网架结构设计总结[优质ppt]
合集下载
网架结构简介PPT优秀课件

对于点支承,支承附近的杆件及主桁架杆件 内力较大,其他部位内力较小,两者差别较大。
25
2.两向正交斜放网架
1)定义: 由两组相互交叉成90度的平 面桁架组成,但每片桁架与建筑平面边线 的交角为45度。可理解为两向正交正放网 架在建筑平面上放置时转动45度。
26
2)特点: 网架中各片桁架长短不一。节间数有
若改变上下弦错开的平移值,或相对 旋转上下弦杆,并适当抽去一些弦杆和腹 杆,即可到各种形式的四角锥。
33
1、正放四角锥网架
图 正放四角锥网架
正放四角锥网架空间刚度较好,但杆件数量较多, 用钢量偏大。适用于接近方形的中小跨度网架,宜 采用周锥)
35
运动场看台
47
平面形状为矩形、多点支承的网架,可选 用正放四角锥网架、正放抽空四角锥网架, 两向正交正放网架。对多点支承和周边支 承相结合的多跨网架还可选用两向正交斜 放网架或斜放四角锥网架。
平面形状为圆形、正六边形及接近正六边 形且为周边支承网架,可选用三向网架, 三角锥网架或抽空三角锥网架。对中小跨 度也可选用蜂窝形三角锥网架。
• 两向正交斜放 短桁架对长桁架有嵌固作用,受力
有利角部产生拔力,常取无角部形式。
29
3、两向斜交斜放网架 由两个方向桁架相交◎角交叉而成,形
成棱形网格。适用于两个方向网格尺寸不 同,而要求弦杆长度相等。 • 两向斜交斜放 适用于两个方向网格尺寸不同
的情形受力性能欠佳,节点构造较复杂。
30
31
图 三向网架
• 选用原则: • 网架跨度较大时,
采用。
图2 三层网架
16
17
双层网架的常见形式
平面桁架网架 四面锥体系网架
两向正交正放网架
25
2.两向正交斜放网架
1)定义: 由两组相互交叉成90度的平 面桁架组成,但每片桁架与建筑平面边线 的交角为45度。可理解为两向正交正放网 架在建筑平面上放置时转动45度。
26
2)特点: 网架中各片桁架长短不一。节间数有
若改变上下弦错开的平移值,或相对 旋转上下弦杆,并适当抽去一些弦杆和腹 杆,即可到各种形式的四角锥。
33
1、正放四角锥网架
图 正放四角锥网架
正放四角锥网架空间刚度较好,但杆件数量较多, 用钢量偏大。适用于接近方形的中小跨度网架,宜 采用周锥)
35
运动场看台
47
平面形状为矩形、多点支承的网架,可选 用正放四角锥网架、正放抽空四角锥网架, 两向正交正放网架。对多点支承和周边支 承相结合的多跨网架还可选用两向正交斜 放网架或斜放四角锥网架。
平面形状为圆形、正六边形及接近正六边 形且为周边支承网架,可选用三向网架, 三角锥网架或抽空三角锥网架。对中小跨 度也可选用蜂窝形三角锥网架。
• 两向正交斜放 短桁架对长桁架有嵌固作用,受力
有利角部产生拔力,常取无角部形式。
29
3、两向斜交斜放网架 由两个方向桁架相交◎角交叉而成,形
成棱形网格。适用于两个方向网格尺寸不 同,而要求弦杆长度相等。 • 两向斜交斜放 适用于两个方向网格尺寸不同
的情形受力性能欠佳,节点构造较复杂。
30
31
图 三向网架
• 选用原则: • 网架跨度较大时,
采用。
图2 三层网架
16
17
双层网架的常见形式
平面桁架网架 四面锥体系网架
两向正交正放网架
《网架结构设计》课件

实验验证
对网架结构进行模型试验 或实际工程试验,验证设 计的可行性和安全性。
网架结构的形式选择
平板网架
由多个平板通过节点连接而成, 适用于大跨度、大空间的屋盖结
