几何问题解题思路

合集下载

空间几何问题的解题思路与方法

空间几何问题的解题思路与方法

空间几何问题的解题思路与方法空间几何问题是数学中重要的一个分支,涉及到解析几何、线性代数、微积分等多个数学学科。

解决空间几何问题需要运用一定的思路和方法,本文将介绍几种常见的解题思路和方法。

一、几何图形的性质与关系在解决空间几何问题时,首先需要熟悉各种几何图形的性质与关系。

比如直线与平面的相交情况,平面与平面的夹角关系等。

对于给定的几何图形,可以运用已知的性质和关系来推导出需要求解的结果。

二、坐标系与向量坐标系是解析几何中重要的工具,可以将几何图形与代数符号相联系。

通过引入坐标系,可以将空间几何问题转化为代数方程或方程组的求解。

在使用坐标系时,需要确定适当的坐标轴和坐标原点,并将几何图形的特征抽象为代数符号。

通过利用向量的性质,可以在坐标系中进行向量运算,计算两点距离、中点坐标等。

三、向量叉乘与双曲面交线向量叉乘是解决空间几何问题的常见方法之一。

通过向量叉乘可以求得两向量所夹平面的法向量,利用法向量可以进一步求解两平面的交线。

在求解双曲面交线问题时,可以将双曲面方程转化为标准形式,并应用向量叉乘的方法来求解交线的方程。

四、平面投影平面投影是解决空间几何问题的重要方法之一。

通过将空间中的几何体在一个平面上的投影,可以简化问题的处理。

平面投影可以应用于求解空间几何体的面积、体积以及几何体之间的位置关系等问题。

五、参数方程与参数化求解参数方程是描述几何图形的一种常用形式,通过引入参数,可以将几何图形的属性与参数相联系。

通过求解参数方程,可以得到几何图形的特征。

在解决空间几何问题时,可以运用参数方程来表示给定几何体之间的关系,并通过求解参数方程来得到结果。

六、三维几何题目的解题方法三维几何题目是空间几何问题的一种典型形式,解决三维几何题目需要清晰的思维和严密的推导。

一种常见的解题方法是利用立体几何中的立体角公式和公式组。

通过列出合适的公式组,可以将几何问题转化为方程组的求解问题。

综上所述,解决空间几何问题需要熟悉几何图形的性质与关系,运用坐标系与向量进行分析和计算,利用向量叉乘求解双曲面交线,应用平面投影简化问题的处理,运用参数方程与参数化求解等方法。

