平面几何学习方法与技巧

平面几何学习方法与技巧
平面几何学习方法与技巧

平面几何学习方法与技巧

作为初中数学老师,我认为初中数学中最需要让人费脑思考的就是平面几何相关的内容了。其主要原因就是初中平面几何知识所涉及的知识面广从普通的点线面到平面几何图形的相关内容,平面几何知识的题型丰富从普通的计算到复杂的证明,变化多端。而学生们又是首次接触到这一部分内容,对于变化多端的图形以及让人摸不着头脑的题型,很多学生对此没有学习兴趣。

除此之外,初中平面几何还涉及到各种各样的定理、定义、公理、公设,各种特殊的三角形的特殊定理与在实际平面几何中的应用……这些都是初中平面几何的重难点之所在。也正是因为如此,学生们都是叫苦连天。而且还有不少的学生大呼:学了三年的初中平面几何知识就像是没有学一样。拿到平面几何的题目就不知道应该从何下手,有的数学基础相对而言好一点的学生则是知道题目所考查的知识点是什么,但是依然是不知道如何作辅助线来帮助自己更好的解决问题,或者根本就不知道有简便的方法来解决问题。那么就会有不少的同学迫不及待的想要问了,初中阶段的学生们究竟应该怎么样才能学好初中平面几何呢?接下来我就将为同学们娓娓道来。

一、减少负面情绪,培养学习平面几何的兴趣

众所周知,初中平面几何内容比较复杂,所涉及到的知识点多,题型多样,由此导致了许多学生出现了焦躁、害怕甚至是厌学的负面的情绪,很多学生都对学习初中平面几何没有任何的兴趣。我们知道“兴趣才是学习的最好的老师”。只有培养起了学生们的学习平面几何的

兴趣,这样才能够从根本上解决问题,否则学生们以及老师所做的一切努力都将会是竹篮打水一场空。那么应该如何将学生们学习平面的学习兴趣培养起来呢?

这就需要学生们和老师一起配合,通过老师的专业指导以及学生们自身的积极学习,培养起学习兴趣绝非一件难事。首先,学生们要跟着老师的脚步,一步一个脚印地向前走,切不可心慌神乱,否则就会导致学习的基础打不扎实,以至于所做的努力都将是无用功。

我强烈建议学生们在上理论基础课时,准备一个随堂笔记本,将老师所讲的所有知识要点全部一字不漏的写下,并且老师在上理论知识课时一般都会举一些非书本上的例题,学生们也一定要一并写下,同一知识点对应同一例题。学生们在学习时,常常可能会遇到这样的情况:上课时能够听懂,但是一遇到实际问题学生们就会感到手足无措。因此,学生们更是要加强自己在实际应用方面的能力,不能够觉得自己在书本上的例题能够弄明白了就一定是掌握了在平面几何方面的技能。

其次,当同学们下课之后,仍然有不懂的知识要点,先不要急着去询问,要根据自己的随堂笔记自行思考和探索。若是可以想明白其中的原委,那就可以加深自己在这方面的印象;若是无法思考清楚,再找老师进行询问直到自己能搞清楚了为止。

除此之外,学生们还可以就自己的随堂笔记,定期的进行知识点的回顾和及时的总结。将原来的随堂笔记中的重点知识或者是自己无法记忆深刻的知识要点重新进行整理,对自己已经熟记的或者掌握的知识

要点可以及时知道。

二、整理书本知识要点,熟悉平面几何的解题思路

要想学好初中平面几何知识,书本上的理论知识是基础。包括所有的定理定义公式推论,这样学生们在做有关于平面几何的题目时才能够找到正确的解题决策。当然,作为老师我也知道在平面几何这一章的内容当中的各种公式定理会让人眼花缭乱,可能让人觉得无从下手去进行记忆。

因此,我建议学生们能够根据自己的实际情况来将所有在平面几何方面所涉及到的定义、定理、公理、推论、公式等集中的列举在一起,通过比较彼此间的差异,来记忆不同的定理推论。

很多时候,在平面几何方面的定理和定义有着惊人的相似度,粗心的同学们很有可能就会记忆混淆。所以,学生们要加强自己的比较性的记忆,让自己不在平面几何方面犯低级的错误。

除此之外,学生们需要熟悉平面几何的解题思路。只有有了一个清晰正确的解题思路,在解平面几何题的时候才会得心应手。那么,就会有学生就会问了,该如何培养起自己的解题思路呢?

学生们都应该知道在解决平面几何题时,最常见的问题就是证明题。那么,接下来我就以证明题为例来讲解应该如何培养起自己正确的解题思路。证明题讲究的是一个正确、完整而又清晰的证明思路,通过这样一条主线将整个题目贯穿,然后就这样一条主线选择自己一个方便简洁快速的方法,接着就是从众多的定理推论中选择一个恰当的定理作为自己此道证明题的理论依据。在解题过程中,学生们先要明确

所考查的知识点是什么,然后才能快速而准确的从众多的定理推论中选择出恰当的,然后问题才能一步步的得到解决。

三、将平面几何考查的题型分类,做到心中有数

学生们需要加强自己在平面几何题方面的题型练习,通过不断的练习让学生们自己的思维一直都活跃在平面几何知识的氛围当中。长时间的专项练习会让学生们对平面几何题有强烈的敏感性,遇到平面几何题,不管题本身的难度的深浅或是考查的知识点的难度的深浅或是所需要的解题方法的深浅,学生们都能够快速的找到解题的入手点,不管最终的结论能否得证,学生们不至于像以前一样,根本无法入手。通过长时间的平面几何题型的专项练习同学们对于平面几何题的考查题型都有了一定的了解和认识之后,那么接下来学生们就应该根据自己的理解将平面几何的题型作一个自己的分类。方便学生们自己找到自己的薄弱之处,然后不断地往自己的薄弱之处添加材料,不断的加固,最终让自己在平面几何方面无懈可击。

