苯冷却器设计

苯冷却器设计
苯冷却器设计

苯冷却器设计

————————————————————————————————作者:————————————————————————————————日期:

冷风机设计计算

第二章冷空气参数计算 人工制冷是指借助于制冷装置,以消耗机械能或电磁能、热能、太阳能的呢过形式的能量为代价,把热量从低温系统向高温系统转移而得到低温,并维持这个低温。目前常用的制冷方式有蒸汽压缩式制冷、蒸汽吸收式制冷、蒸汽喷射式制冷、吸附式制冷、电热制冷、磁制冷、涡流管制冷和热声制冷等,其中最为常用的是蒸汽压缩式制冷。蒸汽压缩式制冷是利用气体的节流效应,通过绝热膨胀来制冷的。 蒸汽压缩式制冷由分为单机蒸汽压缩式制冷循环和多级蒸汽压缩式制冷循环及其许多发展形式,这里为了研究方便,采用最简单的单级蒸气压缩式制冷循环。单机压缩式制冷循环系统主要由压缩机、冷凝器、膨胀阀和蒸发器四大部件组成,如下图所示。对制冷剂蒸汽只进行一次压缩,故称为单机蒸汽压缩。整个 循环过程主要由压缩过程、冷凝过程、节流过程以及蒸发过程四个过程组成,每个过程在不同的部件中完成,制冷剂在每个过程中的状态又各不相同。 对于冷风机的设计计算,要对循环的主要参数进行设计计算,并主要关注与蒸发器相关的循环参数。 在冷风机的设计过程中,首先要根据所给条件计算出冷空气参数,冷空气参

数是冷风机设计计算的基础和依据,其计算结果直接影响冷风机的选型和设计,因此其计算要求较高的精度,具有重要的意义。冷空气计算主要是依据相关经验公式和查表所得进行的。计算的内容可大概分为回风参数和送风参数,回风参数是冷风机蒸发器的进口空气参数,送风参数是冷风机的出口空气参数也即要进入室内的空气参数;计算主要涉及冷空气的焓值、含湿量、密度、粘度、饱和蒸汽压等。 2.1制冷循环相关计算 2.11已知条件: 已知:回风干球温度:0℃ 回风相对湿度:90% 送风干球温度:-3℃ 送风相对湿度:95% 大气压: 10132Pa 制冷量: 5.4kw 制冷剂: R22 2.12相关计算: 1.查表得R22的汽化潜热为210.55kJ/kg 2.制冷剂循环量: 代入数据计算得,制冷剂循环量为115.412kg/h 2.2冷空气参数计算 1.热力学温度: T=t+273.15 回风温度:273.15 送风温度:270.15 2.水蒸气饱和压力: 2195768 .2)1(4287.0)1(50475.1lg 028.5)1(79574.10lg 10 1010 10) 1(76955.452969.840 00--??+-??+?--?=- ?-? --T T b T T T T P T T P 其中,P :水蒸气饱和压力 P b :大气压力 T :冷空气温度 T 0:绝对零度

换热器设计计算范例

列管式换热器的设计和选用的计算步骤 设有流量为m h的热流体,需从温度T1冷却至T2,可用的冷却介质入口温度t1,出口温度选定为t2。由此已知条件可算出换热器的热流量Q和逆流操作的平均推动力。根据 传热速率基本方程: 当Q和已知时,要求取传热面积A必须知K和则是由传热面积A的大小和换热器结构决定的。可见,在冷、热流体的流量及进、出口温度皆已知的条件下,选用或设计换 热器必须通过试差计算,按以下步骤进行。 ◎初选换热器的规格尺寸 ◆ 初步选定换热器的流动方式,保证温差修正系数大于0.8,否则应改变流动方式, 重新计算。 ◆ 计算热流量Q及平均传热温差△t m,根据经验估计总传热系数K估,初估传热面积A 估。 ◆ 选取管程适宜流速,估算管程数,并根据A估的数值,确定换热管直径、长度及排 列。◎计算管、壳程阻力 在选择管程流体与壳程流体以及初步确定了换热器主要尺寸的基础上,就可以计算管、壳程流速和阻力,看是否合理。或者先选定流速以确定管程数N P和折流板间距B再计算压力降是否合理。这时N P与B是可以调整的参数,如仍不能满足要求,可另选壳径再进行计 算,直到合理为止。 ◎核算总传热系数 分别计算管、壳程表面传热系数,确定污垢热阻,求出总传系数K计,并与估算时所取用的传热系数K估进行比较。如果相差较多,应重新估算。 ◎计算传热面积并求裕度 根据计算的K计值、热流量Q及平均温度差△t m,由总传热速率方程计算传热面积A0,一般应使所选用或设计的实际传热面积A P大于A020%左右为宜。即裕度为20%左右,裕度的 计算式为: 某有机合成厂的乙醇车间在节能改造中,为回收系统内第一萃取塔釜液的热量,用其釜液将原料液从95℃预热至128℃,原料液及釜液均为乙醇,水溶液,其操作条件列表如下: 表4-18 设计条件数据 物料流量 kg/h 组成(含乙醇量) mol% 温度℃操作压力 MPa 进口出口 釜液 3.31450.9