解析几何解题思路总结

解析几何解题思路总结

解析几何巧妙解题思路总结解析几何巧妙解题思路总结一.直线和圆的方程一.直线和圆的方程1.理解直线的斜率的概念,理解直线的斜率的概念,掌握过两点的直线的斜率公式,掌握过两点的直线的斜率公式,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、掌握直线方程的点斜式、掌握直线方程的点斜式、两点式、两点式、一般式,并能根据条件熟练地求出直线方程.一般式,并能根据条件熟练地求出直线方程.2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系.线的方程判断两条直线的位置关系. 3.了解二元一次不等式表示平面区域..了解二元一次不等式表示平面区域. 4.了解线性规划的意义,并会简单的应用..了解线性规划的意义,并会简单的应用. 5.了解解析几何的基本思想,了解坐标法..了解解析几何的基本思想,了解坐标法.6.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. 二.圆锥曲线方程二.圆锥曲线方程1.掌握椭圆的定义、标准方程和椭圆的简单几何性质..掌握椭圆的定义、标准方程和椭圆的简单几何性质. 2.掌握双曲线的定义、标准方程和双曲线的简单几何性质..掌握双曲线的定义、标准方程和双曲线的简单几何性质. 3.掌握抛物线的定义、标准方程和抛物线的简单几何性质..掌握抛物线的定义、标准方程和抛物线的简单几何性质. 4.了解圆锥曲线的初步应用..了解圆锥曲线的初步应用. 【例题解析】 考点1.1.求参数的值求参数的值求参数的值求参数的值是高考题中的常见题型之一求参数的值是高考题中的常见题型之一,,其解法为从曲线的性质入手其解法为从曲线的性质入手,,构造方程解之构造方程解之. . 例1.(2009年安徽卷)若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( )A .2-B .2C .4-D .4考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质. 解答过程:椭圆22162x y +=的右焦点为(2,0),所以抛物线222y px =的焦点为(2,0),则4p =,故选D. 考点2. 2. 求线段的长求线段的长求线段的长求线段的长也是高考题中的常见题型之一求线段的长也是高考题中的常见题型之一,,其解法为从曲线的性质入手其解法为从曲线的性质入手,,找出点的坐标找出点的坐标,,利用距离公式解之离公式解之. .例2.(2009年四川卷)已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于A.3 B.4 C.32D.42 考查意图: 本题主要考查直线与圆锥曲线的位置关系和距离公式的应用. 解:设直线AB 的方程为y x b =+,由22123301y x x x b x x y x bì=-+Þ++-=Þ+=-í=+î,进而可求出AB 的中点11(,)22M b --+,又由11(,)22M b --+在直线0x y +=上可求出1b =,∴220x x +-=,由弦长公式可求出221114(2)32AB =+-´-=.故选C 例3.(2006年四川卷)如图,把椭圆2212516x y +=的长轴的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部轴的垂线交椭圆的上半部分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点,是椭圆的一个焦点, 则1234567PF P F P F P F P F P F P F ++++++=____________. 考查意图: 本题主要考查椭圆的性质和距离公式的灵活应用. 解答过程:由椭圆2212516x y +=的方程知225, 5.a a =\=∴12345677277535.2aPF P F P F P F P F P F P F a ´++++++==´=´= 故填35. 考点3. 3. 曲线的离心率曲线的离心率曲线的离心率曲线的离心率是高考题中的热点题型之一曲线的离心率是高考题中的热点题型之一,,其解法为充分利用其解法为充分利用: : (1)(1)椭圆的离心率椭圆的离心率e =ac ∈(0,1) (e 越大则椭圆越扁越大则椭圆越扁); );(2) (2) 双曲线的离心率双曲线的离心率e =ac ∈(1, (1, +∞+∞+∞) (e ) (e 越大则双曲线开口越大越大则双曲线开口越大). ).结合有关知识来解题结合有关知识来解题. .例4.(2008年全国卷)文(年全国卷)文(44)理()理(44)已知双曲线的离心率为2,焦点是(4,0)-,(4,0),则双曲线方程为双曲线方程为A .221412x y -=B .221124x y -=C .221106x y -= D .221610x y -=考查意图:本题主要考查双曲线的标准方程和双曲线的离心率以及焦点等基本概念. 解答过程:解答过程: 2,4,ce c a=== 所以22,12.a b \==故选(A). 小结: 对双曲线的标准方程和双曲线的离心率以及焦点等基本概念,要注意认真掌握.尤其对双曲线的焦点位置和双曲线标准方程中分母大小关系要认真体会. 例5.(2008年广东卷)已知双曲线9322=-y x ,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于(到右准线的距离之比等于( )A. 2B.332 C. 2 D.4 考查意图: 本题主要考查双曲线的性质和离心率e =ac∈(1, +∞) 的有关知识的应用能力. 解答过程:依题意可知解答过程:依题意可知 3293,322=+=+==b a c a . 考点4.4.求最大求最大求最大((小)值求最大求最大((小)值, , 是高考题中的热点题型之一是高考题中的热点题型之一其解法为转化为二次函数问题或利用不等式求最大(小)值:特别是特别是,,一些题目还需要应用曲线的几何意义来解答一些题目还需要应用曲线的几何意义来解答. .例6.(2006年山东卷年山东卷))已知抛物线y 22=4x,=4x,过点过点P(4,0)P(4,0)的直线与抛物线相交于的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 12+y 22的最小值是的最小值是 . 考查意图: 本题主要考查直线与抛物线的位置关系,以及利用不等式求最大(小)值的方法. 解:设过点P(4,0)的直线为()()224,8164,y k x k x x x =-\-+=()()122222222122284160,8414416232.k x k x k k y y x x k k \-++=+æö\+=+=´=+³ç÷èø 故填32. 考点5 5 圆锥曲线的基本概念和性质圆锥曲线的基本概念和性质圆锥曲线的基本概念和性质圆锥曲线第一定义中的限制条件、圆锥曲线第二定义的统一性,都是考试的重点内容,要能够熟练运用;常用的解题技巧要熟记于心. 例7.(2007年广东卷文)年广东卷文)在平面直角坐标系xOy 中,已知圆心在第二象限、半径为22的圆C 与直线y=x 相切于坐标原点O.椭圆9222y ax +=1与圆C 的一个交点到椭圆两焦点的距离之和为10. (1)求圆C 的方程;的方程;(2)试探究圆C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点F 的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由. [考查目的]本小题主要考查直线、椭圆等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.行推理运算的能力和解决问题的能力. [解答过程] (1) 设圆C 的圆心为的圆心为 (m, n) 则,222,m n n =-ìïí×=ïî 解得2,2.m n =-ìí=î所求的圆的方程为所求的圆的方程为 22(2)(2)8x y ++-= (2) 由已知可得由已知可得 210a = , 5a =. 椭圆的方程为椭圆的方程为 221259x y += , 右焦点为右焦点为 F( 4, 0) ; 假设存在Q 点()222cos ,222sin q q -++使QF OF =, ()()22222cos 4222sin 4q q-+-++=.整理得整理得 s i n 3c o s 22q q=+, 代入代入 22sin cos 1q q +=. 得:210cos 122cos 70q q ++= , 122812222cos 11010q -±-±==<-.因此不存在符合题意的Q 点. 例8.(2007年安徽卷理)年安徽卷理)如图,曲线G 的方程为)0(22³=y x y .以原点为圆心,以)0(>t t 为半径的圆分别与曲线G 和y 轴的轴的 正半轴相交于正半轴相交于 A 与点B. 直线直线 AB 与 x 轴相交于点C. (Ⅰ)求点(Ⅰ)求点 A 的横坐标的横坐标 a 与点与点 C 的横坐标c 的关系式;的关系式;(Ⅱ)设曲线G 上点D 的横坐标为2+a ,求证:直线CD 的斜率为定值. [考查目的]本小题综合考查平面解析几何知识,主要涉及平面直角坐标素中的 两点间距离公式、直线的方程与斜率、抛物线上的点与曲线方程的关系 ,考查运算能力与思维能力,综合分析问题的能力. [解答过程](I )由题意知,).2,(a a A 因为.2,||22t a a t OA =+=所以 由于.2,02a a t t +=>故有 (1)由点B (0,t ),C (c ,0)的坐标知,直线BC 的方程为.1=+t y c x又因点A 在直线BC 上,故有,12=+ta c a将(1)代入上式,得,1)2(2=++a a a ca 解得解得 )2(22+++=a a c . (II )因为))2(22(++a a D ,所以直线CD 的斜率为的斜率为1)2(2)2(2))2(22(2)2(22)2(2-=+-+=+++-++=-++=a a a a a a c a a k CD ,所以直线CD 的斜率为定值. 例9.已知椭圆2222x y E :1(a b 0)a b +=>>,AB 是它的一条弦,M(2,1)是弦AB 的中点,若以点M(2,1)为焦点,椭圆E 的右准线为相应准线的双曲线C 和直线AB 交于点N(4,1)-,若椭圆离心率e 和双曲线离心率1e 之间满足1ee 1=,求:,求: (1)椭圆E 的离心率;(2)双曲线C 的方程. 解答过程:(1)设A 、B 坐标分别为1122A(x ,y ),B(x ,y ),则221122x y 1a b+=,222222x y 1a b +=,二式相减得:,二式相减得: 21212AB 21212y y (x x )b k x x (y y )a -+==-=-+2MN 22b 1(1)k 1a 24---===--, 所以2222a 2b 2(a c )==-,22a 2c =, 则c2e a 2==;(2)椭圆E 的右准线为22a(2c)x 2c cc===,双曲线的离心率11e 2e==, 设P(x,y)是双曲线上任一点,则:是双曲线上任一点,则: 22(x 2)(y 1)|PM |2|x 2c ||x 2c |-+-==--,两端平方且将N(4,1)-代入得:c 1=或c 3=,当c 1=时,双曲线方程为:22(x 2)(y 1)0---=,不合题意,舍去;,不合题意,舍去;当c 3=时,双曲线方程为:22(x 10)(y 1)32---=,即为所求. 小结:(1)“点差法”是处理弦的中点与斜率问题的常用方法;“点差法”是处理弦的中点与斜率问题的常用方法; (2)求解圆锥曲线时,若有焦点、准线,则通常会用到第二定义. 考点6 利用向量求曲线方程和解决相关问题利用向量求曲线方程和解决相关问题利用向量给出题设条件,可以将复杂的题设简单化,便于理解和计算. 典型例题:典型例题:例10.(2008年山东卷)双曲线C 与椭圆22184x y +=有相同的焦点,直线y=x 3为C 的一条渐近线. (1)求双曲线C 的方程;的方程;(2)过点P(0,4)的直线l ,交双曲线C 于A,B 两点,交x 轴于Q 点(Q 点与C 的顶点不重合)当12PQ QA QB l l ==,且3821-=+l l 时,求Q 点的坐标. 考查意图: 本题考查利用直线、椭圆、双曲线和平面向量等知识综合解题的能力,以及运用数形结合思想,方程和转化的思想解决问题的能力. 解答过程:(Ⅰ)设双曲线方程为22221x y a b -=, 由椭圆22184x y +=,求得两焦点为(2,0),(2,0)-,\对于双曲线:2C c =,又3y x =为双曲线C 的一条渐近线的一条渐近线\3ba = 解得解得 221,3ab ==,\双曲线C 的方程为2213y x -=(Ⅱ)解法一:(Ⅱ)解法一:由题意知直线l 的斜率k 存在且不等于零. 设l 的方程:114,(,)y kx A x y =+,22(,)B x y ,则4(,0)Q k -. 1PQ QA l = ,11144(,4)(,)x y kkl \--=+. 111111114444()44x k k x k k y y l l l l ì=--ìï-=+ïï\Þííïï-==-îïî 11(,)A x y 在双曲线C 上,上,\2121111616()10k l l l +--=. \222211161632160.3k k l l l ++--=\2221116(16)32160.3k k l l -++-=同理有:2222216(16)32160.3k k l l -++-=若2160,k -=则直线l 过顶点,不合题意.2160,k \-¹12,l l \是二次方程22216(16)32160.3k x x k -++-=的两根. 122328163k l l \+==--,24k \=,此时0,2k D >\=±. \所求Q 的坐标为(2,0)±. 解法二:由题意知直线l 的斜率k 存在且不等于零存在且不等于零 设l 的方程,11224,(,),(,)y kx A x y B x y =+,则4(,0)Q k-. 1PQ QA l = , Q \分PA的比为1l . 由定比分点坐标公式得由定比分点坐标公式得1111111111144(1)14401x x k k y y l l l l l l l ìì-==-+ïï+ïï®íí+ïï=-=ïï+îî下同解法一下同解法一解法三:由题意知直线l 的斜率k 存在且不等于零存在且不等于零 设l 的方程:11224,(,),(,)y kx A x y B x y =+,则4(,0)Q k-. 