同学们,学习初中平面几何是一个极其繁琐和枯燥的过程,不仅需要记忆的知识要点多而且需要理解计算和推理的题型更多。同学们要养成良好的学习习惯,形成良好的平面几何思考的方式,提高自己的解题能力,增强自己的学习信心。同时,同学们自己还需要进行及时的自我总结,找到自己的不足之处,然后经过自己综合的分析之后,制定适合自己长期性的实施的计划,并根据自己的计划,来达到自己的目标。

初中数学几何辅助线技巧

几何常见辅助线口诀三角形 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。 三角形中两中点,连接则成中位线。 三角形中有中线,倍长中线得全等。 四边形 平行四边形出现,对称中心等分点。 梯形问题巧转换,变为三角或平四。 平移腰,移对角,两腰延长作出高。 如果出现腰中点,细心连上中位线。 上述方法不奏效,过腰中点全等造。 证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。 直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 圆形

半径与弦长计算,弦心距来中间站。 圆上若有一切线,切点圆心半径联。 切线长度的计算,勾股定理最方便。 要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。 弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。 弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。 还要作个内接圆,内角平分线梦圆。 如果遇到相交圆,不要忘作公共弦。 内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。 要作等角添个圆,证明题目少困难。 由角平分线想到的辅助线 一、截取构全等: 如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。

分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。这里面用到了角平分线来构造全等三角形。另外一个全等自已证明。此题的证明也可以延长BE与CD的延长线交于一点来证明。自己试一试。 二、角分线上点向两边作垂线构全等: 如图,已知AB>AD, ∠BAC=∠FAC,CD=BC。求证:∠ADC+∠B=180 分析:可由C向∠BAD的两边作垂线。近而证∠ADC与∠B之和为平角。 三、三线合一构造等腰三角形: 如图,AB=AC,∠BAC=90 ,AD为∠ABC的平分线,CE⊥BE.求证:BD=2CE。 分析:延长此垂线与另外一边相交,得到等腰三角形,随后全等。四、角平分线+平行线: 如图,AB>AC, ∠1=∠2,求证:AB-AC>BD-CD。

如何做几何证明题(方法情况总结)

如何做几何证明题 知识归纳总结: 1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 一. 证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

二. 证明直线平行或垂直 在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。 例3. 如图3所示,设BP、CQ是的内角平分线,AH、AK分别为A到BP、CQ的垂线。求证:KH∥BC 例4. 已知:如图4所示,AB=AC,。 求证:FD⊥ED 三. 证明一线段和的问题 (一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。(截长法) 例5. 已知:如图6所示在中,,∠BAC、∠BCA的角平分线AD、

小学数学常用解题技巧(解几何题技巧)

小学数学常用解题技巧:解几何题技巧 解几何题技巧 1.等分图形 【均分整体】有些几何问题,只要把大图形均分为若干个小图形,就能找到问题的答案。 例如,下面两图中的正方形分别内接于同一个等腰直角三角形(内接指四个顶点全在三角形的边上)。已知左图(图4.11)中正方形面积为72平方厘米,求右图( 4.12)中正方形的面积。 由于左右两个三角形完全相同,我们不妨把这两个图形进行等分,看看这两个正方形分别与同一个等腰直角三角 形有什么样的关系。等分后的情况见图 4.13和图 4.14。 积是 图4.12的正方形面积是 【均分局部】有些几何问题,整体的均分不太方便,或不能够办到,这时可以考虑把它的局部去均分,然后从整 体上去观察,往往也能使问题获得解决。 例如图 4.15,在正方形ABCD中,画有甲、乙、丙三个小正方形。问:乙、丙面积之和与甲相比,哪一个大些? 大家由前面的“均分整体”已经知道,像甲、乙这样的两个正方形,面积不是相等的。如图 4.16,经过等分,正方形甲的面积等于△ABC面积的一半;正方形丙的面积等于△EDF的一半,正方形乙的面积等于梯形ACFE面积的一半。这样,一个大正方形ABCD,就划分成了三个局部:等腰直角△ABC;等腰梯形ACFE;等腰直角△EDF。其中甲、乙、丙的面积分别为各自所在图形的一半,而△EDF的面积加梯形ACFE的面积等于△ADC的面积,即等于△ABC的面积。所以,乙、丙面积之和等于甲的面积。

2.平移变换 【平移线段】有些几何问题,通过线段的上、下、左、右平移以后,能使问题很快地得到正确的解答。 例如,下面的两个图形(图 4.17和图4.18)的周长是否相等? 单凭眼睛观察,似乎图 4.18的周长比图 4.17的要长一些。但把有关线段平移以后,图 4.18就变成了图 4.19,其中的线段,有的上移,有的左移,有的右移,它可移成一个正方形。于是,不难发现两图周长是相等的。 【平移空白或阴影部分】有些求阴影部分或空白部分面积的几何题,采用平移空白部分或平移阴影部分的办法, 往往能化难为易,很快使问题求得解答。例如,计算图 4.20中阴影部分的面积。 圆面积”,然后相加,得整个阴影部分的面积。这显然是很费时费力的。但认真观察一下就会发现,图 4.20左半左上部的空白部分,与右半左上部的阴影部分大小一样,只需将右半左上部的阴影部分,平移到左半左上部的空白部分,所 有的阴影部分便构成一个正方形了(如图 4.21)。所以,阴影部分的面积很快就可求得为5×5=25。 又如,一块长30米,宽24米的草地,中间有两条宽2米的走道,把草地分为四块,求草地的面积(如图 4.22)。 这只要把丙向甲平移靠拢,把丁向乙平移靠拢,题目也就很快能解答出来了。(具体解法略) 3.旋转变换 【旋转成定角】例如下面的题目: “在图 4.23中,半径为8厘米的圆的内外各有一个正方形,圆内正方形顶点都在圆周上,圆外正方形四条边与圆 都只有一个接触点。问:“大正方形的面积比小正方形的面积大多少?”