热交换器设计计算

热交换器设计计算 一、基本参数 管板与管箱法兰、壳程圆筒纸之间的连接方式为e 型 热交换器公称直径DN600,即D i =600mm 换热管规格φ38?2,L 0=3000mm 换热管根数n=92 管箱法兰采用整体非标法兰 管箱法兰/壳体法兰外直径D f =760mm 螺柱孔中心圆直径D b =715mm 壳体法兰密封面尺寸D 4=653mm 二、受压元件材料及数据 以下数据查自GB 150.2—2011; 管板、法兰材料:16Mn 锻件 NB/T 47008—2010 管板设计温度取 10℃ 查表9,在设计温度100℃下管板材料的许用应力: =t r σ][178Mpa (δ≤100mm ) 查表B.13,在设计温度100℃壳体/管箱法兰/管板材料的弹性模量: Mpa 197000 E E E p f f ===’’’ 壳程圆筒材料:Q345R GB 713 壳程圆筒的设计温度为壳程设计温度 查表2,在设计温度100℃下壳程圆筒材料的许用应力: =t c σ][189Mpa (3mm <δ≤16mm ) 查表B.13,在设计温度10℃下壳程圆筒材料的弹性模量Mpa 197000E s = 查表B.14在金属温度20℃~80℃范围内,壳程圆筒材料平均线膨胀系数: ℃) (α??=mm /mm 10137.15-s 管程圆筒材料:Q345R GB 713 管程圆筒的设计温度为壳程设计温度 按GB/T 151—2014 中7.4.6.1规定,管箱圆筒材料弹性模量,当管箱法兰采用长颈对焊法兰时,取管箱法兰的材料弹性模量,即Mpa 197000E h = 换热管材料:20号碳素钢管 GB 9948 换热管设计温度取100℃ 查表6,在设计温度100℃下换热管材料的许用应力Mpa 147σ][t t =(δ≤16mm ) 查表B.3,设计温度100℃下换热管材料的屈服强度Mpa 220R t eL =(δ≤16mm )

化工原理课程设计---苯冷却器的设计

XXXX大学 化工原理课程设计 题目______________________________________________ 姓名:____________________________________________ 专业:____________________________________________ 指导老师:________________________________________ 日期:

目录 一、......................................... 设计任务书 1设计题目 ............................... 2、...................................... 工艺要求及操作条件 3、...................................... 设计要求 二、......................................... 设计说明书 1确定设计方案 ........................... 2、...................................... 确定物性数据 3、...................................... 计算总传热系数 4、...................................... 计算出热面积 5、...................................... 工艺结构尺寸的计算 6、...................................... 换热器核算 三、......................................... 设计课汇集 四、......................................... 评价 五、......................................... 参考文献

甲苯冷却器的设计方案

化工原理课程设计题目:甲苯冷却器的设计 姓名张风平 学号 201807120183 年级2018级 专业化学工程与工艺 系 <院)化学化工学院 指导教师张杰 2018年 6月

设计任务 <一)设计题目 甲苯冷却器的设计 <二)计任务及操作条件 1> 甲苯入口温度95℃,出口温度45℃ 2>冷却介质循环水,入口温度20℃,出口温度自定; 3>允许压降不大于50KPa; 4> 每年实际生产时间:7000小时/年,处理量:95000吨/年; <三)设备类型 管壳式换热器 <四)厂址 临沂地区 <五)设计内容 1)设计方案简介:对确定的工艺流程及换热器的型式进行简单论述。 2)换热器的工艺计算和主要结构尺寸设计。 3)管程和壳程压力降的核算。 4)设计结果概要或设计结果一览表。 5)对本设计的评述及有关问题讨论。 目录 1、设计概述 (5) 2、确定设计方案 (6) 2.1选择换热器的类型 (6) 2.1.1工作原理 (6) 2.1.2换热管布置和排列间距 (6) 2.1.3换热器设计的基本原则 (7) 2.1.4流体流速的选择 (7) 3、确定物性数据 (7) 3.1定性温度 (8) 4、估算传热面积 (8)

4.1热流量 (8) 4.2平均传热温差 (8) 4.2.1计算平均温度差 (8) 4.2.2计算R和P (8) 4.3传热面积 (9) 4.4冷却水量 (9) 5、工艺结构尺寸 (10) 5.1 管径和管内流速 (10) 5.2 管程数和传热管数 (10) 5.3计算换热器的实际换热面积和总传质 (10) 5.4壳体内径 (10) 5.5折流板 (11) 5.6折流板数 (11) 6. 换热器核算 (11) 6.1热流量核算 (11) 6.1.1管内表面传热系数 (11) 6.1.2污垢热阻和管壁热阻 (12) 6.1.3计算传热系数KC (12) 6.1.4该换热器的面积裕度 (12) 6.2换热器内流体的流动阻力 (13) 6.2.1管程流体阻力 (13) 6.2.2壳程阻力 (13)

化工原理-甲醇冷却器设计

设计题目:甲醇冷凝冷却器的设计 系别 专业: 学生姓名: 学号: 起迄日期: 2015年06 月 03日~2015年06 月 13 日指导教师:

化工原理课程设计任务书

化工原理课程设计任务书 2.对课程设计成果的要求〔包括图表、实物等硬件要求〕:图表 物料甲醇水 入口6430 温度℃ 出口5040 质量流量kg/h106009562 设计压力(MPa)常压 3.主要参考文献: 柴诚敬主编化工原理(高等教育出版社) 贾绍义柴诚敬主编化工原理课程设计(天津大学出版社) 4.课程设计工作进度计划: 序号起迄日期工作内容 1设计实验内容和要求 2按设计任务和条件计算实验结果3完成电子稿的设计

课程设计说明书 设计名称化工原理课程设计 2015 年 6 月 3 日 化工原理课程设计说明书 目录 (一)课程设计的任务和要求:设计方案 (1)

(二)对课程设计成果的要求:图表 (2) (三)主要参考文献 (2) (四)课程设计工作计划进度 (2) (五)设计计算过程...................................................5~11(六)计算结果列表 (12) 1、设计题目 甲醇冷凝冷却器的设计 2、设计任务及操作条件 处理能力10600kg/h甲醇。 设备形式列管式换热器 操作条件 ①甲醇:入口温度64℃,出口温度50℃,压力为常压。 ②冷却介质:循环水,入口温度30℃,出口温度40℃,压力为。 ③允许压降:不大于105 Pa。 ④每年按330天计,每天24小时连续运作。 3、设计要求

选择适宜的列管式换热器并进行核算。 设 计 方 案 1.确定设计方案 (1)选择换热器的类型 两流体温度变化情况: 热流体进口温度64℃,出口温度50℃冷流体。 冷流体进口温度30℃,出口温度40℃。 从两流体温度来看,换热器的管壁温度和壳体壁温之差不会很大,因此初步确定选用列管式换热器。 (2)流动空间及流速的确定 由于循环冷却水易结垢,为便于清洗,应使冷却水走管程,甲醇走壳程。另外,这样的选择可以使甲醇通过壳体壁面向空气中散热,提高冷却效果。同时,在此选择逆流。选用φ25mm ×的碳钢管,管内流速取u i = s 。 2、确定物性数据 定性温度:可取流体进出口温度的平均值。 壳程甲醇的定性温度为: 6450572 +T ==℃ 管程循环水的定性温度为: ℃=+=352 4030t 根据定性温度,分别查取壳程和管程流体的有关物性数据。 甲醇在57℃下的有关物性数据如下: 密度 ρo = kg/m 3 定压比热容 c p o =(kg ·℃) 导热系数 λo =(m ·℃) 粘度 μo = Pa ·s 循环水在35℃下的物性数据:

苯冷却器设计

化工原理课程设计任务书一、设计题目 苯冷却器的设计 二、设计任务及操作条件 1.设计任务 处理能力:100000 吨/年 操作周期:7200小时/年 2.操作条件 苯:入口温度80℃,出口温度40℃。 冷却介质:循环水,入口温度25℃。 允许压强降:不大于50KPa。 3.设备型式:管壳式换热器 4.厂址:张掖地区 三、设计内容 1.设计方案的选择及流程说明 2.管壳式换热器的工艺计算:确定换热器的传热面积 3.管壳式换热器的主要结构尺寸设计 4.辅助设备选型和计算 5.设计结果汇总 6.绘制流程图及换热器设备工艺条件图 7.对本设计进行评述

目录 1设计概况 (1) 1.1热量传递的概念和意义 (1) 1.2化学工业和热传递的关系 (1) 1.3传热的基本方式 (1) 1.4换热器的种类 (2) 1.4.1间壁式换热器的类型 (2) 1.4.2混合式换热器 (3) 1.4.3蓄热式换热器 (4) 1.5列管式换热器设计一般要求 (4) 1.6流体通道的选择原则 (4) 1.7管壳式换热器的简介 (5) 2试算并初选换热器规格 (6) 2.1选择换热器类型 (6) 2.2流体流动途径的确定 (6) 2.3确定流体的定性温度 (6) 2.4计算热负荷和冷却水流量 (7) 2.5计算两流体的平均温度差 (7) 3工艺结构尺寸计算 (8) 3.1管径和管内的流速 (9) 3.2管程数和传热管数 (9) 3.3壳体内径 (9) 3.4传热管排列和分程方法 (9) 3.5折流板: (10) 3.6接管 (10) 4核算总传热系数 (11) 4.1计算管程对流传热系数 (11) 4.2计算壳程对流传热系数 (11)

化工原理课程设计-苯加热器设计

太原工业学院 化工原理课程设计 苯加热器设计 系: 班级: 姓名: 学号: 完成时间:年月日

课程设计任务书 设计一个换热器,将纯苯液体从55℃加热到80℃。纯苯的流量为1.4×104 kg/h。加热介质采用的是具有200 kPa的水蒸气。要求纯苯液体在换热器中的压降不大于30kPa,试设计或选择合适的管壳式换热器,完成该任务。 设计要求 (1)换热器工艺设计计算 (2)换热器工艺流程图 (3)换热器设备结构图 (4)设计说明

目录 一、方案简介 (4) 二、方案设计 (5) 1、确定设计方案 (5) 2、确定物性数据 (5) 3、计算总传热系数 (5) 4、工艺结构尺寸 (6) 5、换热器核算 (7) 三、设计结果一览表 (10) 四、设计总结 (12) 五、参考文献 (13) 附图··········································································

