h a a Y M X P n n n U U22||||4||}|{|2ε<⎭⎬⎫⎩⎨⎧<+⎭⎬⎫⎩⎨⎧>−+>≤a Y P M h a a Y P M X P n n n ,则⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎪⎫⎪⎩⎪⎨⎧>−⎭⎬⎫⎩⎨⎧+≤≤⎭⎬⎫⎩⎨⎧≤=22)(000/h a X Y X h y a XP y Y X P y F n n n n n n Y X n n U22220/0ε+⎟⎠⎞⎜⎝⎛+<⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−+⎭⎬⎫⎩⎨⎧+≤≤h y F h a X Y X P h y a X P a X n n n n n ,且⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−⎭⎬⎫⎩⎨⎧≤≤⎭⎬⎫⎩⎨⎧−≤=⎟⎠⎞⎜⎝⎛−222000/h a X Y X y Y X P h y a X P h y F n n n nn n a X n U2)(20/0ε+<⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−+⎭⎬⎫⎩⎨⎧≤≤y F h a X Y X P y Y X P n n Y X n n n n n ,即22)(220/0/0/εε+⎟⎠⎞⎜⎝⎛+<<−⎟⎠⎞⎜⎝⎛−h y F y F h y F a X Y X a X n n n n ,因当n > N 1且 | y − y 0 | < h 时,2)()(2)(0//0/εε+<<−y F y F y F a X a X a X n ,在区间⎟⎠⎞⎜⎝⎛++h y h y 00,2取F X / a ( y ) 的任一连续点y 1,满足 | y 1 − y 0 | < h ,当n > max{N 1, N 2, N 3}时,εεε+<+≤+⎟⎠⎞⎜⎝⎛+<)(2)(22)(0/1/0/0/y F y F h y F y F a X a X a X Y X n n n n ,在区间⎟⎠⎞⎜⎝⎛−−2,00h y h y 取F X / a ( y ) 的任一连续点y 2,满足 | y 2 − y 0 | < h ,当n > max{N 1, N 2, N 3}时,εεε−>−≥−⎟⎠⎞⎜⎝⎛−>)(2)(22)(0/2/0/0/y F y F h y F y F a X a X a X Y X n n n n ,即对于F X / a ( y ) 的任一连续点y 0,当n > max{N 1, N 2, N 3}时,ε<−|)()(|0/0/y F y F a X Y X n n ,故)()(//y F y F a X WY X n n →,aX Y X L n n →. 12.设随机变量X n 服从柯西分布,其密度函数为+∞<<∞−+=x x n nx p n ,)1π()(22.试证:0Pn X →.证:对任意的ε > 0,)arctan(π2)arctan(π1)1π(}|{|22εεεεεεn nx dx x n n X P n ==+=<−−∫, 则12ππ2)arctan(lim π2}|0{|lim =⋅==<−+∞→+∞→εεn X P n n n , 故0Pn X →.13.设随机变量序列{X n }独立同分布,其密度函数为⎪⎩⎪⎨⎧<<=.,0;0,1)(其他ββx x p其中常数β > 0,令Y n = max{X 1, X 2, …, X n },试证:βPn Y →.证:对任意的ε > 0,P {| Y n − β | < ε} = P {β − ε < Y n < β + ε} = P {max{X 1, X 2, …, X n } > β − ε}= 1 − P {max{X 1, X 2, …, X n } ≤ β − ε} = 1 − P {X 1 ≤ β − ε} P {X 2 ≤ β − ε} … P {X n ≤ β − ε}n⎟⎟⎠⎞⎜⎜⎝⎛−−=βεβ1, 则11lim }|{|lim =⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−−=<−+∞→+∞→nn n n Y P βεβεβ, 故βPn Y →.14.设随机变量序列{X n }独立同分布,其密度函数为⎩⎨⎧<≥=−−.,0;,e )()(a x a x x p a x 其中Y n = min{X 1, X 2, …, X n },试证:a Y Pn →.证:对任意的ε > 0,P {| Y n − a | < ε} = P {a − ε < Y n < a + ε} = P {min{X 1, X 2, …, X n } < a + ε}= 1 − P {min{X 1, X 2, …, X n } ≥ a + ε} = 1 − P {X 1 ≥ a + ε} P {X 2 ≥ a + ε} … P {X n ≥ a + ε}εεεn na a x n a a x dx −∞++−−∞++−−−=⎟⎠⎞⎜⎝⎛−−=⎟⎠⎞⎜⎝⎛−=∫e 1e 1e 1)()(, 则1)e 1(lim }|{|lim =−=<−−+∞→+∞→εεn n n n a Y P ,故a Y Pn →.15.设随机变量序列{X n }独立同分布,且X i ~ U(0, 1).令nni i n X Y 11⎟⎟⎠⎞⎜⎜⎝⎛=∏=,试证明:c Y P n →,其中c 为常数,并求出c .证:设∑∏===⎟⎟⎠⎞⎜⎜⎝⎛==n i i n i i n n X n X n Y Z 11ln 1ln 1ln ,因X i ~ U (0, 1), 则1)ln (ln )(ln 101−=−==∫x x x xdx X E i ,2)2ln 2ln (ln )(ln 12122=+−==∫x x x x x xdx X E i ,1)](ln [)(ln )Var(ln 22=−=i i i X E X E X , 可得1)(ln 1)(1−==∑=n i i n X E n Z E ,n X nZ ni in 1)Var(ln 1)Var(12==∑=,由切比雪夫不等式,可得对任意的ε > 0,221)Var(}|)({|εεεn Z Z E Z P n n n =≤≥−,则01lim }|)({|lim 02=≤≥−≤+∞→+∞→εεn Z E Z P n n n n ,即0}|)({|lim =≥−+∞→εn n n Z E Z P ,1)(−=→n P n Z E Z ,因n Z n Y e =,且函数e x 是直线上的连续函数,根据本节第3题的结论,可得1e e −→=PZ n n Y , 故c Y Pn →,其中1e −=c 为常数.16.设分布函数列{F n (x )}弱收敛于分布函数F (x ),且F n (x ) 和F (x ) 都是连续、严格单调函数,又设 ξ 服从(0, 1)上的均匀分布,试证:)()(11ξξ−−→F F Pn. 证:因F (x ) 为连续的分布函数,有F (−∞) = 0,F (+∞) = 1,则对任意的h > 0,存在M > 0,使得21)(h M F −>,2)(h M F <−, 因F (x ) 是连续、严格单调函数,有F −1( y ) 也是连续、严格单调函数, 可得F −1( y ) 在区间 [F (− M − 1), F (M + 1)] 上一致连续, 对任意的ε > 0,存在δ > 0,当y , y * ∈ [F (− M − 1), F (M + 1)] 且 | y − y * | < δ 时,| F −1( y ) − F −1( y *) | < ε, 设y * 是 [F (−M ), F (M )] 中任一点,记x * = F −1( y *),有x * ∈ [−M , M ],不妨设0 < ε < 1, 则对任意的x 若满足 ε≥−|*|x x ,就有 δ≥−|*)(|y x F ,根据本节第7题的结论知,{F n (x )} 在 (−∞, +∞) 上一致收敛于分布函数F (x ), 则对δ > 0和任意实数x ,总存在N > 0,当n > N 时,都有 | F n (x ) − F (x ) | < δ, 因当n > N 时,δ<−|)()(|x F x F n 且δ≥−|*(|y x F ,有*)(y x F n ≠,即*)(1y F x n −≠, 则对任意的0 < ε < 1,当n > N 时,*)(1y F n −满足ε<−=−−−−|*)(*)(||**)(|111y F y F x y F n n , 可得对任意的0 < ε < 1,当n > N 时,h M F M F P F F P n −>−∈≥<−−−1)]}(),([{}|)()({|11ξεξξ由h 的任意性可知1}|)()({|lim 11=<−−−+∞→εξξF F P n n ,故)()(11ξξ−−→F F Pn.17.设随机变量序列{X n }独立同分布,数学期望、方差均存在,且E (X n ) = µ,试证:µP n k k X k n n →⋅+∑=1)1(2.证:令∑=⋅+=nk k n X k n n Y 1)1(2,并设Var (X n ) = σ 2, 因µµµ=+⋅+=+=∑=)1(21)1(2)1(2)(1n n n n k n n Y E nk n , 且222212222)1(324)12)(1(61)1(4)1(4)Var(σσσ++=++⋅+=+=∑=n n n n n n n n k n n Y nk n , 则由切比雪夫不等式可得,对任意的ε > 0,222)1(3241)Var(1}|{|1σεεεµ++−=−≥<−≥n n n Y Y P n n , 因1)1(3241lim 22=⎥⎦⎤⎢⎣⎡++−+∞→σεn n n n ,由夹逼准则可得1}|{|lim =<−+∞→εµn n Y P , 故µP n k kn X k n n Y →⋅+=∑=1)1(2. 18.设随机变量序列{X n }独立同分布,数学期望、方差均存在,且E (X n ) = 0,Var (X n ) = σ 2.试证:E (X n ) = 0,Var (X n ) = σ 2.试证:2121σP n k k X n →∑=. 注:此题与第19题应放在习题4.3中,需用到4.3节介绍的辛钦大数定律.证:因随机变量序列}{2n X 独立同分布,且222)]([)Var()(σ=+=n n n X E X X E 存在,故}{2nX 满足辛钦大数定律条件,}{2nX 服从大数定律,即2121σP n k k X n →∑=.19.设随机变量序列{X n }独立同分布,且Var (X n ) = σ 2存在,令∑==n i i X n X 11,∑=−=n i i n X X n S 122)(1.试证:22σPnS →.