七年级数学上册第一章丰富的图形世界3截一个几何体知识全解素材(新版)北师大版

七年级数学上册第一章丰富的图形世界3截一个几何体知识全解素 材(新版)北师大版 新知概览: 知识点1截面 (1)截面的概念:用一个平面去截几何体,截出的面叫做截面. (2)正方体的截面:根据面与面相交可以得到线可知用一个平面去截正方体的三个面,得到的截面是三角形.如果用一个平面去截正方体的四个面,就能得到四边形,除能得到正方形、长方形这样的四边形外,还能得到其他的四边形,如梯形、平行四边形等. 知识警示: (1)正方体总共有六个面,用一个平面去截最多只能得到六条交线,从而截面的边数最多只能是六,还可以得到五,但不可能截得七边形. (2)一般地,截面与几何体的几个面相交就得到几条交线,截面就是几边形.因此,若一个几何体有n个面,则截面最多的边数是n. 知识拓展 正方体的截面主要有三角形、四边形、五边形和六边形,如图1-3-1所示. 【试练例题1 】如图1-3-2所示的一块长方体木头,想象沿虚线所示位置截下

去所得到的截面图形是() 思路导引:首先根据两组对边平行,可确定为平行四边形;又有一角为直角,故截面图形是长方形.答案:B.长方体的截面,经过长方体四个侧面,长方体中,对边平行,故可确定为平行四边形,交点垂直于底边,故为长方形.知识方法: 截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.知识点2几种常见几何体的截面 (1)如图1-3-3所示,用平面截圆柱体,可能出现以下的几种情况. (2)如图1-3-4所示,用平面去截一个圆锥,能截出圆和三角形两种截面.(3)如图1-3-5所示,用平面去截球体,只能出现一种形状的截面---圆. 知识警示: (1)用一个平面去截一个圆柱所得到的截面有圆、长方形、椭圆、拱形形状和梯形. (2)用一个平面去截圆锥,可得到圆、三角形、拱形形状和椭圆. 【试练例题2】如图1-3-6中几何体的斜截面形状是() 思路导引:几何体是一个圆柱体,用一个平面斜截它,得到的截面应该是类似拱形的图形. 答案C用一个平面去截一个圆柱体,过平行于上下底面的面去截可得到圆;圆柱体的轴截面是矩形;过侧面且不平行于上下底面的面去截可得到椭圆;过一底面不平行于另一底面的面去截可得到类似拱形的截面. 方法:平面与平面相交得直线,平面与曲面相交可能得到直线,也可能得到曲线.

初中几何辅助线技巧大全

初中几何辅助线技巧大全 一初中几何常见辅助线口诀 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。 还要刻苦加钻研,找出规律凭经验。 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 四边形 平行四边形出现,对称中心等分点。梯形问题巧转换,变为△和□。 平移腰,移对角,两腰延长作出高。如果出现腰中点,细心连上中位线。 上述方法不奏效,过腰中点全等造。证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 圆形 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。 切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。 注意点 辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。 基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。 虚心勤学加苦练,成绩上升成直线。 二 由角平分线想到的辅助线 口诀: 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等。对于有角平分线的辅助线的作法,一般有两种。 ①从角平分线上一点向两边作垂线; ②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。 通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。至于选取哪种方法,要结合题目图形和已知条件。 与角有关的辅助线 (一)、截取构全等 几何的证明在于猜想与尝试,但这种尝试与猜想是在一定的规律基本之上的,希望同学们能掌握相关的几何规律,在解决几何问题中大胆地 去猜想,按一定的规律去尝试。下面就几何中常见的定理所涉及到的辅助线作以介绍。 如图1-1,∠AOC=∠BOC ,如取OE=OF ,并连接DE 、DF ,则有△OED ≌△OFD ,从而为我们证明线段、角相等创造了条件。 例1. 如图1-2,AB//CD ,BE 平分∠BCD ,CE 平分∠BCD ,点E 在AD 上,求证:BC=AB+CD 。 图1-1 B D B C

高中平面几何常用定理总结

高中平面几何常用定理 总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1 (高中)平面几何基础知识(基本定理、基本性质) 1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍. 2. 射影定理(欧几里得定理) 3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:222222a c b m a -+=. 4. 垂线定理:2222BD BC AD AC CD AB -=-?⊥. 高线长:C b B c A a bc c p b p a p p a h a sin sin sin ))()((2===---=. 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例. 6. 如△ABC 中,AD 平分∠BAC ,则AC AB DC BD =;(外角平分线定理). 角平分线长:2cos 2)(2A c b bc a p bcp c b t a +=-+= (其中p 为周长一半). 7. 正弦定理:R C c B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径). 8. 余弦定理:C ab b a c cos 2222-+=. 9. 张角定理:AB DAC AC BAD AD BAC ∠+∠=∠sin sin sin . 10. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD .

数学几何解题技巧

初中数学教学中几何解题思路分析 【摘要】平面几何在初中数学中一直占据着很重要的位置。而学生在对几何知识进行学习和掌握的过程中,最重要的一个部分就是能够应用到实践中进行解题。正像美国一位著名的数学家曾经所说过的那样:“数学这门学科,真正的组成部分就是问题和解题,在问题与解题中,解题就是数学的心脏所在。”学生在学习的过程中是否会解题,能否对一定的解题技巧与方法进行掌握对学生学习效果有直接的影响。对教师来说,学生对基本的解题能力进行掌握,也是“双基”教学的一个方面。在数学中对基本的解题方法和技巧进行注意,对学生的学习能力的提高无疑有着重要的促进作用,与此同时还能够对学生良好学习习惯的形成有推动作用。 【关键词】初中数学;教学;几何;解题思路; 对初中的几何教学来说,初中几何中的重要部分是解题技巧与规律教学。尤其是在初中几何的后期与复习阶段,通过对学生的几何解题技巧的培养,能够使学生对知识有系统性的掌握,同时能够培养其对知识进行灵活应用的能力。当然,处了解题技巧与规律的培养,还应该注意对学生思维能力的培养。只有思维能力得到提高,才能更好地掌握解题技巧与规律。下面我们通过具体的实例进行详细分析初中数学几何题的解题思路, 一、初中数学几何的解题技巧 1、对常见的题型与解题方法进行归纳总结 初中的几何题中,其实常见的题型并不多,所以这对经常见的几何题型与解题方法进行归纳与总结,是初中几何解题一个和实用的解题技巧。初中几何,证明题是最常见的,而证明题中,又以线段或角的一些关系的证明最为常见。对线段的关系的证明通常包括相等及其和差关系等的证明。在这些中,相等关系的证明是学生应该进行的基本掌握,对线段相等关系的证明,在思路与方法上常用的包括“三角形全等”、“比例线段”以及“等角对等边”和对中间量的过渡进行选取等思路。在这些方法中,“三角形全等”是最常用的,也是应该掌握的基本解题方法。对线段不等关系则一般常用“线段公理”,而对线段的和差及其它(如倍、分)关系,在解题过程中要注意使用截长、补短等技巧。对常见技巧进行掌握,能有效提高学生的解题效率。 2、注意对辅助线进行添加和使用 在对初中几何进行解题的过程中,除了要对常用的解题方法与规律进行掌握外,还要对辅助线的添加与使用加以关注。在初中几何题中,当直接解题出现障碍使,添加辅助线是常见的解题技巧,往往会让人产生一种“柳暗花明又一村”的感觉。对常见技巧进行掌握,能有效提高学生的解题效率。下面我们通过一道例题详细进行分析几何证明题的解题方法及技巧: 如下图所示,已知:在ABC ?中,?=∠90C ,BC AC =,DB AD =,BF AE =,求证:DF DE =,

用旋转法………作辅助线证明平面几何题.

用旋转法………作辅助线证明平面几何题 旋转法就是在图形具有等邻边特征时,可以把图形的某部分绕等邻边的公共端点,旋转另一位置的引辅助线的方法。 1、旋转方法主要用途是把分散的元素通过旋转集中起来,从而为证题创造必要的条 件。 2、旋转时要注意旋转中心、旋转方向、旋转角度的大小(三要素:中心、方向、大小); 3、旋转方法常用于竺腰三角形、等边三角形及正方形等图形中。 例1: 例2 已知,在Rt ABC 中;∠BAC=90?; D为BC边上任意一点,求证:2AD2=BD2+CD2. 证明:把ABD绕点A逆时钍方向旋转90?,得?ACE,则ABD??ACE,∴BD=CE,∠B=∠ACE; ∠BAD=∠CAE, AD=AE。 又∠BAC=90?;∴∠DAE=90? 所以: D E2=AD2+AE2=2AD2。 因为:∠B+∠ACB=90? 所以:∠DCE=90? CD2+CE2=DE2=2AD2 即: 2AD2=BD2+CD2。 注:也可以把ADC顺时针方向旋转90?来证明。 注 C D

已知,P 为等边ABC 内一点,PA=5,PB=4,PC=3,求∠BPC 的度数。证明:把ABP 绕点B 顺时钍方向旋转90?,得?CBD ,则ABP ??CBD ,∴, ∠ABP=∠CBD ,所以 ∠BAP+∠PBC=∠CBD+∠PBC=60?,所以 BPD 为等边三角形。 ∠PBD=60?所以: C D 2=PD 2+PC 2。因为: ∠DPC=90? 所以: ∠BPC=∠BPD+∠DPC=60?+90?=150? 注:也可以把CAP 绕点C 逆时针方向旋转60?来证明。 D C 例3: 如图:在正方形ABCD 中,E 为AD 边上一点,BF 平分∠CBE 交CD 于F 点。求证:BE=CF+AE 证明:把ABE 绕点B 顺时针方向旋转90?得BCN 。 则:ABE ?BCN ,所以: ∠ABE=∠CBN ,BE=BN ,AE=CN 。因为:四边形ABCD 是正方形,所以:CD AB ,∠NFB=NBF 因为:∠ABF=∠ABE+∠EBF ,∠NBF=∠NBC+∠CBF ,而:∠EBF=∠FBC ;∠NBF=∠NFB 所以:BN=NF=CN+CF 所以:BE=AE+CF 。注:也可以把BCF 绕点B 逆时针方向旋转90?来证明。