一、方案简介 1、概述 换热器是化工、石油、食品及其他许多工业部门的通用设备,在生产中占有重要地位,由于生产规模、物料的性质、传热的要求等各不相同,估换热器的类型也是多种多样。 按用途特可分为加热器、冷却器、冷凝器、蒸发器和再沸器等,根据冷、热流体热量交换的原理和方式可分为三大类:混合式、蓄热式、间壁式。 间壁式换热器的特点是冷、热流体被固定壁面间隔开,不想混合,通过间壁进行热量的交换。此类换热器中,以列管式应用最广。本设计任务是利用饱和水蒸气给纯苯加热。利用热传递过程中对流传热原则,制成换热器,以供生产需要。 2、换热器类型 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,主要分三大类:固定管板式、浮头式、U型管式。 (1)固定管板式换热器结构简单,成本低,壳程检修和清洗困难,壳程必须是清洁、不易产生垢层和腐蚀的介质。 (2)浮头式换热器结构较为复杂,成本高,消除了温差应力,是应用较多的一 种结构形式。 (3)U型管式换热器结构简单,适用于高温和高压场合,但管内清洗不易,制 造困难。 二、方案设计 某厂在生产过程中,需将纯苯液体从55℃冷却到80℃。纯苯的流量为1.4×104kg/h。加热介质采用的三具有200 kPa的水蒸气,要求纯苯液体在换热器中的压降不大于30kPa。试设计或选择合适管壳式换热器。 1.确定设计方案 (1)选择换热器的类型 两流体温度变化情况: 冷流体进口温度55℃,出口温度80℃。 热流体为饱和水蒸气,温度恒为T s,查表得,200kPa的饱和水蒸气的饱和温度为T s=120℃ 该换热器采用饱和水蒸气冷凝放热来加热冷流体,管壁与壳壁温差较大,流体压强不高,初步确定选用固定管板式换热器,考虑到管壁与壳壁温差较大情况,因此,换热器应安装膨胀节,进行热补偿。 (2)管程安排 从流体流经管程或壳程的选择标准来看,纯苯液体有毒,为减少向环境泄露的机会,苯宜走管程;水蒸气较洁净,不会污染壳程,所以饱和蒸汽宜走壳程,以便及时排除冷凝液。综上所述,纯苯液体走管程,饱和水蒸气走壳程。 2、确定物性数据

热水冷却器的设计

华东交通大学 课程设计说明书 设计题目:热水冷却器的设计 学院:基础科学学院专业班级:应用化学一班学生姓名:王业贵 学号:211 指导教师:周枚花老师 完成日期:2013.6.28

目录 任务书 (3) 一、设计题目: (3) 二、设计目的: (3) 三、设计任务及操作条件 (3) 四、设计内容 (3) 五、课程设计说明书的内容 (4) 六、主要参考书 (4) 七、设计时间 (4) 前言 (5) 一、设计方案简介 (6) 1.1换热器的选择 (6) 1.2设计概述 (7) 1.3设计方案 (7) 1.4管程安排 (8) 二、确定物性数据 (8) 三、主要工艺参数计算 (9) 3.1热负荷 (9) 3.2平均传热温差 (9) 3.3冷却水用量 (9) 3.4初算传热面积 (9) 3.5工艺结构尺寸 (10) 3.5.1管径和管内流速 (10) 3.5.3平均传热温差校正及壳程数 (10) 3.5.4传热管排列和分程方法 (11) 3.5.5壳体直径 (11) 3.5.6折流板 (11) 3.5.7接管 (12) 四、压降核算 (12) 4.1传热面积校核 (12) 4.1.1管程传热膜系数 (12) 4.1.2壳程传热膜系数 (13) 4.1.3污垢热阻和管壁热阻 (14) 4.1.4总传热系数K (14) 4.1.5传热面积校核 (14) 4.2换热器内压降的核算 (15) 4.2.1管程阻力 (15) 4.2.2壳程阻力 (16) 五、主要结构尺寸和计算结果 (17) 六、心得体会 (18) 七、参考文献 (18) 八、附图(工艺流程、主体设备工艺条件图) (18)

直接蒸发式空气冷却器设计的优化汇总

直接蒸发式空气冷却器设计的优化 摘要:本文对直接蒸发式空气冷却器的换热特性进行了分析,采用计算机编程模拟了直接蒸发式空气冷却器的一些性能,为制冷系统的优化提供参考。关键词:接蒸发式空气冷却器流速压降优化分段分析法直接蒸发式空气冷却器选用合适的风速和制冷剂质 摘要:本文对直接蒸发式空气冷却器的换热特性进行了分析,采用计算机编程模拟了直接蒸发式空气冷却器的一些性能,为制冷系统的优化提供参考。 关键词:接蒸发式空气冷却器流速压降优化分段分析法 直接蒸发式空气冷却器选用合适的风速和制冷剂质量流速对于其换热性能及能耗有重要的影响。本文利用计算机采用分段分析法模拟了直接蒸发式空气冷却器的一些性能,为制冷系统的优化提供参考。 1 直接蒸发式空气冷却器的结构 空气冷却器的表面式蒸发器都采用翅片管式。氟利昂翅片管式蒸发器的结构常用紫铜管外套铝片制成。铜管直径由至,铝片厚。在以上工作的蒸发器翅片节距在之间,并采用整套片式。空调用空冷器由于传热系数高,因而排数少,一般不超过6排。 2 直接蒸发式空气冷却器的传热过程 空冷器中的传热过程包括:管内制冷剂的流动沸腾换热;通过金属壁、垢层的导热过程;管外空气的放热过程(对流换热)。 2.1 制冷剂侧的换热 制冷剂侧沸腾换热采用分段分析法,即按照干度来分段计算。每一段的制冷剂侧的沸腾换热系数的求法按照文献 [2]推荐的公式计算。 2.2 空气横向掠过肋管管束时的换热 空气横向掠过肋管管束时的换热系数的计算按照文献[3]中提供的公式计算。这里就不做重复了。

