空水冷却器设计

合集下载

水空中冷器冷却原理

水空中冷器冷却原理

水空中冷器冷却原理水空中冷器(Air-cooled Condenser)是一种常见的冷却设备,广泛应用于工业生产和空调系统中。

它的工作原理是利用水和空气的热交换来降低水温,实现冷却效果。

水空中冷器由多行平行排列的管道组成,这些管道通常是由金属材料制成,具有良好的导热性能。

水通过这些管道流动,而空气则从冷却器的一侧经过。

当热水流经管道时,其热量会传递到管道的表面,并通过金属材料迅速传导到管道的外表面。

同时,空气通过管道的外表面流过,与管道表面接触,从而将管道表面的热量带走。

这样,水的温度就会逐渐降低,达到冷却的效果。

在水空中冷器中,空气的流动也是至关重要的。

为了保证冷却效果,需要保证空气能够充分接触到管道的外表面。

因此,在设计水空中冷器时,通常会考虑空气的流量、流速和流向等因素。

此外,还会采取一些措施来增加空气与管道表面的接触面积,例如通过增加管道的数量、改变管道的形状等。

除了以上的基本原理外,水空中冷器还有一些辅助设备来提高冷却效果。

其中一个重要的设备是风扇。

风扇通过产生强大的气流,增加空气的流动速度,从而加强了空气与管道表面的热交换。

在一些大型的水空中冷器中,还会使用多个风扇来提供更大的风量和更好的冷却效果。

水空中冷器的冷却效果主要取决于水和空气之间的热交换效率。

热交换效率可以通过多种因素来提高,例如增加水和空气的接触面积、提高水的流速、改变水的流动方式等。

此外,水空中冷器的冷却效果还会受到环境温度、湿度、风速等因素的影响。

因此,在实际应用中,需要根据具体情况来选择合适的水空中冷器参数,以达到最佳的冷却效果。

总结起来,水空中冷器是一种利用水和空气的热交换来降低水温的设备。

通过水在管道内流动,热量传递到管道表面,并通过空气的流动带走热量,实现冷却效果。

水空中冷器的冷却效果受到多种因素的影响,需要根据具体情况选择合适的参数。

通过合理设计和使用,水空中冷器可以有效降低水温,提高工业生产和空调系统的效率。

暖通空调安装工程规范要求中的冷却水系统设计要点

暖通空调安装工程规范要求中的冷却水系统设计要点

暖通空调安装工程规范要求中的冷却水系统设计要点冷却水系统是暖通空调安装工程中的重要组成部分,其设计要点直接影响着系统的性能和运行效果。

为了确保冷却水系统的设计符合规范要求,本文将重点讨论冷却水系统设计时需要注意的要点。

一、冷却水系统的选型与布置在进行冷却水系统设计时,首先需选择合适的冷却设备,如冷却塔、冷却器等,并根据具体情况进行合理的布置。

冷却水系统的选型和布置应考虑以下几个因素:1. 冷却负荷:根据所需冷却负荷的大小选择相应的冷却设备,确保系统能够满足对冷却水的需求。

2. 供水温度:根据系统的供水温度要求,选择适当的冷却设备以及配置相应的控制策略,使系统能够在不同负荷条件下保持稳定的供水温度。

3. 布置位置:冷却设备的布置位置应避免与其他设备或建筑物之间存在过密的距离,以保证设备的正常运行和维护。

二、冷却水管道的设计与安装冷却水管道的设计与安装也是冷却水系统设计的重要环节,合理的管道设计和安装能够减少能量损失,提高系统的效率。

以下是冷却水管道设计与安装的要点:1. 管道材质:选择耐腐蚀性能好、耐高温性能强的材质,如不锈钢、铜等,确保管道的稳定运行和使用寿命。

2. 管道尺寸:根据系统的冷却负荷大小、冷却水流量等因素,合理选择管道的尺寸,以保证系统正常运行并减少阻力损失。

3. 管道布局:管道布局应合理,遵循热力学原理,尽量避免短直管段、大弯头和截面突变等,以减小水流阻力和能量损失。

4. 阀门和附件安装:根据需要设置适当数量的阀门和附件,以便于对系统进行调节、维护和检修。

三、冷却水系统的稳定性和可靠性冷却水系统在设计时应考虑其稳定性和可靠性,以保证系统的正常运行和长期稳定性。

以下是冷却水系统设计要点:1. 抗水锈能力:冷却水系统应增加适当的防锈剂和水处理设备,以延长水系统设备的使用寿命。

2. 耐高温性能:冷却水系统应根据使用环境的温度要求,选择合适的冷却设备和管道材质,以确保系统在高温条件下仍能正常工作。

浅析空冷器管束设计、制造、检验技术

浅析空冷器管束设计、制造、检验技术

科学技术创新2020.18浅析空冷器管束设计、制造、检验技术高少平(大庆石油化工机械厂有限公司,黑龙江大庆163000)由于空气冷却器是以环境空气作为冷却介质,横掠翅片管外,使管内高温工艺流体得到冷却或冷凝的设备。