初二数学几何解题技巧

初二数学几何解题技巧 【知识梳理】 1、几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2、掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3、掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

【专题一】证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。 【专题二】证明直线平行或垂直 在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。 【专题三】证明线段和的问题 (一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。(截长法) (二)延长一较短线段,使延长部分等于另一较短线段,则两较短线段成为一条线段,证明该线段等于较长线段。(补短法)

初中数学代数几何解题技巧

如何用好题目中的条件暗示 有一类题目,我们在解前面几小题时,其解题思路和方法往往对解后面问题起着很好的暗示作用,现以一次函数中出现的两道题目为例予以说明,供同学们在学习过程中参考。 【例1】直线与x轴、y轴分别交于B、A两点,如图1。 图1 (1)求B、A两点的坐标; (2)把△AOB以直线AB为轴翻折,点O落在平面上的点C处,以BC为一边作等边△BCD。求D点的坐标。 解析:(1)容易求得,A(0,1)。 (2)如图2, 图2 ∵,A(0,1), ∴OB=,OA=1。 ∴在Rt△AOB中,容易求得∠OBA=30° ∵把△AOB以直线AB为轴翻折, ∴∠OBC=2∠OBA=60°,BO=BC。 ∴△OBC是等边三角形 以BC为一边作等边△BCD,则D的落点有两种情形,可分别求得D的坐标为(0,0),。 反思:在求得第(1)小题中B、A两点的坐标分别为B(,0),A(0,1),实质上暗示着Rt△AOB中,OA=1,OB=,即暗示着∠OBA=30°,为解第(2)小题做了很好的铺垫。

【例2】直线与x轴、y轴分别交于A、B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°,且点P(1,a)为坐标系中的一个动点,如图3。 图3 (1)求三解形ABC的面积。 (2)证明不论a取任何实数,三角形BOP的面积是一个常数; (3)要使得△ABC和△ABP的面积相等,求实数a的值。 解析:(1)容易求得:A(,0),B(0,1), ∴。 (2)如图4,连接OP、BP,过点P作PD垂直于y轴,垂足为D,则三角形BOP的面积为,故不论a取任何实数,三角形BOP的面积是一个常数。 图4 (3)如图4,①当点P在第四象限时由第(2)小题中的结果:,和第(3)小题的条件可得: ∴, ∵,

初一人教版数学上册截一个几何体知识点讲解

初一人教版数学上册截一个几何体知识点讲解 《截一个几何体》取材于北师大版教材《数学》七年级上册第一章第三节,是初中新课程改革中的新增内容,我们为大家整理的截一个几何体知识点具体如下,希望大家可以认真阅读,在新学期努力学习。 核心知识点 截面的定义: 用一个平面去截一个几何体,截出的面叫截面。由前面的知识知道,“面与面相交得到线”,用平面去截几何体,学习规律,所得到的截面就是这个平面与几何体每个面相交所围成的图形。 用平面截一个几何体所得截面的形状: 截面的形状多为圆和多边形,也可能是不规则图形,一般与下面两点有关:(1)几何体的形状; (2)切截的方向和角度。 一般的,截面与几何体的几个面相交,就得到几条交线,截面与平面相交就得到几边形; 截面与曲面相交,得到曲线,截面是圆或不规则图形。 几种常见几何体的截面: ①正方体的截面有: 三角形,等腰三角形,等边三角形; 正方形,长方形,平行四边形,菱形,梯形 五边形,六边形 ②圆柱的截面: 圆,椭圆,长方形,不规则图形; ③圆锥的截面: 圆,椭圆,等腰三角形,不规则图形 课后练习 要练说,得练听。听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。平时我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。 我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提 出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是

初一数学-几何题辅助线技巧详解

巧添辅助线 解证几何题 在几何证明或计算问题中,经常需要添加必要的辅助线,它的目的可以归纳为以下三点:一是通过添加辅助线,使图形的性质由隐蔽得以显现,从而利用有关性质去解题;二是通过添加辅助线,使分散的条件得以集中,从而利用它们的相互关系解题;三是把新问题转化为已经解决过的旧问题加以解决。值得注意的是辅助线的添加目的与已知条件和所求结论有关。下面我们分别举例加以说明。 [例题解析] 一、倍角问题 例1:如图1,在△ABC 中,AB=AC,BD ⊥AC 于D 。 求证:∠DBC=1 2 ∠BAC. 分析:∠DBC 、∠BAC 所在的两个三角形有公共角∠C ,可利用 三角形内角和来沟通∠DBC 、∠BAC 和∠C 的关系。 证法一:∵在△ABC 中,AB=AC , ∴∠ABC=∠C= 12(180°-∠BAC )=90°-12 ∠BAC 。 ∵BD ⊥AC 于D ∴∠BDC=90 ° ∴∠DBC=90° -∠C=90° -(90° - 12∠BAC)= 1 2 ∠BAC 即∠DBC= 1 2 ∠BAC 分析二:∠DBC 、∠BAC 分别在直角三角形和等腰三角形中,由所证的结论“∠DBC= ?∠BAC ”中含有角的倍、半关系,因此,可以做∠A 的平分线,利用等腰三角形三线合一的性质,把?∠A 放在直 角三角形中求解;也可以把∠DBC 沿BD 翻折构造2∠DBC 求解。 证法二:如图2,作AE ⊥BC 于E ,则∠EAC+∠C=90° ∵AB=AC ∴∠EAG= 1 2 ∠BAC ∵BD ⊥AC 于D ∴∠DBC+∠C=90 ° ∴∠EAC=∠DBC (同角的余角相等) 即∠DBC= 1 2 ∠BAC 。 证法三:如图3,在AD 上取一点E ,使DE=CD 连接BE ∵BD ⊥AC ∴BD 是线段CE 的垂直平分线 ∴BC=BE ∴∠BEC=∠C ∴∠EBC=2∠DBC=180° -2∠C ∵AB=AC ∴∠ABC=∠C ∴∠BAC=180° -2∠C ∴∠EBC=∠BAC ∴∠DBC= 1 2 ∠BAC 说明:例1也可以取BC 中点为E ,连接DE ,利用直角三角形斜边的中线等于斜边的一半和等腰