2.3 通过管壁与垢层的附加热阻 管壁热阻为(),对于铜管,由于其导热系数很高,该项热阻可以不计。但对于钢管则应予以考虑,本论文的想象程序中取为。 油膜热阻的考虑,若为氟里昂制冷剂,一般控制含油浓度,想象时可以不考虑。 直接蒸发式空气冷却器肋管外表面积灰等造成的附加热阻,计算时一般取 0.0003~0.0001 。 3 采用分段分析法对直接蒸发式空气冷却器计算机模拟的计算步骤 在这里,我们只给出制冷剂为纯质时的直接蒸发式空气冷却器计算机模拟的计算步骤: 1)输入已知蒸发器入口制冷剂参数,蒸发压力或蒸发温度,并求入口焓; 2)输入结构参数及物性参数:结构参数中需给出基管外径,壁厚,肋片厚度,肋片节距,排列方式,管中心距;物性参数中需给出空气的导热系数,动力粘性系数,密度,比热,空气的进口状态参数,空气的出口状态参数和冷却空气量,并调用湿空气的热物性计算程序来计算空气进出口的其余参数; 3)计算空气侧换热系数,初步确定沿气流方向的管子排深数; 4)确定制冷剂循环量及每排并联的肋管根数; 5)根据干度分段,,分为段; 6)计算局部微元段换热量 ; 7)假设局部微元段长度,可求局部微元面积; 8)局部微元段热流密度(以管内表面积为基准),是计算制冷剂侧换热系数的必需已知量; 9)调用制冷剂侧换热系数计算程序,算; 10)计算局部传热系数(以管内表面积为基准)

冷凝器设计计算

冷凝器换热计算 第一部分:设计计算一、设计计算流程图

二、 设计计算(以HLR 45S 为例) 1、已知参数 换热参数: 冷凝负荷:Qk =61000W 冷凝温度:t k =50℃ 环境风温度:t a1=35℃ 冷凝器结构参数: 铜管排列方式:正三角形叉排 翅片型式:开窗片,亲水膜 铜管型式:光管 铜管水平间距:S 1=25.4mm 铜管竖直方向间距:S 2=22m m 紫铜光管外径:d 0=9.52mm 铜管厚度:δt =0。35mm 翅片厚度:δf =0。115m m 翅片间距:S f =1.8mm 冷凝器尺寸参数 排数:N C =3排 每排管数:N B =52排 2、计算过程 1)冷凝器的几何参数计算 翅片管外径:f b d d δ20+== 9。75 mm 铜管内径:t i d d δ-=0=8.82 mm 当量直径:) ()(2))((4411f f b f f b eq S d S S d S U A d δδ-+---===3.04 mm 单位长度翅片面积:32 2110/)4(2-?-=f b f S d S S f π=0.537 m 2/m 单位长度翅片间管外表面积:310/)(-?-=f f f b b s S d f δπ=0.0286 m2/m

单位长度翅片管总面积:b f t f f f +==0。56666 m 2/m 翅片管肋化系数:i t i t d f f f πβ== =20.46 2)空气侧换热系数 迎面风速假定:f w =2.6 m/s 最窄截面处风速:))(/(11max b f f f f d S S w S S w --=δ=4.5 m/s 冷凝器空气入口温度为:t a1=35℃ 取出冷凝器时的温度为:t a2=43℃ 确定空气物性的温度为:2/)(21a a m t t t +==39℃ 在tm =39℃下,空气热物性: v f =17。5×10-6m 2/s,λf =0。0264W /mK ,ρf =1。0955k g/m 3,C Pa =1.103k J/(k g*℃) 空气侧的雷诺数:f eq f v d w /Re max = =783.7 由《制冷原理与设备》中公式(7-36),空气侧换热系数 m eq eq n f f O d d C ???? ??=γλαRe '=50.3 W/m 2K 其中: 362)(103)(000425.0)(02315.0518.0eq eq eq d d d A γγγ -?-+-==0。1852 ????? ??-=1000Re 24.036.1f A C =0.217 eq d n γ0066 .045.0+==0.5931 ? ?1000Re 08.028.0f m +-==-0。217 铜管差排的修正系数为1。1,开窗片的修正系数为1。2,则空气侧换热系数为:(开窗片、波纹片的修正系数有待实验验证) 'o o αα=×1.1×1.2=66.41 W/m 2K