证:2122112122122121)2(1)(1X X n X n X X X n X X X X n X X n S n i i ni i n i i n i i i n i i n−=⎟⎟⎠⎞⎜⎜⎝⎛+−=+−=−=∑∑∑∑∑=====,设E(X n ) = µ,{X n }满足辛钦大数定律条件,{X n }服从大数定律,即µP nk k X n X →=∑=11,则根据本节第2题第(2)小问的结论知,22µPX →,因随机变量序列}{2n X 独立同分布,且2222)]([)Var()(µσ+=+=n n n X E X X E 存在,则}{2nX 满足辛钦大数定律条件,}{2nX 服从大数定律,即22121µσ+→∑=P n k k X n ,故根据本节第2题第(1)小问的结论知,22222122)(1σµµσ=−+→−=∑=P n i i nX X n S .20.将n 个编号为1至n 的球放入n 个编号为1至n 的盒子中,每个盒子只能放一个球,记⎩⎨⎧=.,0;,1反之的盒子的球放入编号为编号为i i X i 且∑==ni i n X S 1,试证明:0)(Pn n n S E S →−. 证:因n X P i 1}1{==,nX P i 11}0{−==,且i ≠ j 时,)1(1}1{−==n n X X P j i ,)1(11}0{−−==n n X X P j i , 则n X E i 1)(=,⎟⎠⎞⎜⎝⎛−=n n X i 111)Var(, 且i ≠ j 时,)1(1)(−=n n X X E j i ,)1(11)1(1)()()(),Cov(22−=−−=−=n n n n n X E X E X X E X X j i j i j i , 有1)()(1==∑=ni i n X E S E ,1)1(1)1(11),Cov(2)Var()Var(211=−⋅−+−=+=∑∑≤<≤=n n n n n X X X S nj i j i ni i n , 可得0)]()([1)(=−=⎥⎦⎤⎢⎣⎡−n n n n S E S E n n S E S E ,221)Var(1)(Var n S n n S E S n n n ==⎥⎦⎤⎢⎣⎡−, 由切比雪夫不等式,可得对任意的ε > 0,2221)(Var 1)()(εεεn n S E S n S E S E n S E S P n n n n n n =⎥⎦⎤⎢⎣⎡−≤⎭⎬⎫⎩⎨⎧≥⎥⎦⎤⎢⎣⎡−−−, 则01lim )()(lim 022=≤⎭⎬⎫⎩⎨⎧≥⎥⎦⎤⎢⎣⎡−−−≤+∞→+∞→εεn n S E S E n S E S P n n n n n n , 故0)(Pn n nS E S →−.习题4.21. 设离散随机变量X 的分布列如下,试求X 的特征函数.1.02.03.04.03210PX解:特征函数ϕ (t ) = e it ⋅ 0 × 0.4 + e it ⋅ 1 × 0.3 + e it ⋅ 2 × 0.2 + e it ⋅ 3 × 0.1 = 0.4 + 0.3 e it + 0.2 e 2it + 0.1 e 3it .2. 设离散随机变量X 服从几何分布P {X = k } = (1 − p ) k − 1 p , k = 1, 2, … .试求X 的特征函数.并以此求E (X ) 和Var (X ). 解:特征函数ititk k ititk k itk p p p p p p t e)1(1e )]1([ee)1(e )(1111−−=−=−⋅=∑∑+∞=−+∞=−ϕ; 因22]e )1(1[e ]e )1(1[]e )1([e ]e )1(1[e )(it it it it it it it p ip p i p p p i p t −−=−−⋅−−⋅−−−⋅⋅=′ϕ,有)()0(2X iE pip ip ===′ϕ,故pX E 1)(=; 因332]e )1(1[]e )1(1[e ]e )1([]e )1(1[e 2]e )1(1[e )(it it it itit itit itp p p i p p ip p i ip t −−−+−=⋅−−⋅−−−−−⋅⋅=′′−−ϕ, 有)(2)2()0(2223X E i pp p p p =−−=−−=′′ϕ,可得222)(p p X E −=, 故222112)Var(p pp p p X −=⎟⎟⎠⎞⎜⎜⎝⎛−−=. 3. 设离散随机变量X 服从巴斯卡分布rk r p p r k k X P −−⎟⎟⎠⎞⎜⎜⎝⎛−−==)1(11}{,k = r , r + 1, …试求X 的特征函数.解:特征函数∑∑+∞=−−+∞=−−+−−−=−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=r k r k it r k itr r r k r k r itkp r k k r p p p r k t )(e)1)(1()1()!1(e )1(11e )(L ϕ ∑∑+∞=−=−−−+∞=−=−−=+−−−=r k p x r k r r it rk p x r k r it ititdx x d r p x r k k r p e )1(111e )1()()!1()e ()1()1()!1()e (L itit it p x r r it p x r r r it p x k k r r r it x r r p x dx d r p x dx d r p e )1(e )1(11e )1(1111)1()!1()!1()e (11)!1()e ()!1()e (−=−=−−−=+∞=−−−−−⋅−=⎟⎠⎞⎜⎝⎛−⋅−=⎟⎟⎠⎞⎜⎜⎝⎛⋅−=∑rit itr it r it p p p p ⎥⎦⎤⎢⎣⎡−−=−−=e )1(1e ]e )1(1[)e (. 4. 求下列分布函数的特征函数,并由特征函数求其数学期望和方差.(1))0(,e 2)(||1>=∫∞−−a dt a x F x t a ; (2))0(,1π)(222>+=∫∞−a dt at a x F x . 解:(1)因密度函数||11e 2)()(x a ax F x p −=′=,故⎥⎥⎦⎤⎢⎢⎣⎡−++=⎥⎦⎤⎢⎣⎡+=⋅=+∞−∞−+∞+−∞−+∞+∞−−∫∫∫0)(0)(0)(0)(||1e e 2e e 2ee 2)(ait a it a dx dx a dx a t x a it x a it x a it x a it x a itx ϕ 222112at a a it a it a +=⎟⎠⎞⎜⎝⎛−−+=; 因222222221)(22)()(a t ta t a t a t +−=⋅+−=′ϕ,有)(0)0(1X iE ==′ϕ, 故E (X ) = 0;因32242242222222221)(26)(2)(22)(2)(a t a t a a t t a t t a a t a t +−=+⋅+⋅−+⋅−=′′ϕ, 有)(22)0(222641X E i a a a =−=−=′′ϕ,可得222)(a X E =, 故222202)Var(aa X =−=;(2)因密度函数22221π)()(ax a x F x p +⋅=′=, 则∫+∞∞−+⋅=dx a x a t itx 2221e π)(ϕ, 由第(1)小题的结论知∫∞+∞−=+=dx x p a t a t itx )(e )(12221ϕ,根据逆转公式,可得∫∫∞+∞−−∞+∞−−−+⋅===dt at a dt t a x p itx itx x a 2221||1e π21)(e π21e 2)(ϕ, 可得||||222e πe 2π21e y a y a itya a a dt a t −−−+∞∞−=⋅=+⋅∫, 故||||222e e ππ1e π)(t a t a itx a a dx ax a t −−+∞∞−=⋅=+⋅=∫ϕ; 因⎩⎨⎧>−<=′−,0,e ,0,e )(2t a t a t atat ϕ 有a a −=+′≠=−′)00()00(22ϕϕ,即)0(2ϕ′不存在, 故E (X ) 不存在,Var (X ) 也不存在.5. 设X ~ N (µ, σ 2),试用特征函数的方法求X 的3阶及4阶中心矩. 解:因X ~ N (µ, σ 2),有X 的特征函数是222e)(t t i t σµϕ−=,则)(e)(2222t i t t t i σµϕσµ−⋅=′−,)(e)(e )(222222222σσµϕσµσµ−⋅+−⋅=′′−−t t i t t i t i t ,因)()(3e)(e)(2223222222σσµσµϕσµσµ−⋅−⋅+−⋅=′′′−−t i t i t t t i t t i ,有ϕ″′(0) = e 0 ⋅ (i µ )3 + e 0 ⋅ 3i µ ⋅ (−σ 2) = − i µ 3 − 3i µσ 2 = i 3E (X 3) = − i E (X 3), 故E (X 3) = µ 3 + 3µσ 2; 又因2222222422)4()(3e)()(6e)(e)(222222σσσµσµϕσµσµσµ−⋅+−⋅−⋅+−⋅=−−−t t i t t i t t i t i t i t ,有ϕ (4)(0) = e 0 ⋅ (i µ )4 + e 0 ⋅ 6(i µ)2 ⋅ (−σ 2) + e 0 ⋅ 3σ 4 = µ 4 + 6µ 2σ 2 + 3σ 4 = i 4E (X 4) = E (X 4), 故E (X 4) = µ 4 + 6µ 2σ 2 + 3σ 4.6. 试用特征函数的方法证明二项分布的可加性:若X ~ b (n , p ),Y ~ b (m , p ),且X 与Y 独立,则X + Y ~ b (n + m , p ).证:因X ~ b (n , p ),Y ~ b (m , p ),且X 与Y 独立,有X 与Y 的特征函数分别为ϕ X (t ) = ( p e it + 1 − p ) n ,ϕ Y (t ) = ( p e it + 1 − p ) m , 则X + Y 的特征函数为ϕ X + Y (t ) = ϕ X (t ) ⋅ϕ Y (t ) = ( p e it + 1 − p ) n + m ,这是二项分布b (n + m , p )的特征函数, 故根据特征函数的唯一性定理知X + Y ~ b (n + m , p ).7. 试用特征函数的方法证明泊松分布的可加性:若X ~ P (λ1),Y ~ P (λ2),且X 与Y 独立,则X + Y ~ P (λ1 + λ2).证:因X ~ P (λ1),Y ~ P (λ2),且X 与Y 独立,有X 与Y 的特征函数分别为)1(e1e )(−=itt X λϕ,)1(e2e )(−=itt Y λϕ,则X + Y 的特征函数为)1)(e(21e )()()(−++==itt t t Y X Y X λλϕϕϕ,这是泊松分布P (λ1 + λ2)的特征函数,故根据特征函数的唯一性定理知X + Y ~ P (λ1 + λ2).8. 