初中数学几何证明题解题方法--

初中数学几何证明题解题方法--

————————————————————————————————作者:————————————————————————————————日期:

浅谈初中数学几何证明题解题方法 内容摘要:几何证明题的一般结构由已知条件和求证目标组成。做几何证明题的一般步骤:审题,寻找证明的思路,书写证明过程 关键词:几何证明 条件 结论 .执因索果 执果索因 辅助线 初中学生正处于自觉形象思维向逻辑思维的过度阶段,几何证明,是学生逻辑思维的起步。这种思维方式学生刚接触,会遇到一些困难。许多学生在几何证明这里“跌倒了”,丧失了信心,以至于几何越学越糟。为此,我根据自己几年的数学教学实践,就初中数学中几何证明题的一般结构,解题思路进行初步探讨。 学好几何证明,起步要稳,要求学生在学习几何时要扎扎实实,一步一个脚印,在掌握好几何基础知识的同时,还要培养学生的逻辑思维能力。 一、几何证明题的一般结构 初中几何证明题的一般结构由已知条件和求证目标两部分(即前提和结论)组成。已知条件是几何证明的前提,指题目中用文字和符号直接给出的明确条件,也包括所给图形中暗含的条件。求证指题目要求的经过推理最终得出的结论。已知条件是题目既定成立的、毋庸置疑而且必然正确的。求证是几何证明题的最终目标,就是根据题目给出的已知条件,利用数学中的公理、定理、性质,用合理的推理形式推导出的最后结果,而且只能出现在证明过程的最后。 例如:如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M . 求证:△ABC ≌△DCB ; 已知条件:文字给出的有:△ABC 和△DCB ,AB = DC ,AC = DB ,AC 与DB 交于点M 图形给出的有:BC=CB,∠BMA 与∠CMD 是对顶角等等 求证目标是:△ABC ≌△DCB 注意,已知条件除了上面列出的,就没有其它的了,不可随意出现AM=DM ,BN=CN 等等 二、做几何证明题的一般步骤 (一)、审题 审题就是读题,这一步是解决几何证明题的关键,非常重要。许多学生读几何证明题时讲快,常常忽略了题目中蕴含的重要信息。和读其它类型的题有所不同,读几何证明题要求 B A M N

初中数学几何辅助线常用方法

第一章 中点模型的构造 当已知条件中出现一个中点时,你首先想到的辅助线的解题方法是什么?如果已知两个中点呢? 介绍以下方法: 1) 倍长中线或类中线(与中点有关的线段)构造全等三角形; 2) 三角形中位线定理; 3) 已知直角三角形斜边中点,可以考虑构造斜边中线; 4) 已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一”。 例1 在△ABC 中,AB=5,AC=3,BC 边上的中线AD=2,求BC 的长. 例2 已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,连接BE 并延长交AC 于点F ,AF=EF ,求证:AC=BE. 变式: 如图,在△ABC 中,AD 交BC 于点D ,点E 是BC 中点,EF//AD 交CA 的延长线于点F ,交AB 于点G ,若AD 为△ABC 的角平分线,求证:BG=CF. B C A D D B C D E B C

例3 在Rt △ABC 中,∠BAC=90°,点D 为BC 的中点,点E 、F 分别为AB 、AC 上的点,且ED ⊥FD. 以线段BE 、EF 、FC 为边能否构成一个三角形?若能,该三角形是锐角三角形,还是直角三角形,或者是钝角三角形? 例4 已知在△ABC 中,BE 、CF 分别为边AC 、AB 上的高,D 为BC 的中点,DM ⊥EF 于点M. 求证:FM=EM. 例5 已知:△ABD 和△ACE 都是直角三角形,且∠ABD=∠ACE=90°. 如图,连接DE ,设M 为DE 的中点,连接MB 、MC. 求证:MB=MC. D B A D B A B D

立体几何中平行与垂直证明方法归纳

c c ∥∥b a b a ∥?本文档系统总结归纳了立体几何中平行与垂直证明方法,特别适合于高三总复习时对学生构建知识网络、探求解题思路、归纳梳理解题方法。是一份不可多得的好资料。 一、“平行关系”常见证明方法 (一)直线与直线平行的证明 1) 利用某些平面图形的特性:如平行四边形的对边互相平行 2) 利用三角形中位线性质 3) 利用空间平行线的传递性(即公理4): 平行于同一条直线的两条直线互相平行。 4) 利用直线与平面平行的性质定理: 如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 5) 利用平面与平面平行的性质定理: 如果两个平行平面同时和第三个平面相交,那么它们的交线平行. 6) 利用直线与平面垂直的性质定理: 垂直于同一个平面的两条直线互相平行。 a b α β a b a =?? βαβ α ∥b a ∥?b a b a //// ??? ? ?? ==γβγαβα β α ⊥⊥b a b a ∥?