它由许多零部件构成,但其中最主要的几个部分是:管束、风机、构架以及百叶窗,管束作为检验空冷器性能的主要部件,其质量的高低直接影响着空冷器换热能力也就是空冷器的冷却效果,因此必须要做好空冷器管束的设计、制造以及检验工作。

1空冷器管束设计技术1.1翅片管的类型选择在空冷器当中,翅片管是最主要的换热元件,因此在设计空冷器管束的结构前,首先就要确定好翅片管的结构类型,而这需要根据使用者对空冷器的具体要求来决定。

当前存在于市面上的翅片管类型有很多,常用的有L 型绕片型翅片管、LL 型绕片型翅片管、镶嵌式翅片管、双金属轧片式翅片管等。

这些翅片管在使用时都有一些注意事项,例如L 型绕片型翅片管不能应用在湿式空冷器当中,由于湿式空冷器内部的空气水含量较多,可能从翅片根部缝隙对换热管产生腐蚀,从而使换热管产生泄漏,进而影响使用;而双金属轧片式翅片管是由铝管与换热管套轧构成,换热管整体紧密地包裹在套轧管内,翅片不会产生松弛,这样就有效的避免了腐蚀的问题,但是其造价相对较高。

因此在选用翅片管时必须要根据实际的需求来选择。

1.2翅片管支撑的结构设计在空冷器当中,是通过排布多个翅片管来实现对空气中热量的交换,因此为了使翅片管之间的位置稳定,通常情况下会使用波纹板等对翅片管进行支撑。

在整个管束的结构中,最主要的影响因素就是翅片管因空气的流动而产生的振动,长期的振动会降低翅片管支撑的结构稳定性,从而使其失效,因此常见的解决方法是将受空气流动影响最大的空气进出口处的翅片管支撑进行固定,这样就会降低整体的振幅,从而减轻振动带来的影响。

再一个问题就是翅片管的受力问题,翅片管支撑在长时间工作后容易产生或多或少的变形,这样就会使翅片管得不到有效支撑,其解决方法是通过将翅片管的支撑结构焊接在管束横梁上,从而增强其结构的稳定性。

空气冷却器的设计

空气冷却器的设计
选择管排数时 ,可参考图 1 。目前 ,通用的管排 数主要为 4 排 、6 排 ,亦有 2 排 、8 排的 。
图 1 最佳管排数算图 图中 : T 1 ———管内热流体入口温度 , K;
t 1 ———空气入口温度 , K; u0 ———总传热系数 (以光管外表面积为基准) ,J / (m2·s·K) 。
一般来讲 ,希望管内流体的凝固点不超过 5 ℃, 流体较干净且不易聚合 。热流体的入口温度 ,一般 以 120~130 ℃左右或以下为好 ,且不宜低于 60~ 80 ℃。热流体出口温度 ,对于干式空冷来讲 ,一般应 使其与设计气温温差大于 20 ~ 25 ℃, 至少要大于 15 ℃,否则不一定经济 。国外亦有人认为[1 ] : 一般 情况下 ,热流体出口温度与周围空气温度相差 17~ 22 ℃比较经济 ,最少也要相差 11~14 ℃。
X1 与出口汽相分率
X2
的算术平均值 。即 : X
=
1 2
( X1 + X2) 。
X1 =
GWV1 GWV1 + GWL1
X2 =
GWV2 GWV2 + GWL2
式中 : hL ———假定管内全部是液体时的膜传热系
数 ,由式 (6) 计算出 hi 代入 。计算时 ,
G = GV1 + GL1 = GV2 + GL2 ,物性数据
算系数 ; A f ———翅片表面积 ,m2 ;
A r ———管子外表面积扣除被翅片所占面积后 的剩余面积 ,m2 。
须指出 ,式中的 λ0 ,μ0 , C0 都是以平均温度选 取的空气物性 。
式 (2) 与式 (3) [3 ] ,误差一般在 5 %左右 。
当采用光管管束时 ,可采用简化公式 (5) 进行近

空冷器工艺设计

空冷器工艺设计

本科毕业设计(论文)题目:空冷器工艺计算软件开发及200kCal/h空冷器设计学院:机械工程学院专业:过程装备与控制工程班级: 2011级 01 班学号: 201102060125学生姓名:严培杰指导老师:张玮陈冰冰提交日期: 2015年 6月日姓名:严培杰指导老师:陈冰冰、张玮浙江工业大学机械工程学院摘要本文主要介绍了空冷器的发展以及空冷器工艺计算软件的开发。

通过Visual.Basic 6.0编写了空冷器工艺计算软件,其中包含了常用冷却液体的物性参数数据,可实现传统空冷器的工艺计算。

其中软件的设计思路和特点尤为重要,本文还采用软件计算和人工计算进行比较的方法,对算例进行了对比,其结果表明该软件操作方便,功能完善,可有效进行空冷器的工艺计算。

关键词:空冷器;工艺计算;翅片管;软件开发The development of air cooler's Process Calculation Software and200kcal/h air cooler's DesignStudent: peijie yan Advisor:Dr.Bingbing chen Dr.wei zhangCollege of Mechanical EngineeringZhejiang University of TechnologyAbstractThis article mainly introduced the development of air cooler and the development of air cooler's process calculation software.We write the air cooler's process calculation software through Visual.Basic 6.0, and the software includes so me common liquid’s Physical param- -eters, it can use in traditional process calculation of air cooler.The software design ideas and features are particularly important。