构。
曲面网架
通过节点连接形成曲面形状,适 用于具有曲线形状的屋盖结构。
立体网架
由多个平面网架组合而成,形成 三维空间结构,适用于高层或大
跨度建筑。
船舶工程
在船舶工程中,网架结构可应用 于船体内部支撑和甲板铺面。
核电站
在核电站中,网架结构可应用于 安全壳和相关辅助设施的结构支
撑。
网架结构的发展趋势与展望
智能化设计
01
随着计算机技术的发展,网架结构的优化设计 、稳定性分析等将更加智能化。
绿色环保
03
未来网架结构设计将更加注重绿色环保,采用 可再生材料和节能技术,降低能耗和碳排放。
整体稳定性
评估网架结构在外部荷载作用下的整体稳定性,防止结构发 生失稳。
局部稳定性
分析网架杆件在压力或弯曲作用下的稳定性,防止杆件屈曲 或失稳。
网架结构的优化设计
结构形式优化
根据工程需求和条件,选 择合适的网架结构形式, 如三角形、四边形、六面 体等。
尺寸优化
根据网架的内力分析和稳 定性要求,对网架杆件截 面尺寸进行优化,降低用 钢量。
新材料的应用
02
新型材料的不断涌现,如碳纤维、玻璃纤维等 ,将为网架结构的设计和应用提供更多可能性
。
定制化设计
04
随着个性化需求的增加,网架结构的定制化设 计将更加普遍,以满足不同领域和特定需求的
结构设计要求。
THANKS
施工精度控制
在施工过程中,对网架结构的拼装、 吊装等环节进行精度控制,确保安装 误差在允许范围内。
网架结构课件ppt

防腐防锈
对网架结构进行防腐防锈处理,延长结构使 用寿命。
维护保养记录
建立维护保养记录制度,对每次检查、维修 和保养情况进行记录,以便于管理。
安全注意事项
高空作业安全
吊装作业安全
在网架结构施工过程中,涉及到高空作业 的情况较多,应采取必要的安全措施,如 系安全带、搭设安全网等。
在进行整体吊装时,应确保吊装设备和索 具的安全可靠,遵守操作规程,确保作业 人员和设备安全。
在施工过程中,对网架结构的各项参 数进行监测,发现问题及时进行调整 ,确保施工精度和质量。
05
04
整体吊装
将拼装好的网架整体吊装到预定位置 ,并进行固定。
维护保养
定期检查
定期对网架结构进行检查,包括杆件、节点 、焊缝等部位,确保结构安全。
损坏修复
发现网架结构有损坏或异常情况时,及时进 行修复或更换。
网架结构的应用场景
网架结构广泛应用于 工业厂房、仓库、展 览馆、体育场馆等建 筑领域。
此外,网架结构还可 用于大型设备支撑、 舞台搭建、临时设施 等领域。
网架结构也可用于桥 梁、高速公路、地铁 等交通设施的建设。
2023
PART 02
网架结构的特性
REPORTING
受力特性
受力性能优异
网架结构能够将荷载均匀分散到 各个杆件上,从而减小单个杆件 承受的荷载,提高整体结构的承 载能力。
防火安全
安全用电
在网架结构施工现场,应设置消防设施, 并保持完好有效。同时,应加强火源管理 ,严禁吸烟等行为。
在施工过程中,应遵守安全用电规定,严 禁乱拉乱接电线,确保用电安全。
2023
REPORTINGLeabharlann THANKS感谢观看
网架结构杆件和节点的设计与构造 ppt课件

ηc——受压空心球加紧肋承载力提高系数, 不加肋,ηc=1.0;加肋,ηc=1.4;
Nt——受拉空心球的轴向受拉承载力设计值,N; f——钢材的抗拉强度设计值,N/mm2;
ηt——受拉空心球加紧肋承载力提高系数, 不加肋,ηt=1.0;加肋,ηt=1.1。
ppt课件
39