循环水冷却器设计

循环水冷却器设计 [摘要]:传热过程是化工生产过程中存在的及其普遍的过程,实现这一过程的换热设备种类繁多,是不可缺少的工艺设备之一。由于使用条件不同,换热设备可以有各种各样的型式和结构。其中以管壳式换热器应用更为广泛。现在,它被当作一种传统的标准换热设备在很多工业部门中大量使用,尤其在化工、石油、能源设备等部门所使用的换热设备中仍处于主导地位。 循环水冷却器是换热设备中的一种,是企业生产中的重要设备。它的作用是通过温度相对较低的水来把其他设备所产生的热量带走,从而使设备部分的温度保持在一个生产所需要的水平,使设备正常工作。因此,循环水冷却器的设计对企业的生产是很重要的,它很可能影响企业的经济损失,对其的设计具有很强的实际意义。 本设计是对管壳式换热器中固定管板式换热器的研究。固定管板式换热器属于管壳式换热器的一种,是利用间壁使高温流体和低温流体进行对流传热从而实现物料间的热量传递。在本设计中以GB 150-2011《压力容器》、GB 151-1999《管壳式换热器》等标准和《固定式压力容器安全技术监察规程》为依据,并参考《换热器设计手册》,首先通过方案的论证,确定物料的物性参数,再结合工作条件,选定换热器的形式。根据设计任务,完成对换热面积、总换热系数等工艺参数的确定,同时进行换热面积、壁温和压力降的核算。再根据工艺参数进行机械设计,机械设计主要包括对筒体、管箱、管板、折流板、封头、换热管、鞍座及其它零部件,如拉杆、定距管等的计算和选型等,并进行必要的强度核算,最后运用AutoCAD绘制固定管板式换热器的装配图及零部件图,并编写说明书。 [关键词]:换热器、换热面积、管板、换热管。

冷却器毕业设计

冷却器毕业设计 篇一:换热器冷却器课程设计 课程设计任务书 1、设计题目:年处理量20万吨柴油冷却器的设计 2、操作条件: (1)柴油:入口温度175℃;出口温度90℃; (2)冷却介质:采用循环水,入口温度20℃,出口温度50℃; (3)允许压降:不大于105Pa; (4)柴油定性温度下的物性数据: ?c=720kg/m3 ?c?6.6?10-4Pa.S cpc?2.48kJ/(kg.0c) ?c?0.133w/(m.0c) (5)每年按330天计,每天24小时连续生产。 3、设计任务: (1)处理能力:XX00t/a柴油; (2)设备型式:列管式换热器; (3)选择适宜的列管换热器并进行核算; (4)绘制带控制点的工艺流程图和设备结构图,并编写设计说明书。 摘要

柴油冷却器是帮助柴油散热的一个装置。本次课程设计采用浮头式换热器来实现柴油冷却。在设计中,主要以循环水为冷却剂,在给定的操作条件下对柴油冷却器进行设计。 本设计的内容包括:1、设计方案的确定:换热器类型的选择、流动空间的选择等。2、换热器的工艺计算:换热器面积的估算、换热器工艺尺寸的计算、换热器的核算等。 3、操作条件图等内容。 目录 摘要 ................................................ ................................................... ................................................... (2) ABSTRACT .......................................... ................................................... ................................ 错误!未定义书签。 第1章绪论 ................................................ ................................................... ................................................... . (3) 1.1换热器技术概

空气冷却器管箱的应力分析

空气冷却器管箱的应力分析 发表时间:2019-05-07T16:41:10.307Z 来源:《知识-力量》2019年8月24期作者:杨善斌1 郑贤中1 杨侠1 龚雪1 刘根战2 [导读] 本文主要根据力学理论对空气冷却器管箱进行分析与校核,并使用ANSYS软件建立有限元模型并对空气冷却器管箱的管板,管束与接管进行应力分析与评估(1.武汉工程大学机电工程学院,湖北武汉 430200;2.西安航天发动机有限公司,陕西西安 710100)摘要:本文主要根据力学理论对空气冷却器管箱进行分析与校核,并使用ANSYS软件建立有限元模型并对空气冷却器管箱的管板,管束与 接管进行应力分析与评估,以美国工程协会(AMES)中“应力分类的例子”与“应力类别与等效应力的极限”为基础,对管箱进行了一次和二次应力评估,通过有限元分析发现管箱出现最大应力的部位位于管板上,且结果与其他部件相同,是符合校核条件的,分析其原因,并提出减小该部位应力及位移变形的一些方法,相关结果也为该空气冷却器的设计制造提供了理论依据。关键词:空气冷却器;管束;有限元分析;应力 1模型建立及有限元分析 1.1设计参数 空气冷却器管箱的管束与管板通过焊接,所有焊缝均保证全焊透,全熔合,管箱结合紧密,单元相互连接。 空冷器的材料参数如表1所示。 1.2网格划分 有限元模型采用六面体185单元进行分析,该有限元模型共划分159,161个单元和221,302个节点。 1.3边界条件及载荷 (1)边界条件 对连接角下面的所有节点进行全约束。 (2)载荷 最大允许工作压力(MAWP)P3: P1=1.5MPa(1) 接管a/b的等效压力P2: 式(2)与(3)中,D0代表接管与管束的外径,Di代表接管与管束的内径。 接管的局部载荷如表4所示。 表4接管的局部载荷 2结果分析及应力评估 2.1有限元分析