12PQ QA QB l l == , 111222444(,4)(,)(,)x y x y kkkl l \--=+=+. 11224y y l l \-==, 114y l \=-,224y l =-,又1283l l +=-,121123y y \+=,即12123()2y y y y +=. 将4y kx =+代入2213y x -=得222(3)244830k y y k --+-=. 230k -¹ ,否则l 与渐近线平行. 212122224483,33k y y y y k k -\+==--. 222244833233k k k -\´=´--.2k \=±(2,0)Q \±. 解法四:由题意知直线l 得斜率k 存在且不等于零,设l 的方程:4y kx =+,1122(,),(,)A x y B x y ,则4(,0)Q k- 1PQ QA l = ,11144(,4)(,)x y kkl \--=+. \1114444k kx x kl -==-++.同理同理 1244kx l =-+. 1212448443kx kx l l +=--=-++. 即 2121225()80k x x k x x +++=. (*)又 22413y kx y x =+ìïí-=ïî消去y 得22(3)8190k x kx ---=. 当230k -=时,则直线l 与双曲线得渐近线平行,不合题意,230k -¹. 由韦达定理有:由韦达定理有: 12212283193k x x k x x k ì+=ïï-íï=-ï-î代入(*)式得)式得24,2k k ==±. \所求Q 点的坐标为(2,0)±. 例11.(2007年江西卷理)年江西卷理)设动点P 到点A(-l ,0)和B(1,0)的距离分别为d 1和d 2, ∠APB =2θ,且存在常数λ(0<λ<1=,使得d 1d 2 sin 2θ=λ. (1)证明:动点P 的轨迹C 为双曲线,并求出C 的方程;的方程;(2)过点B 作直线交双曲线C 的右支于M 、N 两点,试确定λ的范围, 使OM ·ON =0,其中点O 为坐标原点.为坐标原点.[考查目的]本小题主要考查直线、双曲线等平面解析几何的基础知识,考查综合 运用数学知识进行推理运算的能力和解决问题的能力.运用数学知识进行推理运算的能力和解决问题的能力.[解答过程]解法1:(1)在PAB △中,2AB =,即222121222cos2d d d d q =+-,2212124()4sin d d d d q =-+,即2121244sin 212d d d d q l -=-=-<(常数),点P 的轨迹C 是以A B ,为焦点,实轴长221a l =-的双曲线.的双曲线.方程为:2211x y l l-=-.(2)设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.在双曲线上.即2111511012l l l l l -±-=Þ+-=Þ=-,因为01l <<,所以512l -=. ②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x l lì-=ï-íï=-î得:2222(1)2(1)(1)()0k x k x k l l l l l éù--+---+=ëû, 由题意知:2(1)0k l l éù--¹ëû,所以21222(1)(1)k x x k l l l --+=--,2122(1)()(1)k x x k l l l l --+=--. 于是:22212122(1)(1)(1)k y y k x x kl l l =--=--.因为0=×ON OM ,且M N ,在双曲线右支上,所以在双曲线右支上,所以 2121222122212(1)0(1)5121011231001x x y y k x x k x x l l l l l l l l l l l l l ll -ì+=ì-ì=ï>-ïïï+-+>ÞÞÞ<<+--íííïïï>+->>îîï-î. 由①②知,51223l -<≤.解法2:(1)同解法1 (2)设11()M x y ,,22()N x y ,,MN 的中点为00()E x y ,. ①当121x x ==时,221101MB l l l l l=-=Þ+-=-,因为01l <<,所以512l -=; ②当12x x ¹时,002222212111111y x k y x y xMN ×-=Þïïîïïíì=--=--l l l l l l . 又001MN BE y k k x ==-.所以22000(1)y x x l l l -=-;由2MON p =∠得222002MN x y æö+=ç÷èø,由第二定义得2212()222MN e x x a æö+-éù=ç÷êúëûèø 22000111(1)211x x x l l ll æö=--=+--ç÷--èø. 所以2220(1)2(1)(1)y x x l l l l -=--+-.于是由22000222000(1),(1)2(1)(1),y x x y x x l l l l l l l ì-=-ïí-=--+-ïî得20(1).23x l l -=-因为01x >,所以2(1)123l l->-,又01l <<,C BA oy x解得:51223l -<<.由①②知51223l -<≤.考点7 利用向量处理圆锥曲线中的最值问题利用向量处理圆锥曲线中的最值问题利用向量的数量积构造出等式或函数关系,再利用函数求最值的方法求最值,要比只利用解析几何知识建立等量关系容易. 例12.设椭圆E 的中心在坐标原点O ,焦点在x 轴上,离心率为33,过点C(1,0)-的直线交椭圆E 于A 、B 两点,且CA2BC = ,求当AOB D 的面积达到最大值时直线和椭圆E 的方程. 解答过程:因为椭圆的离心率为33,故可设椭圆方程为222x 3y t(t 0)+=>,直线方程为my x 1=+,由222x 3y t my x 1ì+=í=+î得:22(2m 3)y 4my 2t 0+-+-=,设1122A(x ,y ),B(x ,y ), 则1224m y y 2m 3+=+…………① 又CA 2BC =,故1122(x 1,y )2(1x ,y )+=---,即12y 2y =-…………②由①②得:128m y 2m 3=+,224m y 2m 3-=+,则AOB 1221m S |y y |6||22m 3D =-=+=66322|m ||m |£+, 当23m 2=,即6m 2=±时,AOB D 面积取最大值,面积取最大值,此时2122222t32m y y 2m 3(2m 3)-==-++,即t 10=,所以,直线方程为6x y 102±+=,椭圆方程为222x 3y 10+=. 小结:利用向量的数量积构造等量关系要比利用圆锥曲线的性质构造等量关系容易. 例13.已知P A (x 5,y)=+,PB (x 5,y)=- ,且|P A||P B|6+= , 求|2x 3y 12|--的最大值和最小值. 解答过程:设P(x,y),A(5,0)-,B(5,0),因为|P A ||PB|6+=,且|AB|256=<,所以,动点P 的轨迹是以A 、B 为焦点,长轴长为6的椭圆,的椭圆,椭圆方程为22x y 194+=,令x 3cos ,y 2sin =q =q , 则|2x 3y 12|--=|62cos()12|4pq +-,当cos()14pq +=-时,|2x 3y 12|--取最大值1262+,当cos()14pq +=时,|2x 3y 12|--取最小值1262-. 小结:利用椭圆的参数方程,可以将复杂的代数运算化为简单的三角运算. 考点8 利用向量处理圆锥曲线中的取值范围问题利用向量处理圆锥曲线中的取值范围问题解析几何中求变量的范围,一般情况下最终都转化成方程是否有解或转化成求函数的值域问题. 例14.(2006年福建卷)年福建卷) 已知椭圆2212x y +=的左焦点为F , O 为坐标原点. (I )求过点O 、F ,并且与椭圆的左准线l 相切的圆的方程;相切的圆的方程; (II )设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点,两点, 线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围. 考查意图:本小题主要考查直线、圆、椭圆和不等式等基本知识,考本小题主要考查直线、圆、椭圆和不等式等基本知识,考 查平面解析几何的基本方法,考查运算能力和综合解题能力. 解答过程:(I )222,1,1,(1,0),: 2.a b c F l x ==\=-=-圆过点O 、F , \圆心M 在直线12x =-上. 设1(,),2M t -则圆半径13()(2).22r =---=由,OM r =得2213(),22t -+=解得 2.t =±\所求圆的方程为2219()(2).24x y ++±=(II )设直线AB 的方程为(1)(0),y k x k =+¹代入221,2x y +=整理得2222(12)4220.k x k x k +++-=直线AB 过椭圆的左焦点F ,\方程有两个不等实根. ylG ABF OF EP DBA Oy x记1122(,),(,),A x y B x y AB 中点00(,),N x y 则21224,21k x x k +=-+AB \的垂直平分线NG 的方程为001().y y x x k-=--令0,y =得222002222211.21212124210,0,2G G k k k x x ky k k k k k x =+=-+=-=-+++++¹\-<<\点G 横坐标的取值范围为1(,0).2- 例15.已知双曲线C :2222x y 1(a 0,b 0)a b-=>>,B 是右顶点,F 是右焦点,点A 在x 轴正半轴上,且满足|OA|,|OB|,|OF| 成等比数列,过F 作双曲线C 在第一、三象限的渐近线的垂线l ,垂足为P ,(1)求证:PA OP PA FP ×=×;(2)若l 与双曲线C 的左、右两支分别相交于点D,E ,求双曲线C 的离心率e 的取值范围. 解答过程:(1)因|OA |,|OB|,|OF| 成等比数列,故22|OB |a|OA |c |OF|== ,即2a A(,0)c , 直线l :ay (x c)b=--,由2a y (x c)a ab b P(,)bc c y xa ì=--ïïÞíï=ïî, 故:22ab a ab b ab PA (0,),OP (,),FP (,)c c c c c =-==-,则:222a b PA OP PA FP c×=-=×,即PA OP PA FP ×=× ;(或P A (OP FP)P A (PF PO)P A OF 0×-=×-=×=,即PA OP PA FP ×=× ) (2)由44422222222222222ay (x c)a a a c (b )x 2cx (a b )0b b b b b x a y a b ì=--ïÞ-+-+=íï-=î,由4222212422a c (a b )b x x 0a b b -+=<-得:4422222b a b c a a e 2e 2.>Þ=->Þ>Þ>(或由DFDO k k >Þa bb a->-Þ2222222222b c a a e 2e 2=->Þ>Þ>)小结:向量的数量积在构造等量关系中的作用举足轻重,向量的数量积在构造等量关系中的作用举足轻重,而要运用数量积,而要运用数量积,必须先恰当地求出各个点的坐标. 例16.已知a (x,0)= ,b (1,y)=,(a 3b)(a 3b)+^- ,(1)求点P(x,y)的轨迹C 的方程;的方程;(2)若直线y kx m(m 0)=+¹与曲线C 交于A 、B 两点,D(0,1)-,且|AD ||BD |=, 试求m 的取值范围. 解答过程:(1)a 3b +=(x,0)3(13(1,,y)(x 3,3y)+=+,a 3b -=(x,0)3(13(1,,y)(x 3,3y)-=--, 因(a 3b)(a 3b)+^- ,故(a 3b)(a 3b)0+×-=,即22(x 3,3y)(x 3,3y)x 3y 30+×--=--=,故P 点的轨迹方程为22x y 13-=. (2)由22y kx mx 3y 3=+ìí-=î得:222(13k )x 6kmx 3m 30----=, 设1122A(x ,y ),B(x ,y ),A 、B 的中点为00M(x ,y )则22222(6km)4(13k )(3m 3)12(m 13k )0D =----=+->,1226km x x 13k +=-,1202x x 3km x 213k +==-,002my kx m 13k=+=-, 即A 、B 的中点为223km m(,)13k 13k --, 则线段AB 的垂直平分线为:22m 13kmy ()(x )13k k 13k -=----, 将D(0,1)-的坐标代入,化简得:24m 3k 1=-,PQCBA xy O则由222m 13k 04m 3k 1ì+->ïí=-ïî得:2m 4m 0->,解之得m 0<或m 4>,又24m 3k 11=->-,所以1m 4>-, 故m 的取值范围是1(,0)(4,)4-+¥ . 小结:求变量的范围,要注意式子的隐含条件,否则会产生增根现象. 考点9 利用向量处理圆锥曲线中的存在性问题利用向量处理圆锥曲线中的存在性问题存在性问题,其一般解法是先假设命题存在,用待定系数法设出所求的曲线方程或点的坐标,再根据合理的推理,若能推出题设中的系数,则存在性成立,否则,不成立. 例17.已知A,B,C 是长轴长为4的椭圆上的三点,点A 是长轴的一个顶点,BC 过椭圆的中心O ,且AC BC 0×= ,|BC|2|AC|=, (1)求椭圆的方程;)求椭圆的方程;(2)如果椭圆上的两点P ,Q 使PCQ Ð的平分线垂直于OA ,是否总存在实数λ,使得PQ λAB =?请说明理由;请说明理由;解答过程:(1)以O 为原点,OA 所在直线为x 轴建立轴建立 平面直角坐标系,则A(2,0),设椭圆方程为222x y14b+=,不妨设C 在x 轴上方,轴上方,由椭圆的对称性,|BC|2|AC|2|OC||AC||OC|==Þ= ,又AC BC 0×=AC OC Þ^,即ΔOCA 为等腰直角三角形,为等腰直角三角形,由A(2,0)得:C(1,1),代入椭圆方程得:24b 3=, 即,椭圆方程为22x 3y 144+=; (2)假设总存在实数λ,使得PQ λAB =,即AB //PQ ,由C(1,1)得B(1,1)--,则AB 0(1)1k 2(1)3--==--,若设CP :y k(x 1)1=-+,则CQ :y k(x 1)1=--+,由22222x 3y 1(13k )x 6k(k 1)x 3k 6k 1044y k(x 1)1ì+=ïÞ+--+--=íï=-+î, 由C(1,1)得x 1=是方程222(13k )x 6k(k 1)x 3k 6k 10+--+--=的一个根,的一个根,由韦达定理得:2P P 23k 6k 1x x 113k --=×=+,以k -代k 得2Q 23k 6k 1x 13k+-=+, 故P Q P Q PQ P Q P Q yy k(x x )2k 1k x x x x 3-+-===--,故AB //PQ , 即总存在实数λ,使得PQ λAB =. 