受拉空心球:
网架结构杆件和节点的设计与构造
一、杆件材料及截面型式
网架结构的杆件一般采用Q235钢和Q345 钢
钢杆件截面型式分为圆钢管、角钢、薄 壁型钢三种。
杆件截面型式的选择与网架的节点形式 有关。
网架杆件的截面应根据承载力和稳定性 的计算确定。
ppt课件
1
二、网架杆件的计算长度
杆件的计算长度与汇集于节点的杆件受力 状况及节点构造有关。
角钢不宜小于∟50×3, 圆钢管不宜小于Φ48×2。 薄壁型钢的壁厚不应小于2mm。
ppt课件
4
五、网架结构的节点设计与构造
1. 网架结构的节点型式及选择
1)按节点在网架中的位置可分为:中间节点(网 架杆件交汇的一般节点)、再分杆节点、屋脊节 点和支座节点。
2)按节点连接方式可以分为焊接连接节点、高强 度连接节点、焊接和高强度螺栓混合连接节点。
ppt课件
12
(2)高强度螺栓的设计
一般情况下,根据网架中最大受拉弦杆内 力和最大受拉腹杆内力各选定一个螺栓直 径,
若这两个螺栓直径相差太大,可以在这两 者之间再选一种螺栓直径;
即使网架跨度、荷载较大时,选用高强度 螺栓直径不宜过多,以免造成设计、制造、 安装过于麻烦。
ppt课件
13
每个高强度螺栓的受拉承载力设计值 按下式计算:
Nt——受拉空心球的轴向受拉承载力设计值,N; f——钢材的抗拉强度设计值,N/mm2;
ηt——受拉空心球加紧肋承载力提高系数, 不加肋,ηt=1.0;加肋,ηt=1.1。
ppt课件
39
受拉空心球:
网架结构杆件和节点的设计与构造
一、杆件材料及截面型式
网架结构的杆件一般采用Q235钢和Q345 钢
钢杆件截面型式分为圆钢管、角钢、薄 壁型钢三种。
杆件截面型式的选择与网架的节点形式 有关。
网架杆件的截面应根据承载力和稳定性 的计算确定。
ppt课件
1
二、网架杆件的计算长度
杆件的计算长度与汇集于节点的杆件受力 状况及节点构造有关。
角钢不宜小于∟50×3, 圆钢管不宜小于Φ48×2。 薄壁型钢的壁厚不应小于2mm。
ppt课件
4
五、网架结构的节点设计与构造
1. 网架结构的节点型式及选择
1)按节点在网架中的位置可分为:中间节点(网 架杆件交汇的一般节点)、再分杆节点、屋脊节 点和支座节点。
2)按节点连接方式可以分为焊接连接节点、高强 度连接节点、焊接和高强度螺栓混合连接节点。
ppt课件
12
(2)高强度螺栓的设计
一般情况下,根据网架中最大受拉弦杆内 力和最大受拉腹杆内力各选定一个螺栓直 径,
若这两个螺栓直径相差太大,可以在这两 者之间再选一种螺栓直径;
即使网架跨度、荷载较大时,选用高强度 螺栓直径不宜过多,以免造成设计、制造、 安装过于麻烦。
ppt课件
13
每个高强度螺栓的受拉承载力设计值 按下式计算:
空间网架结构设计PPT课件

结构型式
•跨度在5060m时,常用双铰实腹式框架(常用工字形截面)
减轻基础负担;结构可外露;横梁高度可取跨度的1/201/12 设置预应力拉杆减少跨中弯矩,横梁高度可取跨度的1/401/30
第4页/共33页
框架结构(2)
•跨度较大时,常用双铰格构式框架 跨度超过100m时,宜采用无铰格构式框架
第5页/共33页
拱式结构(1)
特点
•拱式屋盖受力合理 •比梁式和框架式屋盖结构经济指标好(跨度超过80m时尤为显著)
结构布置
•跨度为4060m时,拱间距可取610m,无檩或型钢檩条
第7页/共33页
拱式结构(2)
•跨度达100m左右时,宜采用相距36m的拱对,拱对间距为915m