7) 利用平面内直线与直线垂直的性质: 在同一个平面内,垂直于同一条直线的两条直线互相平行。 8) 利用定义:在同一个平面内且两条直线没有公共点 (二)直线与平面平行的证明 1) 利用直线与平面平行的判定定理: 平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。 2) 利用平面与平面平行的性质推论: 两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。 3) 利用定义:直线在平面外,且直线与平面没有公共点 (三)平面与平面平行的证明 常见证明方法: 1) 利用平面与平面平行的判定定理: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 α b a β α a β αα ∥?a β ∥a ?α αββ////∩??b a P b a b a =α β//?α β b a P b ∥a b a αα ??α ∥a ?

几何问题解题思路

几何问题解题思路 数量关系技巧包含了数学运算技巧和数字推理技巧两大部分,公务员考试数学运算是最为考生所头疼,其所占分值高并且难度也高。今天中公教育为考生整理了数量关系答题技巧中的几何问题解题思路,希望对考生有所帮助! 中公教育为考生整理了几何问题考点的解题思路和技巧,望考生注意以下几个方面。 第一个方面,几何基本公式: 三角形的面积=底×高÷2,长方形(正方形)的面积=长×宽,梯形的面积=(上底+下底)×高÷2,圆形的面积=π×半径的平方,长方体(正方体)的面积=长×宽×高,圆柱体的体积=底面积×高,圆锥体的面积=底面积×高÷3。 第二个方面,几何问题的“割补平移”思想。 中公教育提醒考生,当看到一个关于求解面积的问题,不要立刻套用公式去求解,这样做很可能走入误区,最后无法求解或不能快速求解。对于此类问题通常的使用的方法就是“辅助线法”即通过引入新的辅助线将图形分割或者补全为很容易得到的规则图形,从而快速求得面积。 第三个方面,几何极限理论。 平面图形:①周长一定,越趋近于圆,面积越大,②面积一定,越趋近于圆,周长越小; 立体图形:①表面积一定,越趋近于球,体积越大,②体积一定,越趋近于球,表面积越小。 实战例题: 【例题】半径为5厘米的三个圆弧围成如右图所示的区域,其中AB弧与AD弧为四分之一圆弧,而BCD弧是一个半圆弧,则此区域的面积是多少平方米? A.25

B.10+5л C.50 D.55 【中公教育解析】如下图:连接BD,作矩形BDMN,将下面的四分之一圆弧的半径画出来,可见该部分面积分为彩色的两部分。上面部分是半圆,下半部分是矩形面积减去2个四分之一圆,即矩形面积减半个圆形面积二部分之和,正好是矩形面积,即10×5=50平方厘米。故答案为C。 最新招考公告、备考资料就在辽宁事业单位考试网 https://www.360docs.net/doc/a08719127.html,/liaoning/

截一个几何体教学案

截一个几何体 【步步高——学习目标】 掌握 几何体与截面的关系. 理解 用一个平面去截一个正方体, 所得截面的形状特征. 认识 截面的形状. 想快乐晋级吗?先准备一下吧! 【探新必备】 1.认识三角形、四边形、五边形、六边形、圆等平面图形; 2.了解面与面的平行、垂直等关系; 3.熟悉几何体的基本特征. 读者朋友,你真的准备好了吗?请完成以下诊断题目: 1.如图1-3-1,请在各平面图形下面的横线上写出它们的名称. 图1-3-1 2.如图1-3-2,与面ABCD 平行的面是 ,与面ABCD 垂直的面有 个,分别是 . H G F E D C B A 图1-3-2 3.⑴正方体有 个面;五棱柱有 个面; ⑵圆柱有 个面,其中有 个平面,有 个曲面;圆锥有 个面,其 中有 个平面,有 个曲面. 答案提示 1.三角形 六边形 圆 四边形 五边形 2.EFGH 4 面ADEH 、 面BCFG 、面ABGH 、 面CDEF 3.⑴6 7; ⑵3 2 1 2 1 1 知识点1 已知几何体,确定截面 【—问题线索】 新知讲解 如果你用刀切过土豆、豆腐、 西瓜……那么学习本节就会很 轻松哦! 几何体的截面 正方体 正方体的截面 多角度切割 类比

一、正方体的截面. 用一个平面去截正方体,截出的面叫做截面. 根据面与面相交得线可知,用一个平面去截正方体,若截三个面,则得三角形;若截四个面,则得四边形;若截五个面,则得五边形;若截六个面,则得六边形.因为正方体一共六个面,所以正方体的截面最多是六边形. 1.正方体的截面是三角形时,三角形可为等腰三角形、 等边三角形及其他三角形;2.正方体的截面是四边形时, 四边形可为正方形、长方形、平行四边形、梯形及其他四 边形. 温馨提示:根据线与线相交得点可知,用一个平面去 截正方体,若截n 条棱,则得截面的顶点有n 个,即为n 边形. 二、几何体的截面. 用一个平面去截几何体时,若截几何体的曲面时,则可能得曲线.如:用一个平面去截圆柱,所得到的截面有圆、长方形、梯形、椭圆,还有一种像拱形门;用一个平面去截圆锥,所得到的截面有三角形、圆、椭圆及拱形门形状. 1.当用一个平面以垂直于圆柱(圆锥)底面的方向切割侧面时,平面与曲面相交得直的线;2.用一个平面去截球时,截面是圆或椭圆. 温馨提示:当几何体不规则时,应本着面与面相交得线的原则确定截面的形状. 【例题精析】 例1.请在如图1-3-3所示的正方体中画出一个最大的矩形截面. 图命题意图:考查学生对正方体各种截面的熟悉程度. 解题流程: 解:如图1-3-4,图中的阴影部分就是最大的矩形截面. 指点迷津:正方体截面中,图1-3-4所示的最大矩形截面也是最大的四边形截面. 成功体验 1.如图1-3-5,请说出下列各图中截面的形状. ⑴ ⑵ ⑶ 图1-3-5 知识点2 已知截面,确定几何体 正方体 四边形截面 最大矩形截面 切4个面 比较 切割角度不同,截面 的形状就不同哦!