评注:此题考察了坐标系的建立、待定系数法、椭圆的对称性、向量的垂直、向量的共线及探索性问题的处理方法等,是一道很好的综合题. 考点10 利用向量处理直线与圆锥曲线的关系问题利用向量处理直线与圆锥曲线的关系问题直线和圆锥曲线的关系问题,直线和圆锥曲线的关系问题,一般情况下,一般情况下,是把直线的方程和曲线的方程组成方程组,是把直线的方程和曲线的方程组成方程组,进一进一步来判断方程组的解的情况,但要注意判别式的使用和题设中变量的范围. 例18.设G 、M 分别是ABC D 的重心和外心,A(0,a)-,B(0,a)(a 0)>,且GM AB =l ,(1)求点C 的轨迹方程;的轨迹方程;(2)是否存在直线m ,使m 过点(a,0)并且与点C 的轨迹交于P 、Q 两点,且OPOQ 0×= 若存在,求出直线m 的方程;若不存在,请说明理由. 解答过程:(1)设C(x,y),则x yG(,)33, 因为GM AB =l ,所以GM //AB ,则xM(,0)3,由M 为ABC D 的外心,则|MA ||MC |=,即2222x x ()a (x)y 33+=-+,整理得:2222x y 1(x 0)3a a+=¹;(2)假设直线m 存在,设方程为y k(x a)=-,由2222y k(x a)x y 1(x 0)3aa =-ìïí+=¹ïî得:22222(13k )x 6k ax 3a (k 1)0+++-=,设1122P(x ,y ),Q(x ,y ),则21226k a x x 13k +=+,221223a (k 1)x x 13k -=+,22212121212y y k (x a )(x a )k [x x a (x x )a ]=--=-++=2222k a 13k-+, 由OP OQ 0×=得:1212x x y y 0+=,即2222223a (k 1)2k a13k 13k --+=++,解之得k 3=±,又点(a,0)在椭圆的内部,直线m 过点(a,0),故存在直线m ,其方程为y 3(x a)=±-. 小结:(1)解答存在性的探索问题,一般思路是先假设命题存在,再推出合理或不合理的结果,然后做出正确的判断;然后做出正确的判断;(2)直线和圆锥曲线的关系问题,一般最终都转化成直线的方程和圆锥曲线的方程所组成的方程组的求解问题. 专题训练与高考预测专题训练与高考预测一、选择题一、选择题1.如果双曲线经过点(6,3),且它的两条渐近线方程是1y x 3=±,那么双曲线方程是(),那么双曲线方程是()A .22x y 1369-= B .22x y 1819-= C .22x y 19-= D .22x y 1183-= 2.已知椭圆2222x y 13m 5n +=和双曲线2222x y 12m 3n-=有公共的焦点,那么双曲线的的渐近线方程为(为( ) A.15x y 2=± B. 15y x2=± C. 3x y 4=± D. 3y x 4=± 3.已知12F ,F 为椭圆2222x y 1(a b 0)a b+=>>的焦点,M 为椭圆上一点,1MF 垂直于x 轴,轴, 且12FMF 60Ð=°,则椭圆的离心率为(,则椭圆的离心率为( ) A.12 B.22 C.33 D.324.二次曲线22x y 14m+=,当m [2,1]Î--时,该曲线的离心率e 的取值范围是(的取值范围是( )A.23[,]22B. 35[,]22C.56[,]22D. 36[,]225.直线m 的方程为y kx 1=-,双曲线C 的方程为22x y 1-=,若直线m 与双曲线C 的右支相交于不重合的两点,则实数k 的取值范围是(的取值范围是( )A.(2,2)-B.(1,2)C.[2,2)-D.[1[1,,2)6.已知圆的方程为22x y 4+=,若抛物线过点A(1,0)-,B(1,0),且以圆的切线为准线,则抛物线的焦点的轨迹方程为(抛物线的焦点的轨迹方程为( ) A. 22xy1(y0)34+=¹B. 22x y 1(y 0)43+=¹ C. 22x y 1(x 0)34-=¹ D. 22x y 1(x 0)43-=¹二、填空题二、填空题7.已知P 是以1F 、2F 为焦点的椭圆)0(12222>>=+b a by ax 上一点,若021=×PF PF 21tan 21=ÐF PF ,则椭圆的离心率为,则椭圆的离心率为 ______________ . 8.已知椭圆x 2+2y 2=12,A 是x 轴正方向上的一定点,轴正方向上的一定点,若过点若过点A ,斜率为1的直线被椭圆截得的弦长为3134,点A 的坐标是______________ . 9.P 是椭圆22x y 143+=上的点,12F ,F 是椭圆的左右焦点,设12|PF ||PF |k ×=,则k 的最大值与最小值之差是______________ . 10.给出下列命题:.给出下列命题:①圆22(x 2)(y 1)1++-=关于点M(1,2)-对称的圆的方程是22(x 3)(y 3)1++-=;F 2F 1A 2A 1PNM oy x FQoyx②双曲线22x y 1169-=右支上一点P 到左准线的距离为18,那么该点到右焦点的距离为292;③顶点在原点,对称轴是坐标轴,且经过点(4,3)--的抛物线方程只能是29y x 4=-;④P 、Q 是椭圆22x 4y 16+=上的两个动点,O 为原点,直线OP ,OQ 的斜率之积为14-,则22|OP ||OQ|+等于定值20 . 把你认为正确的命题的序号填在横线上_________________ . 三、解答题三、解答题 11.已知两点A(2,0),B(2,0)-,动点P 在y 轴上的射影为Q ,2PA PB 2PQ ×=, (1)求动点P 的轨迹E 的方程;的方程;(2)设直线m 过点A ,斜率为k ,当0k 1<<时,曲线E 的上支上有且仅有一点C 到直线m 的距离为2,试求k 的值及此时点C 的坐标. 12.如图,1F (3,0)-,2F (3,0)是双曲线C 的两焦点,直线4x 3=是双曲线C 的右准线,12A ,A是双曲线C 的两个顶点,点P 是双曲线C 右支上异于2A 的一动点,直线1A P 、2A P 交双曲线C 的右准线分别于M,N 两点,两点, (1)求双曲线C 的方程;的方程;(2)求证:12FM F N × 是定值. 13.已知OFQ D 的面积为S ,且OFFQ 1×= ,建立如图所示坐标系,,建立如图所示坐标系, (1)若1S 2=,|OF|2= ,求直线FQ 的方程;的方程;(2)设|OF|c(c 2)=³,3S c 4=,若以O 为中心,F 为焦点的椭圆过点Q ,求当|OQ |取得最小值时的椭圆方程. 14.已知点H(3,0)-,点P 在y 轴上,点Q 在x 轴的正半轴上,点M 在直线PQ 上,且满足HP PM 0×= ,3PM MQ 2=-,BAMQ E T HP o yx(1)当点P 在y 轴上移动时,求点M 的轨迹C ;(2)过点T(1,0)-作直线m 与轨迹C 交于A 、B 两点,若在x 轴上存在一点0E(x ,0),使得ABE D 为等边三角形,求0x 的值. 15.已知椭圆)0(12222>>=+b a b y a x 的长、短轴端点分别为A 、B ,从此椭圆上一点M 向x 轴作垂线,恰好通过椭圆的左焦点1F ,向量AB 与OM 是共线向量.是共线向量. (1)求椭圆的离心率e ;(2)设Q 是椭圆上任意一点,是椭圆上任意一点, 1F 、2F 分别是左、右焦点,求∠21QF F 的取值范围;的取值范围;16.已知两点M (-1,0),N (1,0)且点P 使NPNM PN PM MN MP ×××,,成公差小于零的等差数列,数列, (Ⅰ)点P 的轨迹是什么曲线?的轨迹是什么曲线? (Ⅱ)若点P 坐标为),(00y x ,q 为PN PM 与的夹角,求tan θ.参考答案参考答案一. 1.C .提示,设双曲线方程为提示,设双曲线方程为11(x y)(x y)33+-=l ,将点(6,3)代入求出l 即可. 2.D .因为双曲线的焦点在因为双曲线的焦点在x 轴上,故椭圆焦点为22(3m 5n ,0)-,双曲线焦点为22(2m 3n ,0)+,由22223m 5n 2m 3n -=+得|m |22|n |=,所以,双曲线的渐近线为6|n |3y x 2|m |4=±=± . 3.C .设1|MF |d =,则2|MF |2d =,12|FF |3d =,11212|FF |c 2c 3d3e a2a|MF ||MF |d 2d 3=====++ . 4.C .曲线为双曲线,且曲线为双曲线,且512>,故选C ;或用2a 4=,2b m =-来计算. 5.B .将两方程组成方程组,利用判别式及根与系数的关系建立不等式组将两方程组成方程组,利用判别式及根与系数的关系建立不等式组. 6.B .数形结合,利用梯形中位线和椭圆的定义数形结合,利用梯形中位线和椭圆的定义. 二.7.解:设c 为为椭圆半焦距,∵021=×PF PF ,∴21PF PF ^ . 又21tan 21=ÐF PF ∴ïïïîïïïíì==+=+212)2(122122221PF PF a PF PF c PF PF解得:255()93,cc e aa === . 选D . 8. 解:设A (x 0,0)(x 0>0),则直线l 的方程为y=x-x 0,设直线l 与椭圆相交于P (x 1,y 1),Q (x 2、y 2),由,由 y=x-x 0 可得3x 2-4x 0x+2x 02-12=0, x 22+2y 22=12 34021x x x =+,31222021-=×x x x ,则,则 2020221221212363234889164)(||x x xx x x x x x -=--=-+=-.∴||13144212x x x -×+=,即202363223144x -××=. ∴x 02=4,又x 0>0,∴x 0=2,∴A (2,0).9.1;22212k |PF ||PF |(a ex)(a ex)a e x =×=+-=- . 10.②④. 三. 11.解(1)设动点P 的坐标为(x,y),则点Q(0,y),PQ (x,0)=-,P A (2x,y)=-- ,PB (2x,y)=---,22P A PB x 2y ×=-+ ,因为2PA PB 2PQ ×= ,所以222x 2y 2x -+=,即动点P 的轨迹方程为:22y x 2-=; (2)设直线m :y k(x 2)(0k 1)=-<<,依题意,点C 在与直线m 平行,且与m 之间的距离为2的直线上,的直线上, 设此直线为1m :y kx b =+,由2|2k b |2k 1+=+,即2b 22kb 2+=,……①把y kx b =+代入22y x 2-=,整理得:222(k 1)x 2kbx (b 2)0-++-=,则22224k b 4(k 1)(b 2)0D =---=,即22b 2k 2+=,…………②由①②得:25k 5=,10b 5=,此时,由方程组222510y x C(22,10)55y x 2ì=+ïÞíï-=î . 12.解:(1)依题意得:c 3=,2a4c 3=,所以a 2=,2b 5=,所求双曲线C 的方程为22x y145-=;(2)设00P(x ,y ),11M(x ,y ),22N(x ,y ),则1A (2,0)-,2A (2,0),100A P (x 2,y )=+ ,200A P (x 2,y )=- ,1110A M (,y )3= ,222A N (,y )3=- , 因为1A P 与1A M 共线,故01010(x 2)y y 3+=,01010y y 3(x 2)=+,同理:0202y y 3(x 2)=--, 则1113F M (,y )3= ,225F N (,y )3=-, 所以12FM F N ×=1265y y 9-+=202020y 6599(x 4)---=20205(x 4)206541099(x 4)-´--=-- . 13.解:(1)因为|OF|2= ,则F(2,0),OF (2,0)=,设00Q(x ,y ),则00FQ (x 2,y )=- ,0OF FQ 2(x 2)1×=-= ,解得05x 2=,由0011S |OF ||y ||y |22=×== ,得01y 2=±,故51Q(,)22±,所以,PQ 所在直线方程为y x 2=-或y x 2=-+;(2)设00Q(x ,y ),因为|OF|c(c 2)=³,则00FQ (x c,y )=- ,)))设椭圆方程为22x y a b +=222594a4b í+=ïî所以,椭圆方程为x y106+=MQ 2-)2-Q(,0)3)(x,)22-22(k 2)k -,2(,)k k-2(x )k k k-=--2k=+2E(k+的距离等于3|2221212(x x )(y y )=-+-=22241k 1k k -×+,所以,422231k 21k k |k |-=+,解得:3k 2=±,011x 3= . 15.解:(1)∵a b y c x c F M M 21,),0,(=-=-则,∴acb k OM 2-= . ∵AB OM a b k AB与,-=是共线向量,∴a bac b -=-2,∴b=c,故22=e . (2)设1122121212,,,2,2,FQ r F Q r F QF r r a F F c q ==Ð=\+==22222221212122121212124()24cos 11022()2r r c r r r r c a a r r r r r r r r q +-+--===-³-=+ 当且仅当21r r =时,cos θ=0,∴θ]2,0[pÎ . 16.解:(Ⅰ)记P (x,y ),由M (-1,0)N (1,0)得)得(1,),PM MP x y =-=--- ),1(y x NP PN ---=-=, )0,2(=-=NM MN . 所以所以 )1(2x MN MP +=× . 122-+=×y x PN PM , )1(2x NP NM -=× . 于是,于是, NP NM PN PM MN MP ×××,,是公差小于零的等差数列等价于是公差小于零的等差数列等价于îîïíì<+---++=-+0)1(2)1(2)]1(2)1(2[21122x x x x y x 即 îíì>=+0322x y x . 所以,点P 的轨迹是以原点为圆心,3为半径的右半圆. (Ⅱ)点P 的坐标为),(00y x 。