空水冷却器技术方案

空水冷却器技术方案

高压变频器空水冷却器空—水冷却系统技术方案2019年 10 月 12 日高压变频器空水冷却器技术方案本工程2套高压变频器采用空水冷却系统进行冷却,空水冷却系统的冷却能力满足变频器室内所有高压变频器的发热功率要求,空水冷却系统设备的要求随变频器成套供货。

同时包括空水冷却系统的设计、制造、供货、安装、验收等。

所有提供的设备应是已建立信誉的制造商的产品,我公司的产品已具有成功运行十年以上的经验。

我公司是生产空-水冷却器的专业厂家,有着先进的管理、资深的专家、齐全的设备及丰富的业绩。

空水冷却器有着高压变频器肺之称,是高压变频器关键部件之一。

它的冷却效果和可靠性直接影响变频器的性能、运行效率、故障率和使用寿命。

以下是连云港市华东电力设备有限公司所提供的高压变频器空水冷却系统的介绍。

一、空水冷却器技术参数1、450kw、280kw变频器选配空-水冷却器参数如下:二、技术要求1、乙方应根据甲方变频器的容量合理选用空水冷却器,并对选用的空水冷却器的型号、规格负责,如因空水冷却器选用不当造成通风制冷效果达不到规定的技术指标的由乙方负全部责任。

2、在甲方满足乙方提出的空水冷却器要求的使用条件下,空水冷却器的通风制冷效果如不能达到规定的技术指标的由乙方负全部责任。

3、管板与冷却管连接胀装,冷却管基管材质不锈钢304L(Φ19×0.8mm)且厚度均匀,偏差为±0.1mm。

冷却管内外表面光滑、清洁、无针孔、裂纹、起皮、气泡、疏松、粗拉边等缺陷。

铝片式复合管外径为Φ44mm,且厚度均匀,偏差为±1mm。

4、总装配后进行2.0MPa水压试验历时60分钟不渗漏,水压试验完成后排干腔内积水。

5、除冷却芯组外所有外表面均应喷灰白色油漆。

6、变频器空-水冷却系统(不含风道)在出厂前乙方应进行严格的整体测试,保证整套系统的可靠性,并提供出厂检验合格证等原始资料。

7、乙方生产的变频器空-水冷却系统能在下列环境湿度下正常工作:最大湿度不超过90%(20℃);相对湿度变化率每小时不超过5%,且不会导致变频器间结露。

带循环空气——水冷却器发电机通风冷却系统的设计及温升计算

带循环空气——水冷却器发电机通风冷却系统的设计及温升计算

porm i vr pei ru p d c o f e eea r rg ey rc eto  ̄ r u t no a gn rt . a s s h o i rl o
Ke r s Ge e ao v n lt nl c o i g ac l t n o e e au e r e y wo d n r t r e t ai o l c u ai ftmp r t r i . l i o n l l o s
机 为例 进行 设计 计算 。
冷却介质空气通过 电机沿着闭合线路进行循环 ; 初级冷却介质中的热量经循环空气一水冷却器传 递给初级冷却介质海水 , 并经海水将热量带人 大
海。
1 问题解 决的总体构想
工作为三步 : 第一步 , 采用类比设计法设计出 整个通风系统 , 通过假设简化绘制出等值风路图 , 计算等值风 阻 ; 第二步 , 根据风扇 外特性 曲线 图 谱, 结合电机通 风冷却计算所需 的总通风量及等
对带循环空气一水 冷却 器发电机 通风冷却系统进行 了设计及温 升计算 , 并在此基 础 上进行了稳定温升情况 的主机绕组平均温 升计 算 , 并通过实物发 电机制造试 验表明计 算程序相 当
精确 。
关键词 发电机 通风 冷却 温升计算
中图分类号 T 1 文献标 识码 B 文章编号 10 7 8 (0 6 0 0 1 — 5 M3 2 0 8— 2 1 20 )4— 0 1 0
Ab t a t T e tltn y t m fg ne ao t ic l tn i. t rc oe sd . sr c he v n ia g s se o e r trwi c ru a i g arwae o l ri e. i h .