试用特征函数的方法证明伽马分布的可加性:若X ~ Ga (α1, λ),Y ~ Ga (α2, λ),且X 与Y 独立,则X + Y ~ Ga (α1 + α2 , λ).证:因X ~ Ga (α1, λ),Y ~ Ga (α2, λ),且X 与Y 独立,有X 与Y 的特征函数分别为11)(αλϕ−⎟⎠⎞⎜⎝⎛−=it t X ,21)(αλϕ−⎟⎠⎞⎜⎝⎛−=it t Y ,则X + Y 的特征函数为)(211)()()(ααλϕϕϕ+−+⎟⎠⎞⎜⎝⎛−==it t t t Y X Y X ,这是伽马分布Ga (α1 + α2 , λ)的特征函数,故根据特征函数的唯一性定理知X + Y ~ Ga (α1 + α2 , λ).9. 试用特征函数的方法证明χ 2分布的可加性:若X ~ χ 2 (n ),Y ~ χ 2 (m ),且X 与Y 独立,则X + Y ~ χ 2 (n + m ).证:因X ~ χ 2 (n ),Y ~ χ 2 (m ),且X 与Y 独立,有X 与Y 的特征函数分别为2)21()(n X it t −−=ϕ,2)21()(m Y it t −−=ϕ,则X + Y 的特征函数为2)21()()()(m n Y X Y X it t t t +−+−==ϕϕϕ,这是χ 2分布χ 2 (n + m )的特征函数,故根据特征函数的唯一性定理知X + Y ~ χ 2 (n + m ).10.设X i 独立同分布,且X i ~ Exp(λ),i = 1, 2, …, n .试用特征函数的方法证明:),(~1λn Ga X Y ni i n ∑==.证:因X i ~ Exp (λ),i = 1, 2, …, n ,且X i 相互独立,有X i 的特征函数为11)(−⎟⎠⎞⎜⎝⎛−=−=λλλϕit it t i X ,则∑==ni i n X Y 1的特征函数为nni X Y it t t i n −=⎟⎠⎞⎜⎝⎛−==∏λϕϕ1)()(1,这是伽马分布Ga (n , λ)的特征函数,故根据特征函数的唯一性定理知Y n ~ Ga (n , λ).11.设连续随机变量X 的密度函数如下:+∞<<∞−−+⋅=x x x p ,)(π1)(22µλλ, 其中参数λ > 0, −∞ < µ < +∞,常记为X ~ Ch (λ, µ ).(1)试证X 的特征函数为exp{i µ t − λ | t |},且利用此结果证明柯西分布的可加性; (2)当µ = 0, λ = 1时,记Y = X ,试证ϕ X + Y (t ) = ϕ X (t ) ⋅ϕ Y (t ),但是X 与Y 不独立;(3)若X 1, X 2, …, X n 相互独立,且服从同一柯西分布,试证:)(121n X X X n+++L 与X 1同分布. 证:(1)根据第4题第(2)小题的结论知:若X *的密度函数为22π1)(*xx p +⋅=λλ,即X * ~ Ch (λ, 0), 则X *的特征函数为ϕ * (t ) = e −λ | t |,且X = X * + µ 的密度函数为22)(π1)(µλλ−+⋅=x x p , 故X 的特征函数为ϕ X (t ) = e i µ t ϕ * (t ) = e i µ t ⋅ e −λ | t | = e i µ t −λ | t |; 若X 1 ~ Ch (λ1, µ1),X 2 ~ Ch (λ2, µ2),且相互独立,有X 1与X 2的特征函数分别为||111e )(t t i X t λµϕ−=,||222e )(t t i X t λµϕ−=, 则X 1 + X 2的特征函数为||)()(21212121e )()()(t t i X X X X t t t λλµµϕϕϕ+−++==,这是柯西分布Ch (λ1 + λ2, µ1 + µ2)的特征函数,故根据特征函数的唯一性定理知X 1 + X 2 ~ Ch (λ1 + λ2, µ1 + µ2); (2)当µ = 0, λ = 1时,X ~ Ch (1, 0),有X 的特征函数为ϕ X (t ) = e −| t |,又因Y = X ,有Y 的特征函数为ϕ Y (t ) = e −| t |,且X + Y = 2X ,故X + Y 的特征函数为ϕ X + Y (t ) = ϕ 2X (t ) = ϕ X (2t ) = e −| 2t | = e −| t | ⋅ e −| t | =ϕ X (t ) ⋅ϕ Y (t ); 但Y = X ,显然有X 与Y 不独立;(3)因X i ~ Ch (λ, µ ),i = 1, 2, …, n ,且X i 相互独立,有X i 的特征函数为||e )(t t i X t i λµϕ−=, 则)(121n n X X X nY +++=L 的特征函数为 )(e e )()(1||111t n t t t X t t i n t n ti n ni X ni X nY i in ϕϕϕϕλµλµ===⎟⎠⎞⎜⎝⎛==−⎟⎟⎠⎞⎜⎜⎝⎛⋅−⋅==∏∏,故根据特征函数的唯一性定理知)(121n X X X n+++L 与X 1同分布. 12.设连续随机变量X 的密度函数为p (x ),试证:p (x ) 关于原点对称的充要条件是它的特征函数是实的偶函数.证:方法一:根据随机变量X 与−X 的关系充分性:设X 的特征函数ϕ X (t )是实的偶函数,有ϕ X (t ) = ϕ X (−t ),则−X 的特征函数ϕ −X (t ) = ϕ X (−t ) = ϕ X (t ),根据特征函数的唯一性定理知−X 与X 同分布,因X 的密度函数为p (x ),有−X 的密度函数为p (−x ),故由−X 与X 同分布可知p (−x ) = p (x ),即p (x ) 关于原点对称; 必要性:设X 的密度函数p (x ) 关于原点对称,有p (−x ) = p (x ), 因−X 的密度函数为p (−x ),即−X 与X 同分布,则−X 的特征函数ϕ −X (t ) = ϕ X (−t ) = ϕ X (t ),且)(][e ][e ][e )()()(t E E E t t X itX itX X it X X ϕϕ=====−−−, 故X 的特征函数ϕ X (t )是实的偶函数. 方法二:根据密度函数与特征函数的关系充分性:设连续随机变量X 的特征函数ϕ X (t )是实的偶函数,有ϕ X (t ) = ϕ X (−t ),因∫+∞∞−−=dt t x p itx )(e π21)(ϕ,有∫∫+∞∞−+∞∞−−−==−dt t dt t x p itxx it )(e π21)(e π21)()(ϕϕ, 令t = −u ,有dt = −du ,且当t → −∞时,u → +∞;当t → +∞时,u → −∞,则)()(e π21)(e π21))((e π21)()(x p du u du u du u x p iuxiux x u i ==−=−−=−∫∫∫+∞∞−−+∞∞−−−∞∞+−ϕϕϕ, 故p (x ) 关于原点对称;必要性:设X 的密度函数p (x ) 关于原点对称,有p (−x ) = p (x ),因∫+∞∞−−==dx x p E t itxitX)(e )(e)(ϕ,有∫∫+∞∞−−+∞∞−−==−dx x p dx x p t itx xt i )(e )(e)()(ϕ,令x = −y ,有dx = −dy ,且当x → −∞时,y → +∞;当x → +∞时,y → −∞, 则)()(e )(e ))((e )()(t dy y p dy y p dy y p t X ity ity y it X ϕϕ==−=−−=−∫∫∫+∞∞−+∞∞−−∞∞+−−,且)(][e ][e ][e )()()(t E E E t t X itX itX X t i X X ϕϕ====−=−−, 故X 的特征函数ϕ X (t )是实的偶函数.13.设X 1, X 2, …, X n 独立同分布,且都服从N(µ , σ 2)分布,试求∑==ni i X n X 11的分布.证:因X i ~ N (µ , σ 2),i = 1, 2, …, n ,且X i 相互独立,有X i 的特征函数为222e)(t t i X t i σµϕ−=,则∑==n i i X n X 11的特征函数为nt t i n t n t i n ni X n i X n X n t t t i i 2211112222ee)()(σµσµϕϕϕ−⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−⋅====⎟⎠⎞⎜⎝⎛==∏∏,这是正态分布⎟⎟⎠⎞⎜⎜⎝⎛n N 2,σµ的特征函数,故根据特征函数的唯一性定理知⎟⎟⎠⎞⎜⎜⎝⎛=∑=n N X n X ni i 21,~1σµ. 14.利用特征函数方法证明如下的泊松定理:设有一列二项分布{b (k , n , p n )},若λ=→∞n n np lim ,则L ,2,1,0,e !),,(lim ==−∞→k k p n k b kn n λλ.证:二项分布b (n , p n )的特征函数为ϕ n (t ) = ( p n e it + 1 − p n ) n = [1 + p n (e it − 1)] n ,且n → ∞时,p n → 0,因)1(e)1(e )1(e 1e )]1(e 1[lim )]1(e 1[lim )(lim −−⋅−→→∞→∞=−+=−+=itit n it n n np p itn p n it n n n n p p t λϕ,。
概率论课后习题答案