第8页/共33页
拱式结构(3)
第14页/共33页
正放抽空四角锥网架
网架和网壳结构(4)
斜放四角锥网架
斜放四角锥网架
受力合理,杆件数量少 屋面板类型多 屋面组织排水较困难
棋盘形四角锥网架
保持正放四角锥网架周边四角锥 不变,中间四角锥间隔抽空,下 弦杆呈正交斜放,上弦杆呈正交 正放。 克服了斜放四角锥网架屋面板类 型多,屋面组织排水较困难的缺 点。
网架形式
两向正交正放,正放四角锥 正放抽空四角锥
两向正交斜放,棋盘形四角锥 斜放四角锥,星形四角锥
钢筋混凝土屋面体系
网格数
跨高比(24)+0.22 1014 (68)+0.08L2
钢檩条屋面体系
网格数
跨高比
(68)+0.07L2 (1317)+0.03L2
注:L2 是以米计的网架短向跨度;跨度小于18米时网格数可适当减少。
大跨度房屋钢结构的类型
•跨度在5060m时,常用双铰实腹式框架(常用工字形截面)
减轻基础负担;结构可外露;横梁高度可取跨度的1/201/12 设置预应力拉杆减少跨中弯矩,横梁高度可取跨度的1/401/30
第4页/共33页
框架结构(2)
•跨度较大时,常用双铰格构式框架 跨度超过100m时,宜采用无铰格构式框架
第5页/共33页
拱式结构(1)
特点
•拱式屋盖受力合理 •比梁式和框架式屋盖结构经济指标好(跨度超过80m时尤为显著)
结构布置
•跨度为4060m时,拱间距可取610m,无檩或型钢檩条
第7页/共33页
拱式结构(2)
•跨度达100m左右时,宜采用相距36m的拱对,拱对间距为915m
第8页/共33页
拱式结构(3)
第14页/共33页
正放抽空四角锥网架
网架和网壳结构(4)
斜放四角锥网架
斜放四角锥网架
受力合理,杆件数量少 屋面板类型多 屋面组织排水较困难
棋盘形四角锥网架
保持正放四角锥网架周边四角锥 不变,中间四角锥间隔抽空,下 弦杆呈正交斜放,上弦杆呈正交 正放。 克服了斜放四角锥网架屋面板类 型多,屋面组织排水较困难的缺 点。
网架形式
两向正交正放,正放四角锥 正放抽空四角锥
两向正交斜放,棋盘形四角锥 斜放四角锥,星形四角锥
钢筋混凝土屋面体系
网格数
跨高比(24)+0.22 1014 (68)+0.08L2
钢檩条屋面体系
网格数
跨高比
(68)+0.07L2 (1317)+0.03L2
注:L2 是以米计的网架短向跨度;跨度小于18米时网格数可适当减少。
大跨度房屋钢结构的类型
《网架结构简介》PPT课件

1.平面穿插桁架体系
平面穿插桁架体系由平面桁架相互穿插所组成,其上、下 弦杆长度相等,杆件类型少,且上、下弦杆和腹杆在同一 平面内。一般应使斜腹杆受拉,竖杆受压。斜腹杆与弦杆 间的夹角宜在40°~60°之间。
➢ 两向正交正放网架由两组分别与边界平行的平 面桁架互成90°穿插组成。同一方向的各平面
量省。但由于节点和杆件 数量增多,尤其是中层 节点
所连杆件较多,使构造复 杂,造价有所提高。
按照网格组成划分 平面穿插桁架体系
网架
空间 桁架 体系
四角锥体系 三角锥体系
两向正交正放网架 两向正交斜放网架 两向斜交斜放网架 三向网架
正方四角锥网架 斜放四角锥网架 星形四角锥网架 棋盘四角锥网架
抽空三角锥网架 蜂窝型三角锥网架 普通三角锥网架
支承方式
周 边 支 承
常用网架选型表
平面形状
跨度
网架形式
斜放四角锥网架、两向正交正放网架、两向正
≤60m
交斜放网架、正放四角锥网架、棋盘形四角锥网 架、正放抽空四角锥网架、蜂窝形三角锥网架、