电动汽车空调水冷式冷凝器设计开发与试验研究

电动汽车空调水冷式冷凝器设计开发与试验研究

电动汽车空调水冷式冷凝器设计开发与试验研究摘要:随着环境保护和能源效率的日益重要,电动汽车作为一种清洁能源交通工具,正迅速崛起。

电动汽车的普及使得相关技术领域发生了巨大的变革,其中之一是电动汽车的空调系统。

空调系统在电动汽车中扮演着至关重要的角色,不仅可以提供乘车者的舒适性,还可以影响电动汽车的续航里程。

在电动汽车中,空调系统需要更高的效率,以减少电池能量消耗,并确保车内温度舒适度。

关键词:电动汽车;空调系统;冷凝器,设计开发电动汽车的兴起是因为它们使用电池来存储能量,这为零排放和低碳交通提供了巨大的潜力。

然而,电动汽车技术的成功也依赖于众多关键组件的性能,其中之一就是空调系统。

电动汽车的空调系统需要更高效、更紧凑的组件,以减少电池的能耗,延长续航里程,并确保乘车者的舒适度。

冷凝器作为空调系统的核心组件之一,其性能直接影响到整个系统的工作效率。

一、电动汽车空调水冷式冷凝器设计开发的重要性1.能源效率提升电动汽车的续航里程是一个至关重要的参数,直接关系到用户的满意度和电动汽车的市场接受度。

空调系统是电动汽车的主要能源消耗设备之一,因此,冷凝器的设计对能源效率至关重要。

通过开发高效的水冷式冷凝器,可以降低空调系统的电能消耗,延长电池的使用寿命,从而提高电动汽车的续航里程。

2.环境的友好性电动汽车的广泛普及是为了减少对环境的负面影响。

通过提高空调系统的能源效率,减少制冷循环中的温室气体排放,可以更好地实现电动汽车的环保目标。

3.乘车者舒适性电动汽车的成功也取决于用户的体验。

舒适的车内环境对于用户的满意度至关重要。

水冷式冷凝器可以更好地控制车内温度,提供更快速、稳定和均匀的冷却效果,增加乘车者的舒适感。

二、电动汽车空调水冷式冷凝器设计的试验研究1.目标明确我们在进行试验研究之前,需要明确实验的具体目标。

这可以包括确定冷凝器的散热效率、压降、制冷能力以及在不同工况下的性能表现等。

这些目标将有助于确保实验的焦点和有效性。

空气冷却器基础

空气冷却器基础
一、基本类型及特点
结构形式及分类
几种典型的空冷器结构特点及适用场合
结构形式
适用场合及特点
优缺点
水平式-鼓风式
适用于任何场合。管 束水平放置,为防止 冷凝液滞留管中,管 子应倾斜3º或1%。
鼓风式风机叶轮呈水 平放置,置于管束下 方。进入叶片的是冷 空气。
优点是结构简单, 安装方便、管内热 流体和管外空气分 布比较均匀。
6
第三章 空气冷却器
一、基本类型及特点
结构形式及分类
几种典型的空冷器结构特点及适用场合
结构形式
适用场合及特点
优缺点
直立式-风机叶轮垂直放置
管束立放,风机叶轮 可垂直或水平放置。 多用于湿式空冷,干 湿联合空冷或小型冷 却装置。安置方向应 与平时的风向配合。 一般用于气体冷凝冷 却,也适用于真空系 统。进入叶片的是热 空气或增湿后的热空 气。
优点是结构紧凑, 占地面积小。管内 流体阻力较水平式 小。 缺点是管束中空气 分布不均匀,易受 外界自然风的干扰; 管束不易太长,否 则其刚度下降。
7
第三章 空气冷却器
一、基本类型及特点
结构形式及分类
几种典型的空冷器结构特点及适用场合
结构形式
适用场合及特点
优缺点
直立式-风机叶轮水平放置
管束立放,风机叶轮 可垂直或水平放置。 多用于湿式空冷,干 湿联合空冷或小型冷 却装置。安置方向应 与平时的风向配合。 一般用于气体冷凝冷 却,也适用于真空系 统。进入叶片的是热 空气或增湿后的热空 气。
表面蒸发空冷具有 结构紧凑,效率较 高的优点。当管内 介质的温度很低时, 由于蒸发量小也会 影响表面蒸发空冷 的使用效果。当管 壁温度处于露点时, 易产生露点腐蚀。 因采用光管,流动 阻力较低。

高压变频器空水冷系统研讨简介

高压变频器空水冷系统研讨简介

高压变频器空水冷系统研讨简介
一、空水冷系统介绍
空水冷系统是指采用空气或水作为冷却剂来冷却一些电气设备,在电
气设备运行过程中,由于电气设备的自放电现象或者称为热释放,将会产
生大量的热量,若不加以冷却降温,则很容易使这些电气设备受损甚至爆炸。

因此,采用空水冷却系统作为散热方式是相当重要的。

二、冷却原理
空水冷却系统主要通过对风扇、冷却塔、水泵、冷却器、风机和消防
水箱等组成部分进行组装安装,以达到散热的目的。

空水冷却系统运行原
理与行星系统类似,即将水循环于冷却塔与冷却器之间,使水在其中反复
的汲取热量,冷却水藉由水泵流入冷却塔顶部,空气被风扇吹到冷凝器上,把热量传送到空气中,热量被空气吸收,水也在同时被冷却,冷却器中的
水在排出的时候,又传热给热源,将热量抽走。