初中数学知识归纳几何题的解题思路与方法

初中数学知识归纳几何题的解题思路与方法

初中数学知识归纳几何题的解题思路与方法几何题在初中数学中占据着重要的地位,它不仅考察了学生对几何概念的理解,还需要运用一些解题技巧和方法。

本文将从几何题的解题思路和方法两个方面进行阐述,希望能够帮助读者更好地理解和应对几何题。

一、几何题的解题思路解决几何题首先要理解题意,弄清楚题目中给出的条件和要求。

在这个过程中,我们需要运用数学知识进行分析和归纳。

下面是一些常见的解题思路:1. 图形识别法:通过观察题目中给出的图形,识别出可能与之相关的几何性质。

例如,如果题目中出现了平行线、垂直线、等腰三角形等关键词,可以进一步研究它们的性质,从而找到解题的线索。

2. 形状比较法:有时候题目中给出了多个图形,要求我们比较它们的大小、面积或者其他性质。

这时,我们可以通过计算或者直观的对比来找出它们之间的关系。

3. 数字推理法:一些几何题目中给出了具体的数字或者比例关系,我们可以根据这些信息进行推理。

例如,通过求解比例、利用勾股定理等方法来计算出未知的长度、角度等。

4. 分类讨论法:有些几何题目可能存在多种条件或者情况,我们可以根据题目中的关键信息进行分类讨论。

通过分别解决每一种情况,再综合得出最后的结论。

二、几何题的解题方法在掌握了解题思路后,我们还需要掌握一些具体的解题方法,这些方法是根据几何性质和常见的解题模式总结得出的。

下面是一些常见的解题方法:1. 几何性质运用:几何题目中常常涉及到点、线、面的性质。

因此,我们需要牢记一些常见的几何性质,如平行线的性质、垂直线的性质、等腰三角形的性质等。

这些性质在解题过程中起着重要的作用,可以帮助我们找到解题的线索。

2. 分割图形法:有时候题目中给出的图形比较复杂,我们可以通过分割图形来简化问题。

将复杂的图形分割为若干简单的几何形状,然后对每个简单的几何形状进行分析和运算,最后再综合得出最终的结论。

3. 利用相似性:在一些几何题中,图形之间存在相似性。

我们可以通过相似三角形的性质来求解未知的长度、角度等。

如何解决初中数学中的几何难题

如何解决初中数学中的几何难题

如何解决初中数学中的几何难题初中数学中的几何难题常常让学生感到头疼,然而,只要掌握一些解题的技巧和方法,就能轻松应对各种几何难题。

本文将向大家介绍一些解决初中数学中的几何难题的方法和技巧。

一、了解基础知识在解决几何难题之前,首先要熟悉几何基础知识。

我们应该了解几何中的基本概念,例如:点、线、面等,还要掌握一些常见的图形的性质和特点,例如:圆、直角三角形、等边三角形等。

只有掌握了这些基础知识,我们才能更好地理解和解决几何难题。

二、学会观察图形解决几何难题的关键是要善于观察图形。

通过观察,我们能够发现图形中的一些规律和特点,从而帮助解题。

例如,当我们遇到一个与直线垂直的线段时,应该想到这个线段就是直角三角形的斜边,可以应用勾股定理来解题。

三、运用几何定理和公式初中数学中有许多几何定理和公式,我们在解决几何难题时可以运用这些定理和公式来得到结果。

例如,解决面积相关的问题时,可以运用矩形面积公式、三角形面积公式等。

而对于角度相关的问题,可以利用角的平分线定理、同位角定理等来解题。

四、运用相似性质在解决几何难题时,我们还可以运用相似性质。

两个图形相似,意味着它们的相应边的比例相等。

通过运用相似性质,我们可以求解未知边长或者角度的值。

例如,当遇到两个三角形相似的题目时,我们可以列出相似比例方程,从而求解未知边长或者角度的值。

五、练习真题和习题要提高解决几何难题的能力,还需要进行充分的练习。

我们可以多做一些真题和习题,通过反复练习,掌握解题的思路和技巧。

同时,我们还可以参加数学竞赛或者参加几何相关的讲座和培训,提高自己的解题水平。

六、注意解题过程和答案的合理性在解决几何难题时,我们应该注重解题的过程,不仅仅关注答案。

解题的过程是检验我们解题能力的重要指标。

我们要注意逻辑的合理性,思路的连贯性,不能出现错误的推理和计算。

同时,我们还要注意答案的合理性,回头检查解答结果是否与题意相符。

通过掌握这些方法和技巧,我们就能在初中数学中轻松应对各种几何难题。

数学几何问题解题技巧

数学几何问题解题技巧

数学几何问题解题技巧数学几何问题是许多学生在学习数学过程中遇到的难题之一。

解决几何问题需要一定的技巧和方法,下面将介绍一些常用的数学几何问题解题技巧。

一、画图法解决几何问题的第一步是画出几何图形。

通过准确地绘制所给的图形,可以帮助我们更好地理解问题,并找到解决方案。

在画图时要注意几何图形的形状、比例和准确度。

二、利用已知信息解决几何问题时,首先要充分利用已知信息。

读题时要将已知条件逐一列出,并理解它们之间的关系。

根据已知信息,可以通过几何定理或公式来推导所需的结果。

三、几何定理的灵活运用几何定理是解决几何问题的重要工具。

我们需要熟练掌握各种几何定理,并能够灵活地运用它们。

在解决几何问题时,常常需要将不同的几何定理相结合使用,找到解题的关键点。

四、角度与边的关系解决几何问题时,角度与边的关系是非常重要的一点。

我们需要通过观察几何图形中的角度和边的长度,寻找它们之间的关联。

利用角度与边的关系,可以推导出所求的结果。

五、相似和全等三角形相似和全等三角形是几何问题中常见的概念。

当我们遇到几何问题时,可以尝试通过相似或全等三角形来求解。

相似三角形的对应边比值相等,而全等三角形的对应边长度相等。

通过应用相似或全等三角形的性质,可以简化解题过程。

六、运用代数解题在某些情况下,几何问题可以通过代数的方法来解决。

我们可以用变量表示未知量,列方程,然后通过求解方程来得到答案。

这种方法通常适用于几何问题与代数问题相结合的情况。

七、结合图形推导有些几何问题无法直接得出结论,需要通过推导来解决。

我们可以在几何图形中引入辅助线或辅助点,通过推导和类似三角形等方法来解题。

这种方法通常需要一定的想象力和思考能力。

综上所述,解决数学几何问题需要一定的技巧和方法。

通过合理运用画图法、利用已知信息、几何定理、角度与边的关系、相似和全等三角形、代数解题以及结合图形推导等技巧,我们可以提高解题的效率和准确性。

希望以上的数学几何问题解题技巧对你有所帮助!。

八年级数学几何题解题技巧

八年级数学几何题解题技巧

一、熟练掌握基本概念解决几何问题时,首先要对几何概念有深入的理解。

对于每一个概念,都要明白它的定义、性质和定理。

例如,在三角形中,要理解三角形的边、角、高的概念,以及三角形的基本性质,如三角形的稳定性、两边之和大于第三边等。

二、演绎推理几何证明题是数学几何题中的一类重要题型,对于这种题目,需要使用演绎推理的方法。

演绎推理是一种严格的逻辑推理方法,它从已知的事实出发,通过逻辑推理得出结论。

在演绎推理中,需要注意使用定理、公理等已知事实,以及推理规则的正确性。

三、辅助线在解决一些较难的几何问题时,通常需要添加辅助线。

辅助线可以帮助我们更好地理解问题的本质,以及找到解决问题的方法。

例如,在证明勾股定理时,可以通过添加辅助线将直角三角形转化为矩形。

四、转化思想转化思想是数学中的一种重要思想方法,它通过将复杂问题转化为简单问题,或者将不规则图形转化为规则图形,从而解决问题。

例如,在求多边形的面积时,可以将多边形转化为三角形或矩形来计算。

五、举一反三在学习数学时,要学会举一反三。

对于一个题目,不仅要会做,还要理解其背后的原理和思路,这样才能在遇到类似问题时游刃有余。

例如,在解决几何问题时,可以通过举一反三的方法,将类似的题目进行归纳和总结,从而更好地掌握解题技巧。

六、细心计算在做数学题时,一定要细心计算。

几何问题通常涉及到大量的计算和证明过程,如果粗心大意,很容易出现错误。

因此,在做几何题时,需要耐心细致地进行计算和证明。

七、系统归纳学习数学需要系统归纳的方法。

可以将所学的知识点进行分类和整理,形成系统的知识结构。

例如,对于几何知识点,可以按照平面几何、立体几何等分类进行整理归纳,方便后续学习和复习。

同时也可以将一些难题或者错题进行归纳整理,以便于及时发现自己薄弱环节并加以改进提高。

总之要想提高八年级数学几何题的解题技巧首先要熟练掌握基本概念并理解每一个概念的性质与定理;其次要学会运用演绎推理方法解决证明题;第三要学会添加辅助线以帮助解决难题;第四要学会转化思想将复杂问题转化为简单问题来解决;第五要学会举一反三总结归纳以掌握解题技巧;第六要细心计算以避免出现错误;最后要将所学的知识点进行系统归纳以便于更好地复习提高学习效率.。