概率论课后习题答案概率论与数理统计习题及答案习题⼀4.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P (AB ). 【解】 P (AB )=1-P (AB )=1-[P (A )-P (A -B )] =1-[0.7-0.3]=0.66.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0,P (AC )=1/12,求A ,B ,C ⾄少有⼀事件发⽣的概率.【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC )=14+14+13-112=3413. ⼀个袋内装有⼤⼩相同的7个球,其中4个是⽩球,3个是⿊球,从中⼀次抽取3个,计算⾄少有两个是⽩球的概率. 【解】设A i ={恰有i 个⽩球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故 232322()()()35P A A P A P A =+=23. 设P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B )【解】 ()()()()()()()()P AB P A P AB P B A B P A B P A P B P AB -==+- 0.70.510.70.60.54-==+-33. 三⼈独⽴地破译⼀个密码,他们能破译的概率分别为15,13,14,求将此密码破译出的概率.【解】设A i ={第i ⼈能破译}(i =1,2,3),则310.6534=-= 34. 甲、⼄、丙三⼈独⽴地向同⼀飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有⼀⼈击中,则飞机被击落的概率为0.2;若有两⼈击中,则飞机被击落的概率为0.6;若三⼈都击中,则飞机⼀定被击落,求:飞机被击落的概率. 【解】设A ={飞机被击落},B i ={恰有i ⼈击中飞机},i =0,1,2,3由全概率公式,得3()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7 =0.458习题⼆1.⼀袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表⽰取出的3只球中的最⼤号码,写出随机变量X 的分布律. 【解】353524353,4,51(3)0.1C 3(4)0.3C C (5)0.6C X P X P X P X ========== 故所求分布律为4.(1)设随机变量X 的分布律为P {X =k }=!k akλ,其中k =0,1,2,…,λ>0为常数,试确定常数a . (2)设随机变量X 的分布律为P {X =k }=a/N , k =1,2,…,N ,试确定常数a . 【解】(1)由分布律的性质知1()e !ka λ-=(2) 由分布律的性质知111()N Nk k aP X k a N======∑∑即 1a =.8.已知在五重贝努⾥试验中成功的次数X 满⾜P {X =1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则1422355C (1)C (1)p p p p -=-故 13p =所以 4451210(4)C ()33243P X ===. 21.设X ~N (3,22),(1)求P {222X P X P ---??<≤=<≤11(1)(1)1220.841310.69150.5328ΦΦΦΦ=--=-+ ? ?=-+=433103(410)222X P X P ----??(||2)(2)(2)P X P X P X >=>+<-323323222215151122220.691510.99380.6977X X P P ΦΦΦΦ-----=>+< ? ?=--+-=+- ? ? ? ?????????=+-=333(3)()1(0)0.522X P X P Φ->=>=-=- (2) c=322.由某机器⽣产的螺栓长度(cm )X ~N (10.05,0.062),规定长度在10.05±0.12内为合格品,求⼀螺栓为不合格品的概率.【解】10.050.12(|10.05|0.12)0.060.06X P X P ?-?->=>1(2)(2)2[1(2)]0.0456ΦΦΦ=-+-=-=24.设随机变量X 分布函数为F (x )=e ,0,(0),00.xt A B x ,x λ-?+≥>?(1)求常数A ,B ;(2)求P {X ≤2},P {X >3};(3)求分布密度f (x ).【解】(1)由00lim ()1lim ()lim ()x x x F x F x F x →+∞→+→-==??得11A B =??=-?(2) 2(2)(2)1e P X F λ-≤==-33(3)1(3)1(1e )e P X F λλ-->=-=--=(3) e ,0()()0,0x x f x F x x λλ-?≥'==?44.若随机变量X 在(1,6)上服从均匀分布,则⽅程y 2+Xy +1=0有实根的概率是多少?0,x f x ?<24(40)(2)(2)(2)5P X P X P X P X -≥=≥+≤-=≥=习题三(1)求关于X 和关于Y 的边缘分布;(2) X 与Y 是否相互独⽴?【解】(1)X 和Y 的边缘分布如下表(2) 因{2}{0.4}0.20.8P X P Y ===? 0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独⽴.习题四1.设随机变量X 的分布律为求【解】(1) 11111()(1)012;82842E X =-?+?+?+?= (2) 2222211115()(1)012;82844E X =-?+?+?+?=(3) 1(23)2()32342E X E X +=+=?+=5.设随机变量X 的概率密度为f (x )=??≤≤-<≤.,0,21,2,10,其他x x x x求E (X ),D (X ). 【解】12201()()d d (2)d E X xf x x x x x x x +∞-∞=332011 1.33x x x ??=+-=?122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=故 221()()[()].6D XE X E X =-=7.设随机变量X ,Y 相互独⽴,且E (X )=E (Y )=3,D (X )=12,D (Y )=16,求E (3X -2Y ),D (2X -3Y ). 【解】(1) (32)3()2()3323 3.E X Y E X E Y -=-=?-?=(2) 22(23)2()(3)412916192.D X Y D X DY -=+-=?+?=习题七2.设总体X 的密度函数f (x ,θ)=22(),0,0,.x x θθθ?-<X 1,X 2,…,X n 为其样本,试求参数θ的矩法估计. 【解】23022()()d ,233x x E X x x x θθθθθθθ??=-=-=令E (X )=A 1=X ,因此3θ=X 所以θ的矩估计量为 ^3.X θ=3.设总体X 的密度函数为f (x ,θ),X 1,X 2,…,X n 为其样本,求θ的极⼤似然估计.(1) f (x ,θ)=,0,0,0.e x x x θθ-?≥?(2) f (x ,θ)=1,01,0,.x x θθ-?<【解】(1)似然函数111(,)ee eniii n nx x nn ii i L f x θθθθθθ=---==∑===∏∏1ln ln ni i g L n x θθ===-∑i i g L n x θθθ===-=∑知 1 nii nxθ==∑所以θ的极⼤似然估计量为1 Xθ=. (2) 似然函数11,01nni i i L x x θθ-==<<∏,i =1,2,…,n.1ln ln (1)ln ni i L n x θθ==+-∏由1d ln ln 0d ni i L n x θθ==+=∏知11?ln ln nniii i n nxx θ===-=-∑∏ii nxθ==-∑10.设某种砖头的抗压强度X ~N (µ,σ2),今随机抽取20块砖头,测得数据如下(kg ·cm -2):64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1)求µ的置信概率为0.95的置信区间. (2)求σ2的置信概率为0.95的置信区间. 【解】76.6,18.14,10.950.05,20,x s n α===-==/20.025222/20.0250.975(1)(19)2.093,(1)(19)32.852,(19)8.907t n t n ααχχχ-==-===(1) µ的置信度为0.95的置信区间/2(1)76.6 2.093(68.11,85.089)a x n-== ? ?????(2)2σ的置信度为0.95的置信区间222222/21/2(1)(1)1919,18.14,18.14(190.33,702.01)(1)(1)32.8528.907n s n s n n ααχχ-??--??=??= ?--其中θ(0<θ<2)是未知参数,利⽤总体的如下样本值3,1,3,0,3,1,2,3,求θ的矩估计值和极⼤似然估计值. 【解】8i x E X E X x x x θθ=-=-====∑令得⼜所以θ的矩估计值31 .44x θ-== (2)似然函数86241(,)4(1)(12).ii L P x θθθθ===--∏2ln ln 46ln 2ln(1)4ln(1),d ln 628628240,d 112(1)(12)L L θθθθθθθθθθθθ=++-+--+=--==----解2628240θθ-+=得 1,2θ=.由于71,122+>所以θ的极⼤似然估计值为 7?2θ=。
概率统计习题册

《概率论与数理统计》课程教学改革习题册班级.学号姓名浙江万里学院基础学院综合教学部《概率论与数理统计》课程教学改革小组年月007. AB 为随机事件•且ACB.P B >0,则有一、选择题 001.若事件AB 同时出现的概率为P AB =0,则B AS 是不可能事件002、某射手向同一目标独立的射击5枪,若毎次击中靶的概率为,则恰有两枪脱靶的概率A 0.6-xOA' :B 0・6'x0・4SC C^0.6'x04':D C;0.6'x0,4\ 003、进行一系列独立的试验,每次试验成功的概率为〃,则在两次成功之前已经失败了 3次的概率为A 4/?'x \ — p C Cp4 \-p' D Cy 1 — p X004.每次试验成功的概率为p.进行重复试验,直到第10次试验才取得4次成功的概率A G 加X 1-pC lO/r i-p \005、设随机事件A g 相互独立,则下面结论成立的是006、当事件AB 同时发生时,事件C 必发生,则下列结论正确的是第一章习题C AB = 0未必成立D P A >0或P B >0B 4p 1-p/I P AB A P B :B 1-P B P A = P 血:C PAPB H PBPAD P AUB = 1-P A 1-P B .A P C = P AB :B PC =P A U B : C P C >P A BD P C <P A B -loA P A < P A\B B P A <P A\B :DP A >P A\B o008、A.B为随机事件,且A Q B.P B >0 ,则有A P AUB =P A B P AB =P AC P B\A =P BD P A-B =P A -P B009、设事件AB相互独立,则P AUB =A P A +P BC 1-P APBD l-P APB010、以A表示事件“甲种产品畅销,乙种产品滞销则其对立事件A表示事件A “甲种产品滞销.乙种产品畅销I B“甲、乙两种产品均滞销JC“甲种产品滞销”:D“甲种产品滞销或乙种产品畅销”。
习题课4

第二步: 第二步 对似然函数取对数 ln L(θ ); 第三步:对 求导并令其等于0, 得似然方程(组 第三步 对ln L(θ )求导并令其等于 得似然方程 组) 第四步: 求解似然方程. 第四步 求解似然方程 注:当似然方程无解的时候, 应直接寻求 当似然方程无解的时候 使似然函数达到最大的解求得极大似然估计。 使似然函数达到最大的解求得极大似然估计。
2
n
n
2 i
− nX .