三、空水冷却系统的优点
(1)在工作环境中,空水冷却系统会产生极小的噪声,可以更好的
保证工作环境的安静。

(2)空水冷却系统的设计有利于持续的冷却,可以有效的防止电气
设备的过热。

(3)空水冷却系统的散热几乎没有温差,从而减少了设备的老化。

(4)空水冷却系统的运行更加安全。

空气冷却器的管道设计

空气冷却器的管道设计

1. 本标准适用于石油化工装置空气冷却器的管道设计。

2. 空气冷却器(以下简称空冷器)的管道布置,不应妨碍空冷器的维修,并应方便操作和空冷器管束的吊装。

3. 分馏塔顶到空冷器的油气管道,一般不宜出现U型管段,确实不可避免时,应在最低点装排液阀排除凝液,该凝液应排至空冷器出口管或回流油罐等密闭系统。

4. 进出空冷器的工艺管道应严格按工艺管道和仪表流程图要求布置,管道接法应尽可能使各片空冷器流量均匀,当无法用几何形状满足均匀要求时,可用当量长度相等的办法来保证。

4.1 当空冷器入口介质为气相或汽液两相流体时,入口集合管一般布置在进口管嘴上方,靠近空冷管嘴连接,出口集合管应根据安装需要定位,尽量不占或少占空冷管箱平台,即不应妨碍在平台上进行操作和维修,不论空冷器进出口管嘴是否装有阀门,管道接法如下:4.1.1 当空冷器进出口管嘴少于4个时,允许按下图连接。

4.1.2 当空冷器进出口管嘴各为4-6个时,管道接法见下图:4.1.3 当空冷器进出口管嘴各为6个以上时,管道宜按下图连接:4.2 当空冷器入口介质为汽液两相时,入口主管与空冷器入口集合管的连接见下图:汽液两相流体入口集合管的进空冷器分支管,宜从下面插进集合管内约20mm,使集合管内液体能均匀进入各片空冷器,但此时应在集合管底部设停工排液线,接至空冷器出口管上。

4.3 冷却液相流体空冷器的出入口集合管应根据工艺要求,方便操作和维修布置。

5. 湿式空冷器的冷却水回水系统为自流管道,回水管道布置应注意控制标高,且拐弯不宜太多。

6. 多组空冷器联合布置时,应在空冷器平台上设DN20蒸汽和压缩空气软管接头站,具体设计见“软管接头站的管道设计”(BA3-2-20)。

7. 应重点考虑空冷器入口管道的支撑问题,支架应不妨碍空冷器管束的吊装,需要由空冷构架支撑时,应事先与制造厂商定,需要由土建结构支撑时应向土建专业提出要求,如管道根数不多,在工艺允许的情况下,也可采用放大管径的办法来简化支撑设计。

空气冷却器

空气冷却器

板式空冷器结构图
板式空冷器的优缺点
优点: – 传热系数提高2倍以上; – 单台(3×3规格)面积可达860㎡; – 压降小,可达3.23㎜Hg; – 占地小,是普通空冷的1/6; – 重量轻,是普通空冷的1/3; – 设备造价低,可节省10%以上; – 框架投资节省2倍以上; – 操作费用可节省2倍以上; – 清洗方便,操作灵活; – 寿命提高3倍以上; – 适用于减压塔顶等塔顶冷凝冷却场合; – 属国际领先技术水平。
空冷器的分类
按空冷器管束布置型式分类: • 水平式空冷器 • 斜顶式空冷器 • 立式空冷器 • 圆环式空冷器
空冷器的分类
按空冷器通风方式分类: • 自然通风式空冷器 • 鼓风式空冷器 • 引风式空冷器
空冷器的分类
按空冷器冷却方式分类: • 干式空冷器 • 湿式空冷器 • 干-湿联合空冷器 • 两侧喷淋联合空冷器;
当空冷器管束非均匀腐蚀或制造缺陷而泄漏时,可采用换管消漏。首 先将要更换的管子拆下,清洗管箱管孔。更换新管时,将管子中间稍 拉弯曲,即可从两端管板孔穿入,穿入后进行胀接或焊接。
3、风机系统故障原因及处理方法
故障表现形式
故障原因
·叶片角度有异常变化;
电流计指示异常
·自调执行机构失灵; ·风机轮毂平衡破环;
管束使用时间较长
管束泄漏的处理方法
1.换热管堵漏
空冷器管束经过一段时间的运行后,由于腐蚀等原因造成穿漏,可以 采用化学粘补、打卡注胶和堵管等修理方法处理。当换热管泄漏量小 时,可在不停车的情况下将管外的翅片除去,然后再进行化学粘补包 扎或打卡注胶堵漏;如果不能用上述方法消漏,则应将管束停车吹扫 干净,拆开管箱上的丝堵,在换热管两端用角度3°~5°的金属圆台 体堵塞,以达到消漏。 2. 换管