L1/L2≤1.5 矩
星形四角锥网架
>60m
两向正交正放网架、两向正交斜放网架、正放 四角锥网架、斜放四角锥网架
适用于建筑平面为矩形的情况。
➢ 两向斜交斜放网架 由两个方向桁架相 交◎角穿插而成, 形成棱形网格。适 用于两个方向网格 尺寸不同,而要求 弦杆长度相等。
适用于两个方向网格尺寸不同的情形受力性能欠佳, 节点构造较复杂。
➢ 三向网架 三个方向的平面桁架相 互交角60 ; 常用于正三角形,正六 三角形平面; 在某些平面形状会出现 不规那么杆件。
二、网架的形式
➢按网双照架层构的网造形架组式是成很由划多上分。弦按、照下构弦造和组腹成杆成组分成,的有空双间构 层和造三(层图网3a架),;是按最照常网用格的组网成架情形况式,。可分为由两向或 三向平面桁架组成的穿插桁架体系和由三角锥体、四 角椎体组成的空间桁架体系。
网架结构简介PPT优秀课件

多有少,四角的短桁架刚度较大,对长桁 架有一定的嵌固作用,减少长桁架跨中弦 杆受力,对网架受力有力。
27
• 对于矩形平面,周边支承时,可处理成长 桁架通过角柱和长桁架不通过角柱。前者 将使四个角柱产生较大的拉力;后者可避 免角柱产生过大的拉力,但需要在长桁架 支座处设两个边角柱。
28
图 两向正交斜放网架
3
梁式结构 拱式结构
平面刚架结构
平面结构体系
返回
4
平板网架
网壳结构
5
图1 (a)平行布置预应力双层索系;
6
斜拉结构(图1 c)
Maysville Bridge7
图2 张拉整体结构
8
6.1 概述
网架结构是由很多杆件通过节点按照一定 规律组成的网状空间杆系结构。
网架结构根据外形可分为平板网架和曲面 网架。
• 双层网架是由上弦、下弦和腹杆组成的空 间结构(图1),是最常用的网架形式。
图1 双层网架
15
• 特点:
• 三层网架是由上弦、中弦、 下弦、上腹杆和下腹杆组 成的空间结构(图2)。
• 特点是增加网架高度,减 小弦杆内力,减小网格尺 寸和腹杆长度。
• 当网架跨度较大时,三层 网架用钢量比双层网架用 钢量省。但由于节点和杆 件数量增多,尤其是中层 节点所连杆件较多,使构 造复杂,造价有所提高。
• 两向正交斜放 短桁架对长桁架有嵌固作用,受力
有利角部产生拔力,常取无角部形式。
29
3、两向斜交斜放网架 由两个方向桁架相交◎角交叉而成,形
成棱形网格。适用于两个方向网格尺寸不 同,而要求弦杆长度相等。 • 两向斜交斜放 适用于两个方向网格尺寸不同
的情形受力性能欠佳,节点构造较复杂。
27
• 对于矩形平面,周边支承时,可处理成长 桁架通过角柱和长桁架不通过角柱。前者 将使四个角柱产生较大的拉力;后者可避 免角柱产生过大的拉力,但需要在长桁架 支座处设两个边角柱。
28
图 两向正交斜放网架
3
梁式结构 拱式结构
平面刚架结构
平面结构体系
返回
4
平板网架
网壳结构
5
图1 (a)平行布置预应力双层索系;
6
斜拉结构(图1 c)
Maysville Bridge7
图2 张拉整体结构
8
6.1 概述
网架结构是由很多杆件通过节点按照一定 规律组成的网状空间杆系结构。
网架结构根据外形可分为平板网架和曲面 网架。
• 双层网架是由上弦、下弦和腹杆组成的空 间结构(图1),是最常用的网架形式。
图1 双层网架
15
• 特点:
• 三层网架是由上弦、中弦、 下弦、上腹杆和下腹杆组 成的空间结构(图2)。
• 特点是增加网架高度,减 小弦杆内力,减小网格尺 寸和腹杆长度。