换热器设计计算步骤

换热器设计计算步骤 1. 管外自然对流换热 2. 管外强制对流换热 3. 管外凝结换热 已知:管程油水混合物流量 G ( m 3/d),管程管道长度 L (m),管子外径do (m), 管子内径di (m),热水温度 t ℃, 油水混合物进口温度 t 1’, 油水混合物出口温度 t 2” ℃。 1. 管外自然对流换热 1.1 壁面温度设定 首先设定壁面温度,一般取热水温度和油水混合物出口温度的平均值,t w ℃, 热水温度为t ℃,油水混合进口温度为'1t ℃,油水混合物出口温度为"1t ℃。 "w 11 t ()2 t t =+ 1.2 定性温度和物性参数计算 管程外为水,其定性温度为1()K -℃ 21 ()2 w t t t =+ 管程外为油水混合物,定性温度为'2t ℃ ''"2111 ()2t t t =+ 根据表1油水物性参数表,可以查得对应温度下的油水物性参数值 一般需要查出的为密度ρ (3/kg m ),导热系数λ(/())W m K ?,运动粘度2(/)m s ,体积膨胀系数a 1()K -,普朗特数Pr 。

表1 油水物性参数表 水 t ρ λ v a Pr 10 999.7 0.574 0.000001306 0.000087 9.52 20 998.2 0.599 0.000001006 0.000209 7.02 30 995.6 0.618 0.000000805 0.000305 5.42 40 992.2 0.635 0.000000659 0.000386 4.31 50 998 0.648 0.000000556 0.000457 3.54 60 983.2 0.659 0.000000478 0.000522 2.99 70 997.7 0.668 0.000000415 0.000583 2.55 80 971.8 0.674 0.000000365 0.00064 2.21 90 965.3 0.68 0.000000326 0.000696 1.95 100 958.4 0.683 0.000000295 0.00075 1.75 油 t ρ λ v a Pr 10 898.8 0.1441 0.000564 6591 20 892.7 0.1432 0.00028 0.00069 3335 30 886.6 0.1423 0.000153 1859 40 880.6 0.1414 9.07E-05 1121 50 874.6 0.1405 5.74E-05 723 60 868.8 0.1396 3.84E-05 493 70 863.1 0.1387 0.000027 354 80 857.4 0.1379 1.97E-05 263 90 851.8 0.137 1.49E-05 203 100 846.2 0.1361 1.15E-05 160 1.3 设计总传热量和实际换热量计算 0m v Q Cq t Cq t ρ=?=?v v C q t C q t αρβρ=?+?油油水水 C 为比热容/()j kg K ?,v q 为总体积流量3 /m s ,αβ分别为在油水混合物中 油和水所占的百分比,t ?油水混合物温差,m q 为总的质量流量/kg s 。 实际换热量Q 0Q Q *1.1/0.9= 0.9为换热器效率,1.1为换热余量。 1.4 逆流平均温差计算

冷却器设计

本科毕业设计 (论文) 轻质燃油冷却器设计 Design of Light Fuel Oil Cooler 学院:机械工程学院 专业班级:过程装备与控制工程装备091 学生姓名: xxx 学号: 010912xxx 指导教师:张志文(副教授) 2013 年6 月

目录 1 绪论 (1) 2 结构设计 (2) 2.1 换热器类型的确定 (2) 2.2换热管结构尺寸设计 (2) 2.3壳体和管箱结构设计 (3) 2.4分程结构设计 (4) 2.5折流板和支持板结构 (4) 2.6拉杆和定距管 (5) 2.7防冲板和旁路挡板 (6) 2.8接管及其法兰的选择 (6) 3 强度计算和校核 (7) 3.1筒体和封头设计 (7) 3.2温差应力和管子拉脱力计算 (8) 3.3法兰装置的设计及选型 (10) 3.4固定管板的设计和计算 (12) 3.5开孔补强的校核 (22) 3.6支座设计及选型 (26) 结论 (28) 致谢 (29) 参考文献 (30)

1 绪论 1.1 换热器简介 换热器是一种非常重要的换热设备,能够把热量从一种介质传递给另一种介质,在各种工业领域中有很广泛的应用。尤其在化工、能源、交通、机械、制冷、空调等领域应用更广泛。换热器能够充分利用工业的二次能源,并且能够实现余热回收和节能。 1.2 换热器分类 换热器的种类很多,根据不同的工业领域可以选用不同的换热器,可以更大的发挥换热器的传递热量的作用。现在由于人们追求换热器重量轻、占地面积少、使用经济性高,从而推动了紧凑式换热表面的发展,所以紧凑式换热器在实际应用中种类很多。管壳式的换热器在过程工业中的应用很广泛。除了工业中用到的主要换热器种类,如紧凑式换热器、管壳式换热器、再生器和板式换热器外,还有其他特殊的换热器,如双套管、热管、螺旋式、板壳式、夹套式等。 1.3 换热器的发展趋势 近年来,随着全球能源形势的日趋紧张,常规能源的日益减少,节能降耗越来越受到人们的重视。换热器是化工、石油、钢铁、汽车、食品及许多其他工业部门的通用设备,是调节工艺介质温度以满足工艺需求以及回收余热以实现节能降耗的关键设备,其换热性能和动力消耗关系到生产效率和节能降耗水平,其重量和造价决定了整个生产系统的投资。根据统计,热交换器的吨位约占整个工艺设备的20%有的甚至高达30%,在现代石油化工企业中换热器的投资约占全部投资的30%-40%,其重要性可想而知。国内对换热器强化换热技术的研究,主要集中在对换热器内流体液态变化以及对各部件的参数优化两方面。而其他各国对强化技术研究的侧重点不同。 换热器是一个量大而品种繁多的产品,由于国防工业技术的不断发展换热器操作条件日趋苛刻,迫切需要新的耐磨损、耐腐蚀、高强度材料。近年来我国在发展不锈钢铜合金复合材料、铝镁合金及碳化硅等非金属材料等方面都有不同程度的进展,其中尤以钛材发展较快。未来,国内市场需求将呈现以下特点:对产品质量水平提出了更高的要求,如环保、节能型产品将是今后发展的重点;要求产品性价比提高;对产品的个性化、多样化的需求趋势强烈;逐渐注意品牌产品的选用;大工程项目青睐大企业或企业集团产品。 本课题所设计的轻质燃油冷却器是针对给定的设计参数,按照相关规定的要求,通过壁厚计算和强度校核等,设计换热器产品,熟悉压力容器设计的基本要求,掌握固定管板式换热器的常规设计方法,把所学的知识应用到实际的工程设计中去,为以后的工作和学习打下扎实基础。