空气冷却器说明书

空气冷却器说明书

发电机组降温冷却专家KCWQ系列空冷器KCWQ系列空气冷却器1.应用范围:用于火电机组、水轮发电机组运行环境的空气降温、火电氢冷机组的氢气降温;2.设备结构及技术规格选型:2.1设备结构经我公司多年来对电站使用的各种空冷器过程中,进行使用情况综合分析,对空冷器的设计、制造工艺实施了一系列的改进完善,形成我公司KCWQ系列空冷器,经改进完善后的空冷器,其结构及各项指标更加满足用户的使用要求;(空冷器设计压力:0.6~1.0Mpa;工作压力:0.2~0.5Mpa)KCWQ系列空冷器,结构以“可卸盖板式”为主,因两侧水室便于拆装,在使用维护过程中便于对水室内部和散热管基管内部进行清洗维护;KCWQ系列空冷器主要由左右水室、左右管板、复合式翅片管、上下侧板等主要部件构成,空冷器的水室与管板用螺栓连接(中间使用专用胶垫密封)见下图:1 2 3 4 5 6 7 8 9 101左水室 2冷却水进水法兰 3冷却水出水法兰 4左管板 5换热管 6下侧板7上侧板 8右管板 9右水室 10 螺栓图2-1 KCWQ “可卸盖板式”空冷器结构2.2技术规格选型KCWQ空气冷却器规格尺寸3.设备特点:3.1“可卸盖板式”空冷器的左右水室内表面,采用国内先进的“汽车底盘装甲”工艺,进行特殊防腐处理,防止其生锈影响冷却水质,经此工艺加工后的水室内表面,能长期缓解水气腐蚀、冷却水体流动及水体内所含杂质对水室内表面的冲刷撞击,彻底解决了因水室内表面涂漆层脱落、水室内表面生锈等不利因素影响冷却水质的问题;图3-1经“汽车底盘装甲”工艺处理后的水室内表面图3-2基管与管板胀接后照片3.2左右管板采用优质钢板加工,部件外表面采用先进镀锌工艺进行镀锌处理,避免其腐蚀生锈影响冷却水质,并在一定程度上延长了设备使用寿命;翅片管基管与左右管板基管孔处,采用国内最先进的胀接工艺进行胀接密封,确保冷却水在翅片管基管内部正常循环流动,冷却水不会因渗漏随被降温的热空气进入到机组内部,确保机组安全运行(见图3-2);3.3 两块侧板与左右管板连接形成空冷器主体,侧板主梁采用国标等边角钢设计制造,(可根据电站实际安装需要,在侧板主梁上钻出一定数量的把合孔,便于空冷器主体与定子及相关设备部件连接并密封);3.4 KCWQ系列空冷器使用的核心换热元件是复合式翅片管,复合式翅片管的基管与铝翅片的接触热阻低,在较大温度变化范围内能保持稳定的低值,传热系数高,基管由外层铝管壁保护不受腐蚀,对温度突变及振动有良好抗力;单位长度换热面积大,传热量高,结构可靠,寿命长;翅片表面光滑无毛刺无皱折、不易结垢不易变形、易于清洗(可用高压水冲洗),易于排除表面积水、流动阻力低,能长期保持良好的传热性能。

空冷器的设计

空冷器的设计

第四章空冷器的设计4.1 空冷器的设计条件4.1-1 设计条件1. 空气设计温度设计气温系指设计空冷器时所采用的空气入口温度。

采用干式空冷器时,设计气温应按当地夏季平均每年不保证五天的日平均气温[1][2][3]。

采用湿式空冷器时,将干式空冷器的设计气温作为干球温度,然后按相对湿度查出湿球温度,该温度即为湿式空冷器的设计气温。

我国各主要城市的气温列于附表4-1。

从该表可见我国绝大多数地区夏季平均每年不保证五天的日平均气温低于35℃。

当接近温度大于15-20℃时,采用干式空冷器比较合理。

在干燥炎热的地区,为了降低空气入口温度可以采用湿式空冷器。

2. 介质条件(1)适宜空冷器的介质条件适于采用空冷器的介质有石油化工过程中的气体,液体,水和水蒸汽等。

3.热流的操作条件(1)流量。

根据工艺要求而定。

(2)操作压力。

根据国家标准“空冷式换热器”的规定,最高的设计压为35 Mpa,这个压力可以满足石油化行业空冷器的操作要求。

(3)入口温度热流的入口温度越高其对数平均温差越大,因而所需要的传热面积就越小,这是比较经济的。

但是,考虑能量回收的可能性,入口温度不宜高,一般控制在120~130℃以下,超过该温度的那部分热量应尽量采用换热方式回收。

在个别情况下,如回收热量有困难或经济上不合算时,可适当介质入口温度。

就空冷器本身而言,考虑到介质温度升高会导致热阻的增加,传热效率下降,绕片式翅片管的工作温度可用到165℃而锒片式翅片管可用到200℃如果热流入口温度较低(低于70~80℃),可考虑用湿式空冷器。