• 当网架跨度较大时,三层 网架用钢量比双层网架用 钢量省。但由于节点和杆 件数量增多,尤其是中层 节点所连杆件较多,使构 造复杂,造价有所提高。
• 两向正交斜放 短桁架对长桁架有嵌固作用,受力
有利角部产生拔力,常取无角部形式。
29
3、两向斜交斜放网架 由两个方向桁架相交◎角交叉而成,形
成棱形网格。适用于两个方向网格尺寸不 同,而要求弦杆长度相等。 • 两向斜交斜放 适用于两个方向网格尺寸不同
的情形受力性能欠佳,节点构造较复杂。
网架结构设计总结

➢国内大跨度结构中采用较多,设计简单,规格 不需统一,球加工制作也简单,有优越性, ➢不足之处:现场工作量大,质量检验工作量大。 国内人工便宜尚有市场,而螺栓球节点内力受到 限制,因此尚有一定的使用价值
螺栓球节点
节点设计与构造
➢ 越来越为工程师接受,发展迅速 ➢ 节点精度高,工厂化生产,现场安装方便,工作量小,速度快 ➢ 高强螺栓质量的重要性
四、节点设计与构造
节点设计与构造
确定杆件的长细比时,其计算长度
➢ 注:l为杆件的几何长度(即节点中心间距离)
杆件的长细比要求
节点设计与构造
空间网格结构杆件分布应保证刚度的连续性,受力方向相邻 的弦杆其杆件截面面积之比不宜超过1.8倍,多点支承的网架 结构其反弯点处的上、下弦杆宜按构造要求加大截面。
网架设计按满应力设计,将会造成沿受力方向相邻杆件规格
过于悬殊,而造成杆件截面刚度的突变,故从构造要求考虑,
其受力方向相连续的杆件截面面积之比不宜超过1.8倍。 (相邻杆件相差悬殊应人工加以调整,以内力重分布) 对于低应力、小规格的受拉杆件其长细比宜按受压杆件控制
节点设计与构造
焊接空心球节点
结构计算
在抗震分析时,应考虑支承体系对空间网格结构受力的影响。 此时宜将空间网格结构与支承体系共同考虑,按整体分析模 型计算;亦可把支承体系简化为空间网格结构的弹性支座, 按弹性支承模型进行计算
在进行结构地震效应分析时,对于周边落地的空间网格结构,
阻尼比值可取0.02;对设.
支座
支座
支座
能较好地承受水平力又能自由转动,比较不符合不动球铰支 承的约束条件且有利于抗震。但构造复杂,一般用于多点支 承的大跨度空间网格结构
支座
螺栓球节点
节点设计与构造
➢ 越来越为工程师接受,发展迅速 ➢ 节点精度高,工厂化生产,现场安装方便,工作量小,速度快 ➢ 高强螺栓质量的重要性
四、节点设计与构造
节点设计与构造
确定杆件的长细比时,其计算长度
➢ 注:l为杆件的几何长度(即节点中心间距离)
杆件的长细比要求
节点设计与构造
空间网格结构杆件分布应保证刚度的连续性,受力方向相邻 的弦杆其杆件截面面积之比不宜超过1.8倍,多点支承的网架 结构其反弯点处的上、下弦杆宜按构造要求加大截面。
网架设计按满应力设计,将会造成沿受力方向相邻杆件规格
过于悬殊,而造成杆件截面刚度的突变,故从构造要求考虑,
其受力方向相连续的杆件截面面积之比不宜超过1.8倍。 (相邻杆件相差悬殊应人工加以调整,以内力重分布) 对于低应力、小规格的受拉杆件其长细比宜按受压杆件控制
节点设计与构造
焊接空心球节点
结构计算
在抗震分析时,应考虑支承体系对空间网格结构受力的影响。 此时宜将空间网格结构与支承体系共同考虑,按整体分析模 型计算;亦可把支承体系简化为空间网格结构的弹性支座, 按弹性支承模型进行计算
在进行结构地震效应分析时,对于周边落地的空间网格结构,
阻尼比值可取0.02;对设.