2
点评:以上公式极其简单 点评:以上公式极其简单, 却是统计学中常 用公式, 务必熟记. 用公式 务必熟记
9
是取自正态总体N(0, 22)的 例2 设X1, X2, X3, X4是取自正态总体 的 一个样本, 一个样本 令
Y = a ( X 1 − 2 X 2 )2 + b( 3 X 3 − 4 X 4 )2 ,
1 . F −α (n1, n2 ) = 1 F (n2 , n1 ) α
2
4. 两个抽样分布定理的重要结论 两个抽样分布定理的重要结论: 单个正态总体): 单个正态总体 Th6.2.4 (单个正态总体 2 X −µ (n − 1)S2 σ ~ t(n − 1); ~ χ 2 (n − 1). X ~ N(µ , ); σ2 n S n 两个独立正态总体): 两个独立正态总体 Th6.2.5 (两个独立正态总体
1 1 Y1 = ( X 1 + X 2 + ⋯ + X 6 ), Y2 = ( X 7 + X 8 + X 9 ), 6 3 1 9 2 2 2(Y1 − Y2 ) S = ∑ ( X i − Y2 ) , Z= . 2 i =7 S
证明: 证明:Z ~ t (2) . 点评: 点评: 历史上研究生入学试题. 历史上研究生入学试题
概率论与数理统计课后习题答案习题第四章

y 2 i4e −4 y dy =
00
3
1 2 E ( X ) = ∫ xi2 xdx = , 0 3
圣才统计学习网
tj
圣才学习网
求 E(XY). 【解】方法一:先求 X 与 Y 的均值
.c
⎧ 2 x, 0 ≤ x ≤ 1, 其他; ⎩0,
5.设随机变量 X 的概率密度为
N
∑ kP{ X = k}
k =0
N
求 E(X) ,D(X). 【解】 E ( X ) =
∫
+∞
−∞
xf ( x)dx = ∫ x 2 dx + ∫ x(2 − x)dx
0 1
1
2
w.
1 2 0 1
3 ⎡1 3 ⎤ ⎡ 2 x ⎤ = ⎢ x ⎥ + ⎢ x − ⎥ = 1. 3 ⎦1 ⎣ 3 ⎦0 ⎣
12.袋中有 12 个零件,其中 9 个合格品,3 个废品.安装机器时,从袋中一个一个地取出(取 出后不放回) ,设在取出合格品之前已取出的废品数为随机变量 X,求 E(X)和 D(X). 【解】设随机变量 X 表示在取得合格品以前已取出的废品数,则 X 的可能取值为 0,1,2, 3.为求其分布律,下面求取这些可能值的概率,易知
2
8.设随机变量(X,Y)的概率密度为
计
【解】 (1) E[U ] = E (2 X + 3Y + 1) = 2 E ( X ) + 3E (Y ) + 1
= 2 × 5 + 3 × 11 + 1 = 44.
因Y , Z 独立E (Y )i E ( Z ) − 4 E ( X )
= 11× 8 − 4 × 5 = 68.
概率论及数理统计练习题(含答案)

第一章 随机事件及其概率练习: 1. 判定正误(1)必然事件在一次实验中必然发生,小概率事件在一次实验中必然不发生。
(B )(2)事件的发生与否取决于它所包括的全数样本点是不是同时显现。
(B )(3)事件的对立与互不相容是等价的。
(B ) (4)假设()0,P A = 那么A =∅。
(B )(5)()0.4,()0.5,()0.2P A P B P AB ===若则。
(B ) (6)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (7)考察有两个小孩的家庭小孩的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),那么P{}1=3两个女孩。
(B )(8)假设P(A)P(B)≤,那么⊂A B 。
(B ) (9)n 个事件假设知足,,()()()i j i j i j P A A P A P A ∀=,那么n 个事件彼此独立。
(B )(10)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。
(A ) 2. 选择题(1)设A, B 两事件知足P(AB)=0,那么©A. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,那么P(A-B)等于(C)A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB) (3)以A 表示事件“甲种产品畅销,乙种产品滞销”,那么其对立事件A 为(D)A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)假设A, B 为两随机事件,且B A ⊂,那么以下式子正确的选项是(A)A. P(A ∪B)=P(A)B. P(AB)=P(A)C. P(B|A)=P(B)D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,那么()P AB 等于(B)A. ()a c c + B . 1a c +-C.a b c +- D. (1)b c -(6)假设事件A 和B 知足P(B|A)=1, 那么(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂(7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 那么(D)A. 事件A, B 互不相容B. 事件A 和B 相互对立C. 事件A, B 互不独立 D . 事件A, B 相互独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率别离是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。
理学 概率论与数理统计_第三版龙永红完整答案

概率论与数理统计龙永红,第三版,高等教育出版社课后习题详细答案厦门大学 经济学院08经济 周玉龙08金融 王骁 李政宵09金融 孙士慧 许彩灵 唐艺烨联合编写2011年2月16日 第一版注意:若要打印,请不要打印34页之后的内容!只有34页之前的内容才是校对过的!2010年的时候半期考试考到3.1,即34页之前的内容。
目录前言 (3)编写任务记录 (4)练习1‐1 (5)练习1‐2 (6)练习1‐3 (7)练习1‐4 (9)练习1‐5 (12)习题一 (13)练习2‐1 (15)练习2‐2 (17)练习2‐3 (18)练习2‐4 (20)练习2‐5 (23)习题二 (26)练习3‐1 (29)练习3‐2 (35)练习3‐3 (40)练习3‐4 (43)练习3‐5 (48)练习4‐1 (49)练习4‐2 (50)练习4‐3 (51)练习4‐4 (53)练习5‐2 (54)练习5‐3 (55)练习5‐4 (56)练习5‐5 (56)练习5‐6 (58)前言各位学弟学妹们,大家好。
这份答案是我在2010年学习概率统计的时候,和几个好朋友一起编写的。
我在大二上学线性代数的时候,当时找不到习题答案,于是很多不会做的题目,我就直接放弃了,期末线性代数成绩很不理想。
大二下在学概率统计的时候,我决定要把书上的题目都做会,但当时找不到一本参考答案,于是便想到了自己来编写一本答案书。
这样我不仅可以强迫自己把书上的题目都做了,更重要的是,我还可以帮助今后很多的学弟学妹学习概率统计。
于是找到08经济系的周玉龙同学,由他撰写手写初稿答案;我又找了几个愿意加入的朋友,我们一起将手写初稿录入进电脑,他们是09金融的孙士慧、许彩灵、唐艺烨和08金融的李政宵;我再将电子版初稿打印下来,并在上面进行打印错误的校正,再由我将这些错误在电脑中改过来。
最后整理排版,这就是你眼前的这本电子书。
撰写初版答案是辛苦的,将初版手写答案录入电脑更是非常辛苦。
概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案第四章.pdf

第四章随机变量的数字特征4.1 数学期望习题1设随机变量X服从参数为p的0-1分布,求E(X).解答:依题意,X的分布律为X01P1-p p由E(X)=∑i=1∞xipi,有E(X)=0⋅(1-p)+1⋅p=p.习题2袋中有n张卡片,记有号码1,2,…,n.现从中有放回抽出k张卡片来,求号码之和X的期望.分析:.解答:设Xi表示第i次取得的号码,则X=∑i=1kXi,且P{Xi=m}=1n,其中m=1,2,⋯,n,i=1,2,⋯,k,故E(Xi)=1n(1+2+⋯+n)=n+12,i=1,2,⋯,k,从而E(X)=∑i=1kE(Xi)=k(n+1)2.习题3某产品的次品率为0.1,检验员每天检验4次. 每次随机地抽取10件产品进行检验,如发现其中的次品数多于1,就去调整设备. 以X表示一天中调整设备的次数,试求E(X)(设诸产品是否为次品是相互独立的).解答:X的可能取值为0,1,2,3,4,且知X∼b(4,p),其中p=P{调整设备}=1-C101×0.1×0.99-0.910≈0.2639,所以E(X)=4×p=4×0.2639=1.0556.习题4据统计,一位60岁的健康(一般体检未发生病症)者,在5年之内仍然活着和自杀死亡的概率为p(0<p<1,p为已知),在5年之内非自杀死亡的概率为1-p,保险公司开办5年人寿保险,条件是参加者需交纳人寿保险费a元(a已知),若5年内非自杀死亡,公司赔偿b元(b>a),应如何确定b才能使公司可期望获益,若有m人参加保险,公司可期望从中收益多少?解答:令X=“从一个参保人身上所得的收益”,由X的概率分布为+32×0.1+22×0.0+12×0.1+42×0.0+32×0.3+22×0.1=5.也可以利用期望的性质求E(Z), 得E[(X-Y)2]=E(X2-2XY+Y2)=E(X2)-2E(XY)+E(Y2)=(12×0.4+22×0.2+32×0.4)-2[-1×0.2 +1×0.1+(-2)×0.1+2×0.1+(-3)×0.0+3×0.1] +(-1)2×0.3+12×0.3 =5.习题12设(X,Y)的概率密度为f(x,y)={12y2,0≤y≤x≤10,其它,求E(X),E(Y),E(XY),E(X2+Y2). 解答: 如右图所示.E(X)=∫-∞+∞∫-∞+∞xf(x,y)dxdy=∫01dx∫0xx ⋅12y2dy=45,E(Y)=∫-∞+∞∫-∞+∞yf(x,y)dxdy=∫01dx∫0xy ⋅12y2dy=35,E(XY)=∫-∞+∞∫-∞+∞xyf(x,y)dxdy=∫01dx∫0xxy ⋅12y2dy=12,E(X2+Y2)=∫-∞+∞∫-∞+∞(x2+y2)f(x,y)dxdy=∫01dx∫0x(x2+y2)⋅12y2dy=23+615=1615. 习题13设X 和Y 相互独立,概率密度分别为ϕ1(x)={2x,0≤x≤10,其它,ϕ2(y)={e-(y-5),y>50,其它,求E(XY). 