空气冷却器设计

空气冷却器设计 2、应完成的项目:______________________________________________________________________ (1)了解换热器在各行业的用途; (2)换热器机械计算; (3)传热工艺计算; (4)画施工图,折合为3张以上0号图,其中总装图为0号图; (5)按规定和规范翻译参考文献5000汉字,并写毕业论文。 3、参考资料以及说明:__________________________________________________________________ (1)《GB151-99钢制管壳式换热器》国家技术监督局发布 (2)《GB151-98钢制管壳式换热器》国家技术监督局发布 (3)《AutoCAD2005压力容器设计》_____________ 栾春远编著,化学工业出版社 (4)《过程设备设计》郑津洋等著,化学工业出版社___________________________________ (5)《化工设备设计手册》上下卷朱有庭,曲文海,于浦义主编 (6)《机械设计手册》,化学工业出版社 (7)《化工原理》上下册,邹华生等主编,华南理工大学出版社

(8)压力容器安全技术监察规程.国家技术监督局 (9)换热器设计.上海科学技术出版社,1987 (10)流体力学与传热.华南理工大学出版社,2006 摘要 本文主要围绕空气冷却器,即卧式固定管板式换热器的设计展开说明,本说明共分五章。 第一章为绪论,主要介绍本设计课题的选题背景,选题意义以及调研情况,并对本设计的主要工作进行规划。 第二章为方案论证,对换热器的传热原理进行了简述。并对换热器进行了分类,并对各类换热器作了简短的描述,最后着重介绍了本次设计主题,固定管板式换热器。 第三章为设计论述,对固定管板式换热器的主要部件的设计作了详细的描述,其中包括:管程的设计,筒体的设计与强度校核,折流板的设计,管箱的设计与强度校核,封头的设计与强度校核,管板的设计与强度校核,是否安装膨胀节的判定,鞍式支座的选取与开孔补强的计算。 第四章为结果的汇总与分析,主要将第三章的计算内容进行了汇总并作了补充说明,然后对其他的标准附件进行了选择。 第五章为总结,总结了本次设计的不足,介绍了换热器在近期的发展与未来的趋势。 关键词:空气冷却器,固定管板式换热器,传热,管板,发展

列管式换热器的设计计算

2.4 列管换热器设计示例 某生产过程中,需将6000 kg/h的油从140℃冷却至40℃,压力为0.3MPa;冷却介质采用循环水,循环冷却水的压力为0.4MPa,循环水入口温度30℃,出口温度为40℃。试设计一台列管式换热器,完成该生产任务。 1.确定设计方案 (1)选择换热器的类型 两流体温度变化情况:热流体进口温度140℃,出口温度40℃冷流体(循环水)进口温度30℃,出口温度40℃。该换热器用循环冷却水冷却,冬季操作时进口温度会降低,考虑到这一因素,估计该换热器的管壁温和壳体壁温之差较大,因此初步确定选用带膨胀节的固定管板式式换热器。 (2)流动空间及流速的确定 由于循环冷却水较易结垢,为便于水垢清洗,应使循环水走管程,油品走壳程。选用ф25×2.5的碳钢管,管内流速取u i=0.5m/s。 2.确定物性数据 定性温度:可取流体进口温度的平均值。 壳程油的定性温度为(℃) 管程流体的定性温度为(℃) 根据定性温度,分别查取壳程和管程流体的有关物性数据。 油在90℃下的有关物性数据如下: 密度ρo=825 kg/m3 定压比热容c po=2.22 kJ/(kg·℃) 导热系数λo=0.140 W/(m·℃) 粘度μo=0.000715 Pa·s 循环冷却水在35℃下的物性数据: 密度ρi=994 kg/m3 定压比热容c pi=4.08 kJ/(kg·℃) 导热系数λi=0.626 W/(m·℃) 粘度μi=0.000725 Pa·s 3.计算总传热系数 (1)热流量 Q o=W o c poΔt o=6000×2.22×(140-40)=1.32×106kJ/h=366.7(kW) (2)平均传热温差 (℃) (3)冷却水用量 (kg/h)

相关文档
最新文档