支座
支座
支座
能较好地承受水平力又能自由转动,比较不符合不动球铰支 承的约束条件且有利于抗震。但构造复杂,一般用于多点支 承的大跨度空间网格结构
支座
《网架结构》课件

承载能力测试
在规定的荷载下测试网架 结构的承载能力,确保其 满足设计要求。
网架结构的加固与修复
损伤评估
对网架结构进行详细检查,评估其损 伤程度和影响范围。
加固方案制定
施工与验收
按照加固方案进行施工,完成后进行 验收,确保网架结构的安全性和稳定 性。
根据评估结果,制定合理的加固和修 复方案。
05
网架结构的发展趋 势与展望
根据施工需要,采购合格的原材料和 设备,并进行严格的质量检验。
网架结构的拼装
网架拼装前的准备
根据施工图纸和工艺要求,准备拼装所需的 材料和设备。
网架拼装精度控制
采用高精度的测量仪器和工具,确保拼装的 精度和稳定性。
网架拼装顺序
按照一定的顺序进行拼装,确保拼装质量和 进度。
拼装过程中的质量检查
对拼装过程中的关键节点进行质量检查,及 时发现并处理问题。
网架结构的应用场景
总结词
网架结构广泛应用于各种建筑和桥梁工程中,如体育 场馆、会展中心、工业厂房、高速公路桥梁等。
详细描述
由于网架结构具有受力性能好、承载能力高、结构自 重轻、抗震性能好等特点,因此被广泛应用于各种建 筑和桥梁工程中。例如,体育场馆的屋顶、会展中心 的展厅、工业厂房的屋顶和墙体、高速公路桥梁等都 可以采用网架结构作为主要承重结构。此外,在民用 建筑中,网架结构也可以用于大跨度跨越的桥梁和大 型工业厂房的承重体系中。
网架结构的日常维护
01
02
03
日常清洁
定期清理网架结构表面, 保持其外观整洁。
检查紧固件
确保所有连接螺栓、铆钉 等紧固件紧固,无松动现 象。
防腐处理
对网架结构进行防锈、防 腐蚀处理,延长其使用寿 命。
《网架结构设计》PPT课件 (2)

2.焊接空心球节点
(1)特点和适用范围
焊接空心球节点(Hollow spherical nodes)是目前在 国内得到广泛应用的一种节点形式,约占已建成网架 工程50%左右。这种节点是一种空心球体,它是将两块 圆钢板经热压或冷压(常用前者)成两个半球壳后再 对焊而成。空心球的钢材品种宜采用Q235钢和Q345 钢制作。
选杆
规格统一的问题
小跨度网架:2~3种
大中跨度网架: 6~7种,一般不超过8种。
3.杆件的计算长度和长细比限值
(1)网架杆件的计算长度l0
杆件
螺栓球
节点 焊接空心球
板节点
弦杆及支座
腹杆
l
0.9 l
l
腹杆
l
0.8 l
0.8 l
(2)网架杆件的长细比限值
1)受压杆件
180
2)受拉杆件
①一般杆件
400
角锥体系网架、四角锥体系网架和六角锥体系 网架。
3.2.2 .2 网架结构的形式 1.交叉桁架系网架
两向正交正放网架
两 向 正 交 斜 放 网 架
三 向 网 架
2.三角锥体系网架
架三 角 锥 网
蜂角 窝锥 形网 三架
锥抽 网
空架
三 角型
锥抽 网
空架
三 角型
Ⅱ Ⅰ
3.四角锥体系网架
网正
由于球体为各向同性,钢管杆件与空心球的配合不会产 生偏心,因此,焊接空心球节点适应性强,尤其对三向 网架、三角锥网架和六角锥网架更加适宜。
(2)焊接空心球的构造
焊接空心球按构造可分为两类:
不加肋空心球和加肋空心球。 当球直径≥300mm,且杆件内力较大需要提高空心球 承载能力要求时,可采用加肋空心球。加肋空心球的 承载力比不加肋空心球高约15%~30%。 加肋空心球的肋板厚度不应小于球壁厚度,通常可取 为与空心球壁厚相同。 肋板可用平台或凸台,采用凸台时,其高度不得大于 1mm,而且应使内力较大的杆件位于肋板平面内。