初中数学几何常用十大解题方法

初中数学几何常用十大解题方法

初中数学几何常用十大解题方法
初中数学几何是一门非常重要且广泛运用的学科,掌握一些常用的
解题方法能够加深对这门学科的理解,也有助于我们在考试中更为得
心应手。

下面是我总结的初中数学几何常用的十大解题方法。

1. 引理法:在证明一个重要的结论时,我们可以先引入一个类似的但
容易证明的结论,然后再运用这个结论推导得出所要证明的结论。

2. 分类讨论法:将不同情况按照不同性质分为若干个类别,然后分别
进行讨论,最后再根据各个情况得出所要求的答案。

3. 反证法:这种证明方法常用于证明命题的否定。

先假设结论不成立,然后推导得到一个矛盾的结论,说明原命题是成立的。

4. 相似性质法:找出几何图形之间的相似性质,利用这些性质建立几
何方程来求解未知量。

5. 对称性法:通过图形的对称性质,将几何问题转化为已知问题来解决。

6. 等角定理法:利用三角形等角定理推导问题,解决几何题。

7. 重心法:通过计算三角形各顶点的坐标,进而求出三角形的重心坐标,从而解决几何问题。

8. 勾股定理法:利用勾股定理解决几何题,是一种非常常见的解题方法。

9. 同位角反向法:通过同位角的反向推导,建立几何方程求解未知量。

10. 线性规划法:用代数的方法求解对于一些线性方程的优化问题,对
于一些几何问题也可以通过线性规划进行求解。

以上就是初中数学几何常用的十大解题方法,这些方法都有着广泛的
运用场景,希望大家在学习中能够加以应用,并且能够掌握更多的解
题方法。

立体几何中主要解题思路

立体几何中主要解题思路

立体几何中主要解题思路如下:
1.建立空间坐标系:对于三维空间中的点、线、面等几何对象,
可以通过建立空间直角坐标系来描述它们的坐标。

通过坐标系,可以将几何问题转化为代数问题,从而利用代数方法进行求解。

2.向量方法:向量是解决立体几何问题的重要工具。

通过向量的
加、减、数乘以及向量的模长、向量之间的夹角等性质,可以
方便地解决与长度、角度、平行、垂直等问题。

3.空间几何的性质:掌握空间几何的基本性质,如平行、垂直、
相交等,对于理解问题和寻找解题思路至关重要。

4.投影与截面:在解决与空间几何体相关的问题时,常常需要利
用投影和截面的性质。

例如,求一个几何体的体积或表面积时,
可以通过投影或截面的面积来推导。

5.转化与构造:在解决立体几何问题时,有时需要将问题转化为
更容易处理的形式,或者构造新的几何图形来帮助解决问题。

6.运用几何定理:掌握并运用基本的几何定理是解决立体几何问
题的关键。

例如,勾股定理、余弦定理、正弦定理等。

7.数形结合:在解题过程中,将代数表达式与几何图形相结合,
有助于更直观地理解问题并找到解决方案。

8.逻辑推理:在证明题中,逻辑推理是必不可少的。

通过严密的
逻辑推理,可以证明某些结论或性质。

综上所述,掌握这些解题思路对于解决立体几何问题至关重要。

通过不断练习和总结,可以提高解决立体几何问题的能力。

初中数学几何题考试的时候没有思路怎么办

初中数学几何题考试的时候没有思路怎么办

初中数学几何题考试的时候没有
思路怎么办
1.解题方法
每一种解题思维方法都代表一个思维体系,是学生获取知识的手段,是联系各种知识的纽带。

它比知识具有更强的稳定性、通用性和普遍适应性,能使学生透彻理解知识,形成独立探索和解决问题的能力。

该系列丛书着重研究和总结各学科的思维方法、策略和技巧,帮助学生在实际解题过程中灵活运用,达到事半功倍的效果。

2.实例分析
针对老师在课堂上具体的讲解过程,阐述“解题方法”中给出的内容,引导学生做一类题目的正确思考方向,以及给出解决这类题目的具体做法。

3.典例精讲
对所选试题进行全面深入的分析,并在精辟阐述的基础上加以拓展、完善和深化,极大地拓宽了学生的解题思路,有助于学生循序渐进地提高自身能力。

达到以一当十,以少控多的目的。

4.针对训练
精选全国各地名校的模拟试题、真题和期末试题,让学生用所学的方法和技巧及时练习,做同类题。

本书试图用更简单的
学科思路帮助学生加深对知识的理解,提高学习能力,达到最佳的学习效果。

祝好运!。

数学几何题目解题技巧整理

数学几何题目解题技巧整理

数学几何题目解题技巧整理解题技巧一:理清题目要求在解决数学几何题目之前,首先要仔细阅读题目,理解题目要求。

要注意判断题目所给条件以及需要推导的结论,确保清楚问题所涉及的几何概念和定理。

解题技巧二:绘制清晰准确的图形绘制图形有助于我们更好地理解题目,并直观地观察几何形状之间的关系。

在绘制图形时,要保证图形清晰、准确,注重比例和尺寸的准确性。

同时,要标注出已知条件和需要求解的未知量,以便后续分析和推导。

解题技巧三:利用几何性质和定理在解决几何问题时,我们需要充分利用已知的几何性质和定理来推导未知量。

熟练掌握一些基本的几何定理,如勾股定理、相似三角形的性质、圆的性质等,可以为我们解题提供很大的帮助。

同时,要注意将题目中的几何条件与相应的定理进行联系,灵活应用。

解题技巧四:使用代数方法解题有些几何问题可以通过代数方法求解,特别是涉及到线性方程组、二次方程等等。

当几何问题难以直接求解或分析时,可以通过引入代数符号,构建代数方程来辅助解题。

这样可以将几何问题转化为代数问题,应用代数知识进行求解。

解题技巧五:巧妙利用相似性和比例关系相似性和比例关系在几何问题中经常出现,并且常常与几何图形之间的性质相关。

我们可以利用相似性和比例关系来推导出未知量的值,或者利用已知条件与要求解的未知量之间的比例关系来求解。

解题技巧六:思维灵活,多角度分析在解决几何问题时,我们要善于思维灵活,从不同角度分析问题。

有时候,同一个问题可以通过不同的方法来解答,甚至可以从多个角度来理解和解读。

学会多角度思考可以帮助我们更好地理解问题,并找到更有效的解题方法。

解题技巧七:切忌心急冒进在解决几何问题时,切勿心急冒进,要耐心分析和推导,逐步解决问题。

一步一步地进行推导,确保每个步骤都是正确的,避免出现错误。

如果遇到难题,可以先暂时搁置,放松一下思维,或者尝试其他解题思路,寻找突破口。

总结:数学几何题目的解题技巧包括理清题目要求、绘制清晰准确的图形、利用几何性质和定理、使用代数方法解题、巧妙利用相似性和比例关系、思维灵活多角度分析以及切忌心急冒进。

做几何题的思路与方法

做几何题的思路与方法

做几何题的思路与方法做几何题在数学学科中是一个很重要的部分,尤其是在初中数学中,几何题占据了很大一部分的比例。

在学习几何题的过程中,不仅需要掌握几何知识的相关基本概念,还要培养正确的思维方式和方法,下面就做几何题的思路与方法做一个详细地介绍。

一、正确的几何思维方式正确的几何思维方式是在做几何题的时候非常重要的一部分,正确的思维方式可以更好的帮助我们解决各种几何题,下面介绍一些正确的几何思维方式:1. 观察细节在做几何题的时候,要时刻关注图形的每一个细节,并且从细节中寻找提示,这通常可以帮助我们更快地找到解题思路,例如,我们可以在图中找到对称,相似,平行等关系。

2. 建立合理的模型对于复杂的几何问题,我们可以根据图形特点进行模型建立,通过建立与原图相同的平面几何图形,不断转化和简化问题,这可以帮助我们更好地进行解题分析与思考。

3. 合理运用公式和定理在学习几何过程中,掌握基本几何公式和定理是非常重要的,在解决几何问题的过程中,可以灵活运用公式和定理,找到定理和公式间的联系、结合图形去寻找答案。