解答:解法一 由独立性.E(XY)=E(X)⋅E(Y)=∫01x ⋅2xdx∫0+∞ye -(y-5)dy=23×6=4.解法二 令z=y-5, 则E(XY)=E(X)⋅E(Y)=∫01x ⋅2xdx ⋅E(z+5)=23×(1+5)=4.4.2 方差习题1设随机变量X 服从泊松分布,且P(X=1)=P(X=2), 求E(X),D(X). 解答:由题设知,X 的分布律为P{X=k}=λkk!e -λ(λ>0)λ=0(舍去),λ=2.所以E(X)=2,D(X)=2.习题2下列命题中错误的是().(A)若X∼p(λ),则E(X)=D(X)=λ;(B)若X服从参数为λ的指数分布,则E(X)=D(X)=1λ; Array (C)若X∼b(1,θ),则E(X)=θ,D(X)=θ(1-θ);(D)若X服从区间[a,b]上的均匀分布,则E(X2)=a2+ab+b23.解答:应选(B).E(X)=1λ,D(X)=1λ2.习题3设X1,X2,⋯,Xn是相互独立的随机变量,且都服从正态分布N(μ,σ2)(σ>0),则ξ¯=1n∑i=1nξi服从的分布是¯.解答:由多维随机变量函数的分布知:有限个相互独立的正态随机变量的线性组合仍然服从正态分布,且E(X¯)=μ,D(X¯)=σ2n.习题4若Xi∼N(μi,σi2)(i=1,2,⋯,n),且X1,X2,⋯,Xn相互独立,则Y=∑i=1n(aiXi+bi)服从的分布是 .解答:应填N(∑i=1n(aiμi+bi),∑i=1nai2σi2).由多维随机变量函数的分布知:有限个相互独立的正态随机变量的线性组合仍然服从正态分布,且E(Y)=∑i=1n(aiμi+bi),D(Y)=∑i=1nai2σi2.习题5设随机变量X服从泊松分布,且3P{X=1}+2P{X=2}=4P{X=0},求X的期望与方差.解答:X的分布律为P{X=k}=λkk!e-λ,k=0,1,2,⋯,于是由已知条件得3×λ11!e-λ+2×λ22!e-λ=4×λ00!e-λ,\becauseD(XY)=E(XY)2-E2(XY)=E(X2Y2)-E2(X)2 (Y),又\becauseE(X2Y2)=∫-∞+∞∫-∞+∞x2y2f(x,y)dxdy=∫-∞+∞x2fX(x)dx∫-∞+∞y2fY(y)dy=E(X2)E(Y2),∴D(XY)=E(X2)E(Y2)-E2(X)E2(Y)=[D(X)+E2(X)][D(Y)+E2(Y)]-E2(X)E2(Y)=D(X)D(Y)+D(X)E2(Y)+D(Y)E2(X)=2×3+2×32+3×12=27.习题9设随机变量X1,X2,X3,X4相互独立,且有E(Xi)=i,D(Xi)=5-i,i=1,2,3,4,又设Y=2X1-X2+3X3-12X4,求E(Y),D(Y).解答:E(Y)=E(2X1-X2+3X3-12X4)=2E(X1)-E(X2)+3E(X 3)-12E(X4)=2×1-2+3×3-12×4=7,D(Y)=4D(X1)+D(X2)+9D(X3)+14D(X4)=4×4+3+9×2+14×1=37.25.习题105家商店联营,它们每两周售出的某种农产品的数量(以kg计)分别为X1,X2,X3,X4,X5.已知X1∼N(200,225),X2∼N(240,240),X3∼N(180,225),X4∼N(260,265),X5∼N(320,270),X1,X2,X3,X4,X5相互独立.(1)求5家商店两周的总销售量的均值和方差;(2)商店每隔两周进货一次,为了使新的供货到达前商店不会脱销的概率大于0.99,问商店的仓库应至少储存该产品多少千克?解答:(1)设总销售量为X,由题设条件知X=X1+X2+X3+X4+X5,于是E(X)=∑i=15E(Xi)=200+240+180+260+320=1200, D(X)=∑i=15D(X i)=225+240+225+265+270=1225 .(2)设商店的仓库应至少储存y千克该产品,为使P{X≤y}>0.99,求y.由(1)易知,X∼N(1200,1225),P{X≤y}=P{X-12001225≤y-12001225=Φ(y-12001225)>0.99.查标准正态分布表得y-12001225=2.33,y=2.33×1225+1200≈1282(kg).习题11设随机变量X1,X2,⋯,Xn相互独立,且都服从数学期望为1的指数分布,求Z=min{X1,X2,⋯,Xn}的数学期望和方差.解答:Xi(i=1,2,⋯,n)的分布函数为F(x)={1-e-x,x>00,其它,Z=min{X1,X2,⋯,Xn}的分布函数为FZ(z)=1-[1-F(z)]n={1-e-nz,z>00,其它,于是E(Z)=∫0∞zne-nzdz=-ze-nz∣0∞+e-nzdz=1n,而E(Z2)=∫0∞z2ne-nzdz=2n2,于是D(Z)=E(Z2)-(E(Z))2=1n2.4.3 协方差与相关系数习题1设(X,Y)服从二维正态分布,则下列条件中不是X,Y相互独立的充分必要条件是().(A)X,Y不相关;(B)E(XY)=E(X)E(Y);(C)cov(X,Y)=0;(D)E(X)=E(Y)=0.解答:应选(D)。
概率论与数理统计第四章课后习题及参考答案

概率论与数理统计第四章课后习题及参考答案1.在下列句子中随机地取一个单词,以X 表示取到的单词包含的字母的个数,试写出X 的分布律,并求)(X E .Have a good time解:本题的随机试验属于古典概型.所给句子共4个单词,其中有一个单词含一个字母,有3个单词含4个字母,则X 的所有可能取值为1,4,有41)1(==X P ,43)4(==X P ,从而413434411)(=⋅+⋅=X E .2.在上述句子的13个字母中随机地取一个字母,以Y 表示取到的字母所在的单词所含的字母数,写出Y 的分布律,并求)(Y E .解:本题的随机试验属于古典概型.Y 的所有可能取值为1,4,样本空间Ω由13个字母组成,即共有13个样本点,则131)1(==Y P ,1312)4(==Y P ,从而1349131241311)(=⋅+⋅=Y E .3.一批产品有一、二、三等品及废品4种,所占比例分别为60%,20%,10%和10%,各级产品的出厂价分别为6元、8.4元、4元和2元,求产品的平均出厂价.解:设产品的出厂价为X (元),则X 的所有可能取值为6,8.4,4,2,由题设可知X 的分布律为X 68.442P6.02.01.01.0则16.51.021.042.08.46.06)(=⨯+⨯+⨯+⨯=X E (元).4.设随机变量X 具有分布:51)(==k X P ,5,4,3,2,1=k ,求)(X E ,)(2X E 及2)2(+X E .解:3)54321(51)(=++++=X E ,11)54321(51)(222222=++++=X E ,274)(4)()44()2(222=++=++=+X E X E X X E X E .5.设离散型随机变量X 的分布列为k k kk X P 21)!2)1((=-=, ,2,1=k ,问X 是否有数学期望.解:因为∑∑∞=∞==⋅-111212)1(k k k k kkk 发散,所以X 的数学期望不存在.6.设随机变量X 具有密度函数⎪⎩⎪⎨⎧≤≤-=其他.,0,22,cos 2)(2πππx x x f 求)(X E 及)(X D .解:因为x x 2cos 在]2,2[ππ-上为奇函数,所以0d cos 2d )()(222=⋅==⎰⎰-∞+∞-πππx x x x x f x X E ,2112d cos 2d )()(2222222-=⋅==⎰⎰-∞+∞-ππππx x x x x f x X E ,故2112)]([)()(222-=-=πX E X E X D .7.设随机变量X 具有密度函数⎪⎩⎪⎨⎧<<-≤<=其他.,0,21,2,10,)(x x x x x f 求)(X E 及)(X D .解:1d )2(d d )()(2112=-+==⎰⎰⎰∞+∞-x x x x x x x f x X E ,67d )2(d d )()(2121322=-+==⎰⎰⎰∞+∞-x x x x x x x f x X E ,61)]([)()(22=-=X E X E X D .8.设随机变量X 在)21,21(-上服从均匀分布,求)sin(X Y π=的数学期望与方差.解:由题可知X 的密度函数为⎪⎩⎪⎨⎧<<-=其他.,0,2121,1)(x x f 则0d 1sin d )(sin )][sin()(2121=⋅===⎰⎰-∞+∞-x x x x f x X E Y E πππ,21d 1sin d )(sin )]([sin )(21212222=⋅===⎰⎰-∞+∞-x x x x f x X E Y E πππ,21)]([)()(22=-=Y E Y E Y D .9.某正方形场地,按照航空测量的数据,它的边长的数学期望为350m ,又知航空测量的误差随机变量X 的分布列为X (m)30-20-10-0102030P05.008.016.042.016.008.005.0而场地边长随机变量Y 等于边长的数学期望与测量误差之和,即X Y +=350,求场地面积的数学期望.解:设场地面积为S ,则2Y S =,16.01042.0016.0)10(08.0)20(05.030)(⨯+⨯+⨯-+⨯-+⨯-=X E 005.03008.020=⨯+⨯+,16.01042.0016.0)10(08.0)20(05.0)30()(222222⨯+⨯+⨯-+⨯-+⨯-=X E 18605.03008.02022=⨯+⨯+,故)350700(])350[()()(2222++=+==X X E X E Y E S E 122686350)(700)(22=++=X E X E .10.A ,B 两台机床同时加工零件,每生产一批较大的产品时,出次品的概率如下表所示:A 机床次品数X 0123概率P7.02.006.004.0B 机床次品数X 0123概率P8.006.004.010.0问哪一台机床加工质量较好.解:44.004.0306.022.017.00)(=⨯+⨯+⨯+⨯=X E ,8.004.0306.022.017.00)(22222=⨯+⨯+⨯+⨯=X E ,6064.0)]([)()(22=-=X E X E X D ,44.010.0304.0206.018.00)(=⨯+⨯+⨯+⨯=Y E ,12.110.0304.0206.018.00)(22222=⨯+⨯+⨯+⨯=Y E ,9264.0)]([)()(22=-=Y E Y E Y D ,)()(Y E X E =,但)()(Y D X D <,故A 机床加工质量较好.11.设随机变量X 与Y 相互独立,且方差存在,试证:22)]()[()()]([)()()(Y E X D Y D X E Y D X D XY D ++=,由此得出)()()(Y D X D XY D ≥.