最新初中-数学几何图形的辅助线添加方法大全

最新初中-数学几何图形的辅助线添加方法 大全 作辅助线的基本方法 一:中点、中位线,延长线,平行线。 如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。 二:垂线、分角线,翻转全等连。 如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。其对称轴往往是垂线或角的平分线。 三:边边若相等,旋转做实验。 如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。其对称中心,因题而异,有时没有中心。故可分“有心”和“无心”旋转两种。 四:造角、平、相似,和、差、积、商见。 如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。在制造两个三角形相似时,一般地,有

两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。故作歌诀:“造角、平、相似,和差积商见。” 托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表) 五:两圆若相交,连心公共弦。 如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。六:两圆相切、离,连心,公切线。 如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线。 七:切线连直径,直角与半圆。 如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。即切线与直径互为辅助线。 如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。即直角与半圆互为辅助线。 八:弧、弦、弦心距;平行、等距、弦。 如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。 如遇平行线,则平行线间的距离相等,距离为辅助线;反之,亦

平面几何证明题的一般思路及方法简述

平面几何证明题的一般思路及方法简述 【摘要】惠特霍斯曾说过,“一般地,解题之所以成功,在很大程度上依赖于选择一种最适宜的方法。”灵活、恰当地选择解题方法是求解平面几何问题的良好途径。解决任何一道平面几何证明题,都要应用这样或那样的方法,而选择哪一种方法,就取决于我们用什么样的解题思路。本文试对平面几何证明题中常用的几种解题思路及方法进行分析。 【关键词】平面几何证明题思路方法 平面几何难学,是很多初中生在学习中的共识,这里面包含了很多主观和客观因素,而学习不得法,没有适当的解题思路则是其中的一个重要原因。波利亚曾说过,“解题的成功要靠正确思路的选择,要靠从可以接近它的方向去攻击堡垒。为了辨别哪一条思路正确,哪一个方向可接近它,就要试探各种方向和思路。”由此可见,掌握证明题的一般思路、探索证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。常见的证题思路有直接式思路和间接式思路。 一、直接式思路 证题时,首先应仔细审查题意,细心观察题目,分清条件和结论,并尽量挖掘题目中隐含的一些解题信息,以在缜密审题的基础上,根据定义、公式、定理进行一系列正面的逻辑推理,最后得出命题的证明,这种证题的思路被称为直接式思路。由于思维方式的逆顺,在证题时运用的方法主要有“分析法”和“综合法”。 1.分析法。分析法是从命题的结论入手,先承认它是正确的,执果索因,寻求结论正确的条件,这样一步一步逆而推之,直到与题设会合,于是就得出了由题设通往结论的思维过程。在由结论向已知条件的寻求追溯过程中,则由于题设条件的不同,或已知条件之间关系的隐含程度不同等,寻求追溯的形式会有一定差异,因而常把分析法分为以下四种类型。 (1)选择型分析法。选择型分析法解题,首先要从题目要求解的结论A出发,逐步把问题转化为分析要得出结论A需要哪些充分条件。假设有条件B,就有结论A,那么B就成为选择找到的使A成立的充分条件,然后再分析在什么条件下能选择得到B……最终追溯到命题中的某一题设条件。 (2)可逆型分析法。如果再从结论向已知条件追溯的过程中,每一步都是推求的充分必要条件,那么这种分析法又叫可逆型分析法,因而,可逆型分析法是选择型分析法的特殊情形。用可逆型分析法证明的命题用选择型分析法一定能证明,反之用选择型分析法证明的命题,用可逆型分析不一定能证明。 (3)构造型分析法。如果在从结论向已知条件追溯的过程中,在寻找新的充分条件的转化“三岔口”处,需采取相应的构造型措施:如构造一些条件,作某些辅助图等,进行探讨、推导,才能追溯到原命题的已知条件的分析法叫做构造型分析法。 (4)设想型分析法。在向已知条件追溯的过程中,借助于有根据的设想、假定,形成“言之成理”的新构思,再进行“持之有据”的验证,逐步地找出正确途径的分析法称为设想型分析法。 2.综合法。综合法则是由命题的题设条件入手,由因导果,通过一系列的正确推理,逐步靠近目标,最终获得结论。再从已知条件着手,根据已知的定义、公式、定理,逐步推导出结论。在这一过程中,由于思考角度不同,立足点不同,综合法常分为四种类型: (1)分析型综合法。我们把分析法解题的叙述倒过来,稍加整理而得到的解法称为分析型综合法。 (2)奠基型综合法。当由已知条件着手较难,或没有熟悉的模式可供归纳推导,就可转而寻找简单的模式,然后再将一般情形化归到这个简单的模式中来,这样的综合法称为奠基型综合法。 (3)媒介型综合法。当问题给出的已知条件较少,且看不出与所求结论的直接联系时,或条

相关文档
最新文档