4. 注意整体把握对于一个复杂的几何问题,进行整体把握是非常重要的。

在解题时,通常需要先对整体形状进行考虑,从总体出发再逐步深入细节和特点,找到符合问题需要的解决方法。

二、几何题切入点几何问题解决之法,可以从很多角度来入手,下面着重介绍一些比较常见的题目切入点。

1. 图形相似性对于图形的相似性,不同尺寸大小的图形会呈现出相同或者近似的形状,从中寻找关系,会引导我们解题方向。

例如,在解决三角形相似性问题时,从三角形各边之比的相等来考虑,从而找到解题思路。

2. 图形对称性图形的对称性指的是图形中存在镜像对称、轴对称等对称关系,根据对称特性来寻找问题的解决方法。

例如,在矩形的对角线垂直的情况下,若横坐标长为a,纵坐标长为b,则矩形面积为a×b,也就是横坐标和纵坐标的乘积。

3. 直角三角形直角三角形的特点是其中一个角度为90度,若两边的长度均已知,则可以通过使用勾股定理来确定另外一边的长度。

数学解析几何题的解题思路和技巧

数学解析几何题的解题思路和技巧

数学解析几何题的解题思路和技巧数学是一门抽象而又具体的学科,而解析几何则是数学中的一个重要分支。

解析几何通过运用代数和几何的方法研究几何图形的性质和变换规律,是数学中的一种重要工具。

在解析几何中,我们常常需要解决一些具体的问题,下面将介绍一些解析几何题的解题思路和技巧。

一、直线和平面的交点问题在解析几何中,直线和平面的交点问题是比较常见且基础的问题。

解决这类问题的关键在于找到直线和平面的方程,并求解它们的交点。

以一个具体的例子来说明。

假设有一条直线L:y = 2x + 3和一个平面P:2x + y - z = 1,我们需要求解它们的交点。

首先,我们可以将直线L的方程和平面P的方程联立,得到一个含有两个未知数x和y的方程组:2x + y - z = 1,y = 2x + 3。

然后,我们可以通过代入法或消元法求解这个方程组。

将y = 2x + 3代入平面P的方程中,得到2x + (2x + 3) - z = 1,化简得到4x - z = -2。

接下来,我们可以将这个方程代入直线L的方程中,得到y = 2x + 3,化简得到y = 2x + 5。

最后,我们可以将y = 2x + 5代入平面P的方程中,得到2x + (2x + 5) - z = 1,化简得到4x - z = -4。

综上所述,我们得到了两个方程4x - z = -2和4x - z = -4,它们的解为x = 1,z = 6。

因此,直线L和平面P的交点为(1, 5, 6)。

二、直线与曲线的交点问题除了直线和平面的交点问题,直线与曲线的交点问题也是解析几何中常见的问题。

解决这类问题的关键在于找到直线和曲线的方程,并求解它们的交点。

以一个具体的例子来说明。

假设有一条直线L:y = 2x + 3和一个曲线C:y =x^2,我们需要求解它们的交点。

首先,我们可以将直线L的方程和曲线C的方程联立,得到一个含有一个未知数x的方程:x^2 = 2x + 3。

小学数学常见几何模型典型例题及解题思路

小学数学常见几何模型典型例题及解题思路

小学数学常见几何模型典型例题及解题思路1巧求面积常用方法:直接求;整体减空白;不规则转规则平移、旋转等;模型鸟头、蝴蝶、漏斗等模型;差不变1、ABCG是边长为12厘米的正方形,右上角是一个边长为6厘米的正方形FGDE,求阴影部分的面积;答案:72思路:1直接求,但是阴影部分的三角形和四边形面积都无法直接求;2整体减空白;关键在于如何找到整体,发现梯形BCEF可求,且空白分别两个矩形面积的一半;2、在长方形ABCD中,BE=5,EC=4,CF=4,FD=1;△AEF的面积是多少答案:20思路:1直接求,无法直接求;2由于知道了各个边的数据,因此空白部分的面积都可求3、如图所示的长方形中,E、F分别是AD和DC的中点;(1)如果已知AB=10厘米,BC=6厘米,那么阴影部分面积是多少平方厘米答案:(2)如果已知长方形ABCD的面积是64平方厘米,那么阴影部分的面积是多少平方厘米答案:24思路1直接求,无法直接求;2已经知道了各个边的数据,因此可以求出空白的位置;3也可以利用鸟头模型4、正方形ABCD边长是6厘米,△AFD甲是正方形的一部分,△CEF乙的面积比△AFD甲大6平方厘米;请问CE的长是多少厘米;答案:8 思路:差不变5、把长为15厘米,宽为12厘米的长方形,分割成4个三角形,其面积分别为S1、S2、S3、S4,且S1=S2=S3+S4;求S4;答案:10思路:求S4需要知道FC和EC的长度;FC不能直接求,但是DF可求,DF可以由三分之一矩形面积S1÷AD×2得到,同理EC也求;最后一句三角形面积公式得到结果;6、长方形ABCD内的阴影部分面积之和为70,AB=8,AD=15;求四边形EFGO的面积;答案10;思路:看到长方形和平行四边形,只要有对角线,就知道里面四个三角形面积相等;然后依据常规思路可以得到答案;思路2:从整体看,四边形EFGO的面积=△AFC的面积+△BFD的面积-空白部分的面积;而△ACF的面积+△BFD的面积=长方形面积的一半,即60;空白部分的面积等于长方形面积减去阴影部分的面积,即120-70=50 ;所以四边形的面积EFGO的面积为60-50=10;比例模型1、如图,AD=DB,AE=EF=FC;已知阴影部分面积为5平方厘米,△ABC的面积是多少平方厘米答案30平方厘米;思路:由阴影面积求整个三角形的面积,因此需要构造已知三角的面积和其它三角形的面积比例关系,而题目中已经给了边的比,因此依据等高模型或者鸟头模型即可得到答案;2、△ABC的面积是180平方厘米,D是BC的中点,AD的长是AE 的3倍,EF的长是BF的3倍,那么△AEF的面积是多少平方厘米答案平方厘米思路:仅仅告诉三角形面积和边的关系,需要依据比例关系进行构造各个三角形之间的关系,从而得出答案3、在四边形ABCD中,E,F为AB的三等分点,G,H为CD的三等分点;四边形EFHG的面积占总面积的几分之几答案是1/3思路:仅仅告诉边的关系,求四边形之间的关系,需要首先考虑如何分解为三角形,然后再依次求解;4、在四边形ABCD中,ED:EF:FC=3:2:1,BG:GH:AH=3:2:1,已知四边形ABCD的面积等于4,则四边形EHGF的面积是多少答案4/35、在△ABC中,已知△ADE、△DCE、△BCD的面积分别是89,28,26,那么三角形DBE的面积是多少答案178/9思路:需要记住反向分解三角形,从而求面积;6、在角MON的两边上分别有A、C、E及B、D六个点,并且△OAB、△ABC、△BCD、△CDE、△DEF的面积都等于1,则△DCF的面积等于多少答案3/47、四边形ABCD的面积是1,M、N是对角线AC的三等分点,P、Q是对角线BD的三等分点,求阴影部分的面积答案1/9一半模型比例模型---共高模型一半模型蝴蝶模型漏斗,金字塔鸟头模型燕尾模型风筝模型切记梯形的一半模型沿着中线变化切记任意四边形的一半模型1、在梯形ABCD中,AB与CD平行,点E、F分别是AD和BC的中点;△AMB的面积是3平方厘米,△DNC的面积是7平方厘米;1△AMB和△DNC的面积和等于四边形EMFN的面积;2阴影部分的面积是多少平方厘米;思路:一种应用重叠=未覆盖思路:将各个三角形标记,应用两个一半模型=整体梯形2、任意四边形ABCD,E、F、G、H分别为各边的中点;证明四边形EFGH的面积为四边形ABCD面积的一半;3、四边形ABCD中,E、F、G、H分别是各边的中点;求阴影部分与四边形PQRS的面积比;答案相等思路:依次应用一半模型和重叠等于未覆盖;证明需要分别连接BD 和AC;4、已知M、N分别为梯形两腰的中点,E、F为M、N上任意两点;已知梯形ABCD的面积是30平方厘米,求阴影部分的面积;答案:155、已知梯形ABCD的面积是160,点E为AB的中点,DF:FC=3:5;阴影部分的面积为多少;答案:30鸟头模型1、已知△ABC面积为1,延长AB至D,使BD=AB;延长BC至E,使CE=2BC,延长CA至F,使AF=3AC;求△DEF的面积;答案:18 思路:依次使用鸟头模型,别忘了最终还需要加上△ABC的面积; 2、在平行四边形ABCD中,BE=AB,CF=2CB,GD=3DC,HA=4AD,平行四边形的面积是2,四边形EFGH的面积是多少答案:36 3、四边形EFGH的面积是66平方米,EA=AB,CB=BF,DC=CG,HD=DA,求四边形ABCD的面积答案:4、将四边形ABCD的四条边AB、CB、CD、AD分别延伸两倍至点E、F、G、H,若四边形ABCD的面积为5,则四边形EFGH的面积是多少答案:60思路:依次使用两类不同鸟头模型,别忘了最终还需要减去一个四边形ABCD的面积;5、在三角形ABC中,延长AB至D,使BD=AB,延长BC至E,使CE=1/2BC,F是AC的中点,若三角形ABC的面积是2,则三角形DEF的面积是多少答案:思路:分割所求三角形,分别应用比例模型和鸟头模型;6、△ABC中,延长BA到D,使DA=AB,延长CA到E,使EA=2AC,延长CB到F,使FB=3BC,如果△ABC的面积是1,那么△DEF的面积是多少答案:7思路:△ABC和△EFC是鸟头模型,从而求出四边形ABEF的面积,△ABC 和△AED是鸟头模型,从而求出△AED面积,从而解题小技巧:1,答案为52、总面积为52,其中两个分别为6,7,另外两个分别是多少答案18,213、在△ABC中,已知M,N分别在AC、BC上,BM与AN相交于点O;若△AOM,△ABO和△BON的面积分别是3,2,1,则△MNC的面积是多少答案;风筝模型求出△MON=;△ANM:△MNC=△ABM:△BMC3+:x=3+2:1++x。

探索流行题集《初联几何100题》的解题思路和方法

探索流行题集《初联几何100题》的解题思路和方法

探索流行题集《初联几何100题》的解题思路和方法一、直线与角的性质1. 直线与角的基本概念在解答与直线与角的性质相关的题目时,首先需要对直线、角的概念有一个清晰的认识。

