光电效应

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光电效应

它是光照射到某些物质上,使该物质的导电特性发生变化的一种物理现象,可分为外光电效应和内光电效应和光生伏特效应三类。

外光电效应是指,在光线作用下物体内的电子逸出物体表面向外发射的物理现象。如光电管,光电倍增管。

1. 光电管结构与工作原理

光电管有真空光电管和充气光电管或称电子光电管和离子光电管两类。两者结构相似,如图。它们由一个阴极和一个阳极构成,并且密封在一只真空玻璃管内。阴极装在玻璃管内壁上,其上涂有光电发射材料。阳极通常用金属丝弯曲成矩形或圆形,置于玻璃管的中央。

光电管原理是光电效应。一种是半导体材料类型的光电管,它的工作原理光电二极管又叫光敏二极管,是光电管结构原理图利用半导体的光敏特性制造的光接受器件。当光照强度增加时,PN结两侧的P区和N区因本征激发产生的少数载流子浓度增多,如果二极管反偏,则反向电流增大,因此,光电二极管的反向电流随光照的增加而上升。光电二极管是一种特殊的二极管,它工作在反向偏置状态下。

2 光电倍增管

当入射光很微弱时,普通光电管产生的光电流很小,只有零点几μA,很不容易探测。这时常用光电倍增管对电流进行放大。

(1)结构和工作原理

由光阴极、次阴极(倍增电极)以及阳极三部分组成。光阴极是由半导体光电材料锑铯做成;次阴极是在镍或铜-铍的衬底上涂上锑铯材料而形成的,次阴极多的可达30级;阳极是最后用来收集电子的,收集到的电子数是阴极发射电子数的105~106倍。即光电倍增管的放大倍数可达几万倍到几百万倍。光电倍增管的灵敏度就比普通光电管高几万倍到几百万倍。因此在很微弱的光照时,它就能产生很大的光电流。

(2)主要参数

倍增系数M等于n个倍增电极的二次电子发射系数δ的乘积。如果n个倍增电极的δ都相同,则M= δn因此,阳极电流I 为

I = i ·δn i —光电阴极的光电流

n---光电倍增级(一般9~11)。

这样,光电倍增管的电流放大倍数β为

β=1/i=δn

光电倍增管的倍增级的结构有很多形式,它的基本结构是把光电阴极与个倍增级和阳极隔开,以防止光电子的散射和阳极附近形成的正离子向阴极返回,产生不稳定现象;另外,要使电子从一个倍增级发射出来无损失的至下一集倍增级。

7.1.2内光电效应及相应的器件

当光照在物体上,使物体的电导率发生变化,或产生光生电动势的现象。分为光电导效应和光生伏特效应(光伏效应)。

(1)光电导效应

在光线作用下,对于半导体材料吸收了入射光子能量,若光子能量大于或等于半导体材料的禁带宽度,就激发出电子-空穴对,使载流子浓度增加,半导体的导电性增加,阻值减低,这种现象称为光电导效应。光敏电阻就是基于这种效应的光学器件。

(2)光生伏特效应

光生伏特效应是指半导体在受到光照射时产生电动势的现象。光生伏特效应可制作光电池、光敏二极管、光敏三极管和半导体位置敏感器件传感器。

1.光敏电阻

当光照射到光电导体上时,若光电导体为本征半导体材料,而且光辐射能量又足够强,光导材料价带上的电子将激发到导带上去,从而使导带的电子和价带的空穴增加,致使光导体的电导率变大。为实现能级的跃迁,入射光的能量必须大于光导体材料的禁带宽度E g

2. 光敏电阻的主要参数

暗电流:光敏电阻在室温条件下,全暗(无光照射)后经过一定时间测量的电阻值,称为暗电阻。此时在给定电压下流过的电流。

亮电流:光敏电阻在某一光照下的阻值,称为该光照下的亮电阻。此时流过的电流。

光电流:亮电流与暗电流之差。

1.光敏电阻的基本特性

伏安特性

在一定照度下,加在光敏电阻两端的电压与电流之间的关系称为伏安特性。由图可见,光敏电阻在一定的电压范围内,其I—U曲线为直线。说明其阻值与入射光量有关,而与电压电流无关。

光照特性

在一定外加电压下,光敏电阻的光电流和光通量之间的关系。不同类型光敏电阻光照特性不同,但光照特性曲线均呈非线性。因此它不宜作定量检测元件,这是光敏电阻的不足之处。一般在自动控制系统中用作光电开关。

光谱特性

光敏电阻对入射光的光谱特性具有选择作用,即光敏电阻对不同波长的入射光有不同的灵敏度。光敏电阻的相对光敏灵感度与入射波长的关系称为光敏电阻的光谱特性,亦称光谱响应。

频率特性

当光敏电阻受到脉冲光照射时,光电流要经过一段时间才能达到稳定值,而在停止光照后,光电流也不立刻为零,这就是光敏电阻的时延特性。由于不同材料的光敏,温度特性

其性能(灵敏度、暗电阻)受温度的影响较大。随着温度的升高,其暗电阻和灵敏度下降,光谱特性曲线的峰值向波长短的方向移动。

2光敏二极管和光敏晶体管

光电二极管和光电池一样,其基本结构也是一个PN结。它和光电池相比,重要的不同点是结面积小,因此它的频率特性特别好。光生电势与光电池相同,但输出电流普遍比光电池小,一般为几μA到几十μA。按材料分,光电二极管有硅、砷化镓、锑化铟光电二极管等许多种。按结构分,有同质结与异质结之分。其中最典型的是同质结硅光电二极管。

光敏二极管的结构与一般二极管相似、它装在透明玻璃外壳中,其PN结装在管顶,可直接受到光照射。光敏二极管在电路中一般是处于反向工作状态

光敏晶体管有PNP型和NPN型两种,如图。其结构与一般三极管很相似,具有电流增益,只是它的发射极一边做的很大,以扩大光的照射面积,且其基极不接引线。当集电极加上正电压,基极开路时,集电极处于反向偏置状态。当光线照射在集电结的基区时,会产生电子-空穴对,在内电场的作用下,光生电子被拉到集电极,基区留下空穴,使基极与发射极间的电压升高,这样便有大量的电子流向集电极,形成输出电流,且集电极电流为光电流的β倍。

基本特性

1.光谱特性

当入射光的波长增加时,相对灵敏度要下降。因为光子能量太小,不足以激发

电子空穴对。当入射光的波长缩短时,相对灵敏度也下降,这是由于光子在半

导体表面附近就被吸收,并且在表面激发的电子空穴对不能到达PN结,因而使

相对灵敏度下降。

相关文档
最新文档