证:22)]([])[()(XY E XY E XY D -=222)]()([)(Y E X E Y X E -=2222)]([)]([)()(Y E X E Y E X E -=2222)]([)]([})]([)(}{)]([)({Y E X E Y E Y D X E X D -++=22)]()[()()]([)()(Y E X D Y D X E Y D X D ++=.因为)(X D ,)(Y D ,2)]([X E ,2)]([Y E 非负,所以)()()(Y D X D XY D ≥.12.已知随机变量X 的密度函数为⎩⎨⎧≤≤++=其他.,010,)(2x c bx x a x f又已知5.0)(=X E ,15.0)(=X D ,求a ,b ,c .解:c b a x c bx x a x x f ++=++==⎰⎰∞+∞-2131d )(d )(1102,c b a x c bx x a x x x f x X E 213141d )(d )()(5.0102++=++===⎰⎰∞+∞-,⎰⎰++-=-==∞+∞-1222d )()5.0(d )()]([)(15.0xc bx x a x x x f X E x X D 41314151-++=c b a ,解之得12=a ,12-=b ,3=c .13.设),(Y X 的分布律为(1)求)(X E 及)(Y E ;(2)设XYZ =,求)(Z E ;(3)设2)(Y X Z -=,求)(Z E .解:(1)2)13.00(3)1.001.0(2)1.01.02.0(1)(=++⨯+++⨯+++⨯=X E ,0)1.01.01.0(1)3.001.0(0)01.02.0()1()(=++⨯+++⨯+++⨯-=Y E ,(2)1.01)3.001.0(00)31(1.021(2.01)(⨯+++⨯+⨯-+⨯-+⨯-=Z E 1511.0311.021-=⨯+⨯+,(3)1.0)01(0)]1(3[1.0)]1(2[2.0)]1(1[)(2222⨯-+⨯--+⨯--+⨯--=Z E 51.0)13(1.0)12(1.0)11(3.0)03(0)02(22222=⨯-+⨯-+⨯-+⨯-+⨯-+.14.设随机变量),(Y X 的概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤+=其他.,0,10,20,3),(y x yx y x f求)(X E ,)(Y E ,)(Y X E +及)(22Y X E +.解:⎰⎰∞+∞-∞+∞-=y x y x f x X E d d ),()(911d d 31020=+⋅=⎰⎰y x y x x ,⎰⎰∞+∞-∞+∞-=y x y x yf Y E d d ),()(95d d 31020=+⋅=⎰⎰y x y x y ,⎰⎰∞+∞-∞+∞-+=+y x y x f y x Y X E d d ),()()(916d d 3)(1020=+⋅+=⎰⎰y x y x y x ,⎰⎰∞+∞-∞+∞-+=+y x y x f y x Y X E d d ),()()(2222613d d 3)(102022=+⋅+=⎰⎰y x y x y x .15.),(Y X 在区域}1,0,0|),{(≤+≥≥=y x y x y x D 上服从均匀分布,求)(X E ,)23(Y X E -及)(XY E .解:由题可知),(Y X 的联合密度函数为⎩⎨⎧≤≤-≤≤=其他.,0,10,10,2),(y y x y x f ⎰⎰∞+∞-∞+∞-=y x y x f x X E d d ),()(31d d 21010==⎰⎰-yy x x ,⎰⎰∞+∞-∞+∞--=-y x y x f y x Y X E d d ),()23()23(31d d )23(21010=-=⎰⎰-yy x y x ,⎰⎰∞+∞-∞+∞-=y x y x xyf XY E d d ),()(121d d 21010==⎰⎰-y y x xy .16.设二维随机变量),(Y X 的概率密度函数为⎪⎩⎪⎨⎧>+≤+=.1,0,1,1),(2222y x y x y x f π证明:随机变量X 与Y 不相关,也不相互独立.证:⎰⎰⎰⎰⋅=⋅=∞+∞-∞+∞-πθθππ201d d cos 1d d 1)(r r r y x x X E ,同理,0)(=Y E ,⎰⎰⎰⎰⋅⋅=⋅=∞+∞-∞+∞-πθθθππ201d d sin cos 1d d 1)(r r r r y x xy XY E ,0)()()(),cov(=-=Y E X E XY E Y X ,故随机变量X 与Y 不相关.当11≤≤-x 时,ππ21112d 1d ),()(22x y y y x f x f x x X -===⎰⎰---∞+∞-,其他,0)(=x f X ,故⎪⎩⎪⎨⎧≤≤--=其他.,0,11,12)(2x x x f X π同理,⎪⎩⎪⎨⎧≤≤--=其他.,0,11,12)(2y y y f Y π易得)()(),(y f x f y x f Y X ≠,故随机变量X 与Y 不相互独立.17.设随机变量1X ,2X 的概率密度分别为⎩⎨⎧≤>=-.0,0,0,e 2)(21x x x f x ,⎩⎨⎧≤>=-.0,0,0,e 4)(42y y y f y 试用数学期望的性质求:(1))(21X X E +及)32(221X X E -;(2)又设1X ,2X 相互独立,求)(21X X E .解:由题可知1X ~)2(E ,2X ~)4(E ,则21)(1=X E ,41)(2=X E ,161)(2=X D ,81)]([)()(22222=+=X E X D X E .(1)43)()()(2121=+=+X E X E X X E ,85)(3)(2)32(221221=-=-X E X E X X E .(2)81)()()(2121==X E X E X X E .18.(1)设1X ,2X ,3X 及4X 独立同在)1,0(上服从均匀分布,求)51(41∑=k k kX D ;(2)已知随机变量X ,Y 的方差分别为25和36,相关系数为4.0,求Y X U 23+=的方差.解:(1)由题易得121)(=i X D ,)51(41∑=k k kX D )(5141∑==k kkX D )](4)(3)(2)([514321X D X D X D X D +++=21)4321(121512222=+++⋅=.(2)由已知25)(=X D ,36)(=Y D ,4.0)()(),cov(==Y D X D Y X XY ρ,得12),cov(=Y X ,)2,3cov(2)2()3()23()(Y X Y D X D Y X D U D ++=+=513),cov(232)(2)(322=⋅⋅++=Y X Y D X D .19.一民航送客车载有20位旅客自机场开出,旅客有10个车站可以下车,如果到达一个车站没有旅客下车就不停车,以X 表示停车的次数,求)(X E (设每位旅客在各个车站下车是等可能的,并设各旅客是否下车相互独立).解:引入随机变量⎩⎨⎧=站无人下车.,在第站有人下车;,在第i i X i 01,10,,2,1 =i .易知1021X X X X +++= .按题意,任一旅客在第i 站不下车的概率为9.0,因此20位旅客都不在第i 站下车的概率为209.0,在第i 站有人下车的概率为209.01-,也就是209.0)0(==i X P ,209.01)1(-==i X P ,10,,2,1 =i .由此209.01)(-=i X E ,10,,2,1 =i .进而)()()()()(10211021X E X E X E X X X E X E +++=+++= 784.8)9.01(1020=-=(次).20.将n 只球(1~n 号)随机地放进n 只盒子(1~n 号)中去,一只盒子装一只球.若一只球装入与球同号的盒子中,称为一个配对,记X 为总的配对数,求)(X E .解:引入随机变量⎩⎨⎧=号盒子.号球未放入第第号盒子号球放入第第i i i i X i ,0,,1,n i ,,2,1 =,则n X X X X +++= 21,显然n X P i 1)1(==,则nX P i 11)0(-==,n i ,,2,1 =,从而nX E i 1)(=,n i ,,2,1 =,于是1)()()()()(2121=+++=+++=n n X E X E X E X X X E X E .21.设随机变量),(Y X 的分布律为试验证X 和Y 是不相关的,但X 和Y 不是相互独立的.证:0)25.00(2)025.0(1)025.0()1()25.00(2)(=+⨯++⨯++⨯-++⨯-=X E ,5)25.00025.0(4)025.025.00(1)(=+++⨯++++⨯=Y E ,0)4(25.0)8(0225.0125.0)1(02)(⨯-+⨯-+⨯+⨯+⨯-+⨯-=XY E 025.0804=⨯+⨯+,所以0)()()(),cov(=-=Y E X E XY E Y X ,故X 与Y 不相关.易知25.025.00)2(=+=-=X P ,5.0025.025.00)1(=+++==Y P ,0)1,2(==-=Y X P ,有)1()2()1,2(=-=≠=-=Y P X P Y X P ,故X 与Y 不相互独立.22.设二维随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤+=其他.,0,10,10,),(y x y x y x f 求)(X E ,)(Y E ,)(X D ,)(Y D ,)(XY E ,),cov(Y X 及XY ρ.解:127d d )(d d ),()(1010=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,125d d )(d d ),()(1010222=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,14411)]([)()(22=-=X E X E X D ,由轮换对称性,得127)(=Y E ,14411)(=Y D ,31d d )(d d ),()(1010=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x xy y x y x xyf XY E ,1441)()()(),cov(-=-=Y E X E XY E Y X ,111)()(),cov(-==Y D X D Y X XY ρ.23.设X ~),(2σμN ,Y ~),(2σμN ,且X ,Y 相互独立.求Y X Z βα+=1和Y X Z βα-=2的相关系数(α,β是不为0的常数).