(4)出口温度与接近温度对于干式空冷器出口温度一般以不低于55~65℃为宜[3],若不能满足工艺要求,可增设后湿空冷,或采用干-湿联合空冷。

接近温度系指热流出口温度与设计气温之差值。

干式空冷器的最低值应不低于15℃[3],否则将导致空冷器的面积过大,这是不经济的。

上述的设计数据应填入表4.1-1的”空气冷却器规格表”内.表41-1 空冷器设计规格表构架数量化学清洗片距架中心距特殊接管法兰面型式印记有无百叶窗自动手动温度表振动切换开关有无压力表机械设备风机型号驱动机型式减速机型式风机台数驱动机台数减速机台数风机直径驱动机转数转/分传动比风机功率驱动机功率功率调节型式: 手调自调调频转数:转/分支架支座材料: 叶片轮毂控制发生故障时的风机角度最大最小锁住百叶窗控制发生故障时的风机速度最大最小锁住出口温度控制精度±℃空气再再循环内循环外循环蒸汽盘管有无占地面积M2 总重kg运输重kg图号4.2翅片管参数的优化翅片管是空气冷却器的传热元件,翅片管的参数对空冷器的传热效率、功率消耗和噪声等有直接的关系[4]。

电脑散热器空气冷却vs水冷却

电脑散热器空气冷却vs水冷却

电脑散热器空气冷却vs水冷却近年来,随着计算机技术的迅猛发展,电脑的性能越来越强大,但同时也面临着散热问题。

为了保证电脑的正常运行,散热器成为不可或缺的装置。

目前市场上主要有两种散热方式,分别是空气冷却和水冷却。

本文将对这两种散热方式进行比较,以帮助读者选择适合自己的散热方式。

一、空气冷却空气冷却是目前应用最广泛的散热方式之一,它通过散热片和风扇的结合来将热量从电脑中散发出去。

优点之一是成本相对较低。

空气冷却器的制造和安装相对简单,使其成为大众用户的首选。

其次,空气冷却器的可靠性较高。

它们没有移动的零部件,因此相对不容易发生故障。

而且,由于空气具有良好的绝缘能力,空气冷却器也相对较安全。

然而,空气冷却器也存在一些不足之处。

首先,空气冷却器的散热效果相对较差。

由于空气的导热性不如水,因此相同功率的散热器,空气冷却器的散热效果要差于水冷却器。

其次,空气冷却器产生的噪音较大,对一些对噪音敏感的用户来说可能会造成困扰。

此外,空气冷却器对散热片的设计和制造也有一定的限制,无法满足一些个性化需求。

二、水冷却水冷却是一种相对较新的散热方式,它通过水冷头和水冷管将热量带走。

与空气冷却相比,水冷却器具有一些独特的优势。

首先,水冷却器的散热效果更好。

水的导热性能比空气要好得多,因此水冷却器在散热方面有着明显的优势。

特别是在超频和高负载情况下,水冷却器能够更好地保持CPU和显卡的温度在可接受范围内。

其次,水冷却器产生的噪音较低。

相对于空气冷却器的风扇噪音,水冷却器的水泵噪音要小很多。

这对于对电脑静音要求较高的用户来说是一个重要的优势。

此外,水冷却器在设计和制造上更加灵活。

用户可以根据自己的需求定制水冷系统,满足个性化的散热需求。

水冷却器的散热头和散热片的材质、形状和数量都可以进行调整,以达到最佳的散热效果。

然而,水冷却器的价格相对较高。

由于其较为复杂的结构和制造工艺,水冷却器的价格往往要高于空气冷却器。

此外,水冷却器的安装和维护也相对麻烦一些。

空气冷却器结构及原理(附图说明)

空气冷却器结构及原理(附图说明)

空气冷却器结构及原理(附图说明)在介绍空冷器之前,小编想先问一下大家为什么要使用空冷器呢?我们石油化工行业很多使用空冷的管道温度都超过了100℃,这么多的热量为什么白白送到空气中而不进行回收呢?小编就不卖关子啦,其实石油化工装置中大部分产品都需要冷却到50℃以下,而油品的温度在150℃以下时能量回收的成本就非常高了,为什么呢?这里面其实涉及到能量的一个参数——㶲,㶲是衡量能量品质的重要标准,油品在150℃以下时"㶲"比较低,转化为其他能量的能力也就比较差,所以一般都采用水冷或者空冷的方式将热量带走。

下面就和小编一起看看空气冷却器的结构和原理吧!空气冷却器简称空冷器,利用环境中空气作为冷却介质,横掠翅片管外,使管内高温工艺流体得到冷却或者冷凝的设备。

空冷器结构组成:主要由管束、构架、风机和百叶窗等部分构成。

图片来源于《石油炼厂设备》空冷器的结构类型按照管束布置可分为:水平式、立式斜式、斜顶式;按照通风方式可分为:鼓风式、引风式;按冷却方式可分为:干式、湿式、干湿联合;平顶式空气冷却器1. 平顶式空气冷却器特点:管束水平放置,多用于冷凝,冷却,根据送风方式的不同又分为鼓风式空冷器和引风式空冷器。