直线是由无数个点连成的一条轨迹,没有起点和终点;而角是由两条射线共同起点所组成的图形。

此外,还需要熟悉直线与角的基本性质,如直线的平分线、垂直平分线、相交直线的性质等。

2. 解题思路针对直线与角的性质的题目,我们需要注意观察题目给出的条件,然后根据条件找到相关的性质,并利用这些性质解决问题。

例如,如果题目给出了两条平行线,我们就可以利用平行线的性质得出与其相关的角的性质,从而解答问题。

3. 解题方法在实际解答问题时,可以通过画图、列方程、运用一些定理等多种方法来解题。

比如,对于给定的角度大小,可以利用直尺和圆规画出角度,从而帮助理解问题和解答问题。

另外,还可以根据题目的要求列出相关的方程式,通过求解这些方程式来完成题目的解答。

二、平行线与全等三角形1. 平行线的基本概念解答与平行线相关的题目,首先需要对平行线的概念有一个清晰的认识。

平行线是指在同一平面内,方向相同且不相交的直线,这些直线之间的距离始终保持一致。

此外,还需要熟悉平行线的基本性质,如平行线的性质、平行线的判定等。

2. 解题思路在解答平行线相关的题目时,需要注意观察题目给出的条件,从而找到相关的性质。

例如,如果题目给出了平行线的性质,就可以利用这些性质来得出与其相关的角的性质,从而解答问题。

3. 解题方法对于平行线相关的题目,可以通过画图、列方程、引入中垂线、利用全等三角形的性质等多种方法来解题。

例如,对于给定的平行线及其交叉的角度,可以通过引入中垂线来得出相关的三角形,从而利用全等三角形的性质来解答问题。

三、平行四边形与梯形1. 平行四边形与梯形的基本概念在解答与平行四边形与梯形相关的题目时,首先需要对这两个几何图形的概念有一个清晰的认识。

平行四边形是指四边形的对边平行,四个内角相等;梯形是指至少有一对对边平行的四边形,同时其对角线互相垂直。

几何的解题方法

几何的解题方法

几何的解题方法几何问题在数学领域中占有重要地位,解决几何问题不仅需要掌握基本的几何知识,还需要运用一些特定的解题方法。

本文将详细探讨几何的解题方法,帮助大家更好地理解和掌握这一领域的解题技巧。

一、直观法直观法是解决几何问题时最常用的方法,通过观察图形的形状、大小、位置等特征,结合已知条件,找出解题的线索。

具体步骤如下:1.分析已知条件,了解题目所求。

2.仔细观察图形,找出几何关系。

3.利用几何关系,推导出结论。

二、坐标法坐标法适用于解决平面几何问题,通过建立坐标系,将几何问题转化为代数问题,从而求解。

具体步骤如下:1.建立坐标系,将已知点和线段用坐标表示。

2.根据已知条件,列出方程或方程组。

3.解方程或方程组,得到所求点的坐标。

4.根据坐标,求解几何问题。

三、向量法向量法是解决几何问题时较为高级的方法,通过向量的线性运算和几何意义,简化问题求解过程。

具体步骤如下:1.将几何问题转化为向量问题。

2.利用向量的线性运算,表示出所求向量。

3.根据向量关系,求解几何问题。

四、圆幂定理法圆幂定理法适用于解决与圆有关的问题,通过运用圆幂定理,将复杂问题转化为简单问题。

具体步骤如下:1.判断题目是否与圆有关。

2.利用圆幂定理,将已知条件转化为代数关系。

3.解代数方程,得到所求结果。

五、相似与全等法相似与全等法是解决几何问题的重要手段,通过找出图形之间的相似关系或全等关系,简化问题求解过程。

具体步骤如下:1.观察图形,找出相似或全等关系。

2.利用相似或全等性质,列出已知条件和所求结果的关系。

3.解方程,得到所求结果。

总结:几何的解题方法多种多样,需要根据具体问题灵活运用。

掌握以上几种解题方法,有助于提高解决几何问题的能力。

在实际解题过程中,还需注意以下几点:1.熟练掌握基本几何知识,如勾股定理、相似性质、圆的性质等。

2.善于观察图形,发现几何关系。

3.灵活运用各种解题方法,结合已知条件,求解问题。

数学解决几何问题的常用思维方法和技巧

数学解决几何问题的常用思维方法和技巧

数学解决几何问题的常用思维方法和技巧在数学学习中,几何问题一直是学生们普遍认为复杂和难以掌握的领域之一。

然而,几何问题也有一些常用的思维方法和技巧,可以帮助我们更容易地解决这些难题。

本文将介绍一些数学解决几何问题的常用思维方法和技巧。

1. 利用图形特征解题几何问题的第一步通常是仔细观察所给图形并发现其特征。

例如,变换形状的问题中,我们可以观察到相似三角形或共圆性等特征,通过利用这些特征来解题。

另外,我们还可以关注到对称性、平行性和垂直性等概念,从而推导出几何关系。

2. 运用等式和角度关系数学中的等式和角度关系在几何问题中也非常重要。

例如,我们可以通过等腰三角形的性质来推导出其他角的大小,或者通过平行线和交角的性质来得到所需的角度。

在解题过程中,我们可以运用这些等式和角度关系,帮助我们快速解决问题。

3. 将几何问题转化为代数问题有些几何问题可能过于复杂,我们可以考虑将其转化为代数问题来求解。

这需要我们建立一些方程或不等式,将图形上的几何关系转化为代数表达式。

通过解这些方程或不等式,我们可以得到几何问题的解。

4. 合理利用辅助线或构造在解决一些特殊的几何问题时,合理利用辅助线或构造可以大大简化问题。

通过在图形中加入合适的辅助线或构造新的图形,我们可以得到一些新的几何关系。

这些新的几何关系常常可以帮助我们更快地解决问题。

5. 利用相似性解决比例问题在几何问题中,比例问题是非常常见的。

当我们遇到比例问题时,我们可以利用相似性来解决。

通过观察图形的特征,我们可以找到相似三角形的性质,并建立相应的比例关系。

通过求解比例关系,我们可以得到几何问题的解。

6. 利用三角函数解决三角形问题在涉及三角形的几何问题中,我们可以运用三角函数来解决。

通过使用正弦、余弦和正切等三角函数,我们可以计算三角形的各个边长或角度,并求解复杂的几何关系。

总结起来,数学解决几何问题的常用思维方法和技巧包括利用图形特征、等式和角度关系、代数转化、辅助线和构造、相似性和三角函数等。

行测几何问题答题技巧

行测几何问题答题技巧

行测几何问题答题技巧
以下是 6 条关于行测几何问题答题技巧:
1. 遇到几何问题不要慌呀!你看,就像走迷宫,得先看清路。

比如求一个不规则图形的面积,那就想想能不能分割成熟悉的图形呀。

就好像要拼拼图一样,找出那些关键的部分,难题不就迎刃而解了嘛!
2. 哎呀,记住一些特殊的几何规律可太重要啦!比如说勾股定理,这可是个大宝贝。

比如给定直角三角形的两条边,你是不是就能通过它快速求出第三条边啦?这可就像给了你一把万能钥匙呀,能打开好多难题的锁呢!
3. 看见复杂的几何图形,你得学会拆呀!把它拆成一个个小部分来分析。

就好比一台复杂的机器,拆开来每个零件你都懂了,那整体不也就明白啦?比如遇到组合图形的问题,这么一拆,是不是思路就清晰多了呀!
4. 几何问题里,想象很关键哦!有时候要在脑子里构建出图形的样子。

比如一个正方体,你得能想象出它的各个面。

这就像是在脑子里放电影一样,让图形活起来,解题不就容易多了嘛?
5. 对于几何中的比例关系,那可得紧紧抓住呀!这就好比放风筝的线,抓住了就能控制住方向。

比如说相似图形的对应边比例,利用好这个,很多问题就能轻松解决啦,是不是很神奇呀!
6. 大胆去尝试画辅助线呀!这可是个秘密武器。

好比给你加了一双翅膀,能带你飞过高山。

比如在一个看似无解的几何问题中,画一条恰到好处的辅助线,哇,答案可能就呼之欲出啦!
我的观点结论就是:掌握这些行测几何问题的答题技巧,能让我们在面对几何难题时更加从容,解题的效率也会大大提升呀!。

寻找几何难题解题思路的方法

寻找几何难题解题思路的方法

寻找几何难题解题思路的方法
一、综合法以:从已知的出发将所有已知条件进行推理然后将已知和推理结果综合起来看是否能够解问题,综合法也叫正推法。

二、分析法:从问题出发寻找解决问题需要的条件,若条件不足然后再将不足的条件作为问题,继续寻找直到找到为止。

若问题离条件较远,可以将问题转化为等价问题,一直转化到最后的问题能够从已知条件中解决为止。

三、观察法:将已知条件推理后,冷静观察图形的特征,看图中是否有在等腰三角形、直角三角形、全等三角形、中线、中位线、垂直平分线等。

注意图形要反复观察既要看到小地方小图形,也要看到大地方大图形。

四、辅助线法:上述方法都行不通后,考虑添加辅助线,辅助线的添加要依据图形的特征有目的添加,目的主要是将已知条件集中到一起或将问题转化为能够解决的问题。

五、图形变换法:通过添加辅助线仍然不能完成解答,要考虑旋转平稳(翻折较少用)经过位置变换构成新图形状况将条件有效利用,从而解决问题,图形变换实际是整体辅助线法。

六、特殊位置法:不要求写解题过程的题目,图中点线段,角没有指定位置,可以将其放到特殊位置寻找答案,要求写出解答过程的题目,也可以通特殊位置法,先找到结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何问题解题思路
数量关系技巧包含了数学运算技巧和数字推理技巧两大部分,公务员考试数学运算是最为考生所头疼,其所占分值高并且难度也高。

今天中公教育为考生整理了数量关系答题技巧中的几何问题解题思路,希望对考生有所帮助!
中公教育为考生整理了几何问题考点的解题思路和技巧,望考生注意以下几个方面。

第一个方面,几何基本公式:
三角形的面积=底×高÷2,长方形(正方形)的面积=长×宽,梯形的面积=(上底+下底)×高÷2,圆形的面积=π×半径的平方,长方体(正方体)的面积=长×宽×高,圆柱体的体积=底面积×高,圆锥体的面积=底面积×高÷3。

第二个方面,几何问题的“割补平移”思想。

中公教育提醒考生,当看到一个关于求解面积的问题,不要立刻套用公式去求解,这样做很可能走入误区,最后无法求解或不能快速求解。

对于此类问题通常的使用的方法就是“辅助线法”即通过引入新的辅助线将图形分割或者补全为很容易得到的规则图形,从而快速求得面积。

第三个方面,几何极限理论。

平面图形:①周长一定,越趋近于圆,面积越大,②面积一定,越趋近于圆,周长越小;
立体图形:①表面积一定,越趋近于球,体积越大,②体积一定,越趋近于球,表面积越小。

实战例题:
【例题】半径为5厘米的三个圆弧围成如右图所示的区域,其中AB弧与AD弧为四分之一圆弧,而BCD弧是一个半圆弧,则此区域的面积是多少平方米?
A.25
B.10+5л
C.50
D.55
【中公教育解析】如下图:连接BD,作矩形BDMN,将下面的四分之一圆弧的半径画出来,可见该部分面积分为彩色的两部分。

上面部分是半圆,下半部分是矩形面积减去2个四分之一圆,即矩形面积减半个圆形面积二部分之和,正好是矩形面积,即10×5=50平方厘米。

故答案为C。

最新招考公告、备考资料就在辽宁事业单位考试网
/liaoning/。

相关文档
最新文档