解:由题可知μ==)()(Y E X E ,2)()(σ==Y D X D ,则2222)]([)()(σμ+=+=X E X D X E ,2222)]([)()(σμ+=+=Y E Y D Y E ,μβαβα)()()(1+=+=Y X E Z E ,μβαβα)()()(2-=-=Y X E Z E ,222221)()()()()(σβαβαβα+=+=+=Y D X D Y X D Z D ,222222)()()()()(σβαβαβα+=+=-=Y D X D Y X D Z D ,)()])([()(222221Y X E Y X Y X E Z Z E βαβαβα-=-+=))(()()(22222222σμβαβα+-=-=Y E X E ,222212121)()()()(),cov(σβα-=-=Z E Z E Z Z E Z Z ,22222121)()(),cov(21βαβαρ+-==Z D Z D Z Z Z Z .24.设),(Y X 的联合概率密度为⎩⎨⎧≤≤≤≤--=.,0,10,10,2),(其他y x y x y x f (1)求),cov(Y X ,XY ρ和)32(Y X D -;11(2)X 与Y 是否独立?解:(1)125d d )2(d d ),()(1010=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,41d d )2(d d ),()(1010222=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,61d d )2(d d ),()(1010=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x xy y x y x xyf XY E ,14411)]([)()(22=-=X E X E X D ,由轮换对称性,125)(=Y E ,14411)(=Y D ,1441)()()(),cov(-=-=Y E X E XY E Y X ,111)()(),cov(-==Y D X D Y X XY ρ,)3,2cov(2)3()2()32(Y X Y D X D Y X D -+-+=-144155),cov(12)(3)(222=-+=Y X Y D X D .(2)当10≤≤x 时,x y y x y y x f x f X -=--==⎰⎰∞+∞-23d )2(d ),()(10,其他,0)(=x f X ,故⎪⎩⎪⎨⎧≤≤-=其他.,0,10,23)(x x x f X 同理,⎪⎩⎪⎨⎧≤≤-=其他.,0,10,23)(y y y f Y 因为)()(),(y f x f y x f Y X ≠,故X 与Y 不相互独立.。
概率统计习题课

概率统计习题课⼀随机事件及其概率1. ,,A B C 为三个随机事件,事件“,,A B C 不同时发⽣”可表⽰为,事件“,,A B C 都不发⽣”可表⽰为,事件“,,A B C ⾄少发⽣两件”可表⽰为。
2.从1,2,3,4中随机取出两个数,则组成的两位数是奇数的概率是,事件“其中⼀个数是另⼀个数的两倍”的概率是。
3. 有r 个球,随机地放在n 个盒⼦中(r n ≤),则某指定的r 个盒⼦中各有⼀球的概率为_ __ __。
4.把3个球随机放⼊编号为1,2,3的三个盒⼦(每个盒⼦能容纳多个球),则三个盒⼦各放⼊⼀球的概率是___________。
5. 设,A B 为随机事件,()0.7P A =, ()0.3P A B -=,则()P A B =__ ___。
6.事件A 发⽣必然导致事件B 发⽣,且()0.1,()0.2,P A P B ==,则()P A B =____。
7. 盒中有6个⼤⼩相同的球,4个⿊球2个⽩球,甲⼄丙三⼈先后从盒中各任取⼀球,取后不放回,则⾄少有⼀⼈取到⽩球的概率为___________。
8. 甲⼄两个盒⼦,甲盒中有2个⽩球1个⿊球,⼄盒中有1个⽩球2个⿊球,从甲盒中任取⼀球放⼊⼄盒,再从⼄盒中任取⼀球,取出⽩球的概率是。
9.某球员进⾏投篮练习,设各次进球与否相互独⽴,且每次进球的概率相同,已知他三次投篮⾄少投中⼀次的概率是,则他的投篮命中率是。
10. 将⼀枚硬币抛掷3次,观察出现正⾯(记为H )还是反⾯(记为T ),事件A ={恰有⼀次出现正⾯},B ={⾄少有⼀次出现正⾯},以集合的形式写出试验的样本空间Ω和事件,A B ,并求(),(),()P A P B P A B11. 已知()0.1,()0.2P A P B ==,在下列两种情况下分别计算()P A B 和()P A B :(1) 如果事件,A B 互不相容; (2) 如果事件,A B 相互独⽴。
12. 盒中有3个⿊球7个⽩球,从中任取⼀球,不放回,再任取⼀球,(1)若第⼀次取出的是⽩球,求第⼆次取出⽩球的概率 (2)两次都取出⽩球的概率 (3) 第⼆次取出⽩球的概率 (4) 若第⼆次取出的是⽩球,求第⼀次取出⽩球的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 x2 e x dx x2exdx
2
0
x2ex
0
2
0
xe x dx
2 xe xdx 0
2 xe x
0
2
e xdx
0
2
故 DX EX 2 EX 2 2
概率论
随机变量函数 的数学期望
概率论
奇函数
(2) E( X X ) x | x | 1 e x dx 0
概率论
1 + f ( x )dx= + Ae x2dx
-
-
= A + e x2dx A - A1
+
x2
e 2 dx 2
+ e x2dx
EX + xf ( x )dx= 1 + xe x2dx 0
-
-
D( X ) EX 2 ( EX )2 = 1 2
E( X 2 ) x2 f ( x )dx = 1 + x2e x2dx
概率论
《概率论与数理统计》习题课四
概率论
一、填空题
(1)已知X ~ N(2,0.42),则E(X 3)2 1.16
解 :由均值的性质得 E(X 3)2 E(X 2 6X 9) E(X 2) 6E(X ) 9
D(X ) E(X )2 6E(X ) 9
0.16 4 6(2) 9 1.16
Xi 1 2 3 … n
pk 1 1 1 … 1
nnn
n
1
n1
E(Xi
)
(1 n
2
n)
2
概率论
k
n1
E(X) E(Xi) k
i 1
2
D(
Xi
)
E(
X
2 i
)
E( Xi )
2
1 n
n
i2
i 1
(n 1)2 4
1 n(2n 1)(n 1) (n 1)2 n2 1
n
6
4
12
k
k(n2 1)
E(Xk
)
3
D(Y
)
D(1 ( 3
X1
X2
X3 ))
1 9
3 k 1
D( Xk
)
1
E(Y 2 ) D(Y ) E(Y )2 10
二、选择题
概率论
(3)对于任意两个随机变量X和Y ,若 E( XY ) E( X )E(Y ),则B ( A)D( XY ) D( X )D(Y )(B)D( X Y ) D( X ) D(Y ) (C) X和Y相互独立 (D) X和Y不相互独立
1 9
3
1
E(Y 2 ) D(Y ) E(Y )2 1 9 10
二、选择题
概率论
(2)设X1,
X2,
X
相互独立同服从参数
3
3的泊松
分布,令Y
1 3
(X1Fra bibliotekX2X 3),则E(Y 2 )
C
( A)1 (B)9 (C)10 (D)6
解
:
E(Y
)
1 E( 3 ( X1
X2
X3 ))
1 3
3 k 1
D( X ) D( Xi )
i 1
12
四、证明题
概率论
设随机变量X的概率密度为f (x) 1 e x , x , 2
(1)证明E(X ) 0, D( X ) 2
(2)证明X 与 X 不相关.
证 (1)E( X )
xf ( x)dx
x 1 e x dx 0 2
E X 2 x2 f xdx
E(X ) 600 1 100 6
二、选择题
概率论
(1)设X1,
X2,
X
相互独立服从参数
3
3的泊松分布,
令Y
1 3
(
X
1
X2
X 3 ), 则E (Y
2)
C
( A)1 (B)9 (C)10 (D)6
解
:
E(Y
)
E[1 ( 3
X1
X2
X 3 )]
1 3
3
3
D(Y
)
D[1 ( 3
X1
X
2
X 3 )]
概率论
一、填空题
(2)设X ~ N (10,0.6),Y ~ N (1,2),且X与Y相互独立, 则D(3X Y ) 7.4
解:由方差的性质得 D(3X Y ) 9D( X ) D(Y ) 5.4 2 7.4
一、填空题
(3)设X的概率密度为f (x) Aex2 ,则D( X ) 1 2
解 : Cov( X ,Y ) E( XY ) E( X )E(Y ) 0 D( X Y ) D( X ) D(Y ) 2Cov( X ,Y ) D( X ) D(Y )
概率论
三、解答题
(1)盒中有7个球,其中4个白球,3个黑球,从中任取 3个球,求抽到白球数X的期望E( X )和方差D( X ).
1[
10
(10 x)dx
30
(30 x)dx
60 0
10
55
60
(55 x)dx (70 x)dx]
30
55
10分25秒
三、解答题
概率论
(5)一袋中有n张卡片, 分别记有号码1,2,n, 从中 有放回地抽出k张来,以X表示所得号码之和, 求E( X )和D( X ).
解:Xi "抽取第i张卡片的号码" i 1, 2, k Xi (i 1, 2, k)相互独立,且X X1 X2 Xk
解 : X "乘客到站时间" Y"乘客候车时间"
X ~ U[0,60]
1 60 0 x 60 f ( x) 0 其它
概率论
10 X , 0 X 10
Y
30 55
X X
, 10 , 30
X X
30 55
70 X , 55 X 60
g(X )
E(Y ) g( x) f ( x)dx
-
= 2 + x2e x2dx = - 1 + xde x2
0
0
= -
1
xe
x2
+-
0
+ 0
e
x
2
dx
=1 2
概率论
二、选择题
概率论
(1)掷一颗均匀的骰子 600次, 那么出现"一点" 次数的均值为B ( A)50 (B)100 (C)120 (D)150
解 : 设X "出现一点的次数",则X ~ b(600, 1) 6
解 : X的分布率为
X
0
1
2
3
pk
C3 3
C C C C 1 2 43
21 43
C3 4
C3 7
C3 7
C3 7
C3 7
E( X ) 12 7 D( X ) E( X 2 ) [E( X )]2 24
49
三、解答题
概率论
(3)公共汽车起点站于每时 的10分,30分,55分发车, 该乘客不知发车时间, 在每小时内的任意时刻 随机 到达车站, 求乘客候车时间的数学 期望.
2
Cov( X , X ) E( X X ) E( X )E( X ) 0
XY
Cov( X ,Y ) 0
D( X ) D(Y )