鼓风式:管束位于风机上方,风机由下向上送风;引风式:管束位于风机下方,风机由内向外排风。

该空冷器优点在于:受气候环境影响小,热空气不易回流,噪声小于3分贝,但结构复杂,检维修麻烦,功耗比普通空冷大10%。

2. 斜顶式空气冷却器斜顶式空气冷却器特点:管束45°斜置于构架顶部,多用于介质的冷凝。

其优点在于:占地面积小,管阻和膜放热系数比水平式好,但热空气易回流(鼓风式),结构复杂。

3. 湿式空气冷却器结构:管束立置,外侧喷水,引风式。

介质入口温度不宜大于80℃。

特点:增湿降温,效果显著,腐蚀管束,造价高。

4. 干湿联合式空气冷却器干湿联合式空气冷却器特点:占地面积小,运行费用低,投资较小。

空水冷却器工作原理

空水冷却器工作原理

空水冷却器工作原理
空水冷却器是一种利用自然通风原理进行散热的冷却设备。

其工作原理如下:
1. 空气流通:空水冷却器通常由外壳、底座和内部冷却单元组成。

外壳上有大小不一的散热片或翅片,以增加散热面积,提高散热效果。

冷却单元通过金属导热管与散热片连接,形成冷却通道。

2. 自然对流:空水冷却器利用自然对流的原理,通过冷却单元内的金属导热管将热量从传热源传出。

当传热源温度高于外部空气温度时,热量会通过金属导热管传导到散热片上。

空气通过散热片,将热量带走,从而实现散热。

3. 水循环:空水冷却器还包含水循环系统。

循环泵将冷却水抽送到冷却单元内的金属导热管中,冷却水吸收了热量后通过水管回流到冷却系统中进行散热。

这种水循环可以有效地提高冷却效果,并确保系统的稳定运行。

总结来说,空水冷却器通过散热片和自然通风的结合来实现散热,并通过水循环系统将热量从传热源带走,从而起到降温的作用。

电机空水冷却器原理

电机空水冷却器原理

电机空水冷却器原理电机是现代工业和日常生活中最常见的电力设备之一,它的运转过程中会产生热量。

如果电机长时间运转,热量会不断积累,导致电机温度升高,从而影响电机的性能和寿命。

因此,为了保证电机的正常运转和延长使用寿命,需要对电机进行冷却。

电机的冷却方式有很多种,其中较常见的是空水冷却器。

空水冷却器是一种用来降低电机温度的设备。

它的工作原理是通过水的流动和散热器的散热来把电机产生的热量散发出去,从而保证电机的正常工作。

空水冷却器主要由散热器、水泵、水箱和管路等组成。

散热器是空水冷却器的核心部件,一般由铝合金或铜制成。

它的作用是将电机产生的热量传递给水,使水温升高,然后通过水泵将热水送到散热器中,利用气流或风扇将热量散发出去。

散热器的内部通道非常复杂,以便增加水的流动速度和散热面积。

同时,散热器还具有良好的耐腐蚀性和耐高温性能,可以在极端环境下使用。

水泵是空水冷却器的另一个重要组成部分,它的主要作用是将冷却水从水箱中抽出并送到散热器中,以保证水的流动和冷却效果。

水泵通常由电机驱动,可以根据需要调节水的流量和压力。

水箱是空水冷却器的存储器,主要用来存储冷却水。

水箱的大小和形状根据实际需要而定,一般采用塑料或铝合金制造,具有良好的耐腐蚀性和密封性能。

管路是空水冷却器中连接散热器、水泵和水箱的管道,主要用来输送冷却水。

管路的设计应考虑水流的速度和压力损失,以保证整个系统的正常运行。

总体来说,空水冷却器的工作原理非常简单,但是它对电机正常运行的作用却非常关键。

通过不断循环流动的冷却水,可以有效地降低电机温度,保证电机的正常工作和延长使用寿命。

因此,在选择电机冷却方式时,空水冷却器是一种非常可靠和有效的选择。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2MW空水冷双馈风力发电机的空水冷却器设计说明书
一、设计要求
本设计适于环境温度40°C,海拔2200 m环境。

换热量为39kW,冷却液为55%乙二醇与45%纯水的混合溶液,流量为9m3/h,冷却液进水温度48°C,出水温度52.4°C,冷却液压降0.05MPa;空气流量 1.56m3/s,冷却器进风温度74.5°C,出风温度53°C,空气允许压降135Pa。

设计选用的换热管外径8.8mm,径7.5mm的冷却器结构设计。

主要部件材料为
二、冷却器主要结构参数
表1结构参数表
三、满足设计要求所需要的散热器传热系数
表2海拔2200 m环境所需要散热器传热系数计算表
四、设计散热器的传热系数
表3 海拔2200 m环境所设计散热器传热系数计算表
五、冷却器的冷却液压降计算
经计算得冷却水管进口局部损失系数为0.9681,出口局部损失系数为0.492,进出铜管总局部损失系数ζ=1.4601。

表4 散热器冷却液压降计算表。

相关文档
最新文档