《网架结构设计》课件

总结词
适用场景
结构简单、受力明确、稳定性高、经济性好。
优势
适用于各种类型的建筑空间,如体育场馆、工业厂房 、高层建筑等。
四边形网架
总结词
详细描述
适用场景
优势
四边形网架是一种常见的网架 结构形式,具有较好的稳定性 和适应性。
四边形网架由多个四边形单元 组成,通过节点连接形成完整 的网架结构。它具有较好的稳 定性和适应性,能够适应不同 的建筑空间和跨度要求。
网架结构适用于各种工业厂房的建设,如机械制造、化工、电力等行业的厂房。
公共设施
网架结构还广泛应用于公共设施,如机场、火车站、汽车站等大型交通枢纽的屋 顶和站台雨棚。
感谢您的观看
THANKS
通过实验测试网架结构的性能,包括 静载实验、动载实验等。实验法可以 获得较为准确的数据,但成本较高。
网架结构优化设计
尺寸优化
通过调整网架杆件的截 面尺寸和节点形式,使 结构更加合理和经济。
形状优化
改变网架杆件的形状, 以改善结构的受力性能
和减小用钢量。
拓扑优化
在满足一定条件下,重 新排列或减少某些杆件 ,以达到更好的经济性
适用于各种类型的建筑空间, 如展览馆、会议中心、工业厂 房等。
结构简单、受力明确、稳定性 好、适应性强。
六面体网架
总结词
六面体网架是一种复杂的网架结构形式,具有较 高的承载能力和稳定性。
适用场景
适用于大跨度、大空间的建筑空间,如大型体育 场馆、会展中心等。
详细描述
六面体网架由多个六面体单元组成,通过节点连 接形成完整的网架结构。它具有较高的承载能力 和稳定性,适用于承受较大荷载和跨度的建筑空 间。
设备要求较低。
组合网架结构-03PPT

结构优化设计
01
02
03
04
尺寸优化
调整结构元件的尺寸以满足性 能要求。
形状优化
改变结构的形状以改善性能或 降低成本。
拓扑优化
确定最佳的材料分布和支撑结 构。
多目标优化
同时考虑多个性能指标,以找 到最佳的折衷方案。
04 组合网架结构的施工方法
CHAPTER
拼装施工法
总结词
高效、快速
VS
详细描述
拱型组合网架
总结词
拱型组合网架是一种具有拱形结构的空间结构,其特点是具有较好的承载能力和稳定性,适用于需要承受较大竖 向荷载和水平荷载的建筑结构。
详细描述
拱型组合网架由多个拱形单元组成,这些拱形单元通过节点连接在一起,形成一个连续的空间结构。由于其拱形 的特点,拱型组合网架能够承受较大的竖向荷载和水平荷载,同时具有较好的抗侧刚度和抗震性能。
组合网架结构-03
目录
CONTENTS
• 组合网架结构概述 • 组合网架结构的类型与特点 • 组合网架结构设计 • 组合网架结构的施工方法 • 组合网架结构的工程实例
01 组合网架结构概述
CHAPTER
定义与特点
定义
组合网架结构是一种新型的空间 结构形式,由多个杆件通过节点 连接而成,形成一个整体。
设计原则与流程
详细设计
进行细部设计、载荷分析和稳定性验证。
优化设计
根据分析结果,对结构进行优化以提高性能或降低成本。
结构分析方法
有限元分析
使用离散化的数值模型来模拟 结构的响应。
线性静力分析
用于确定结构在恒定载荷下的 响应。
动力分析
研究结构在动态载荷或振动情 况下的响应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五、支座
边界条件:与支座节点和支承结构的刚度有关 (当支承结构刚度很大可忽略其变形时,边界 条件完全取决于支座构造)
支座
空间网格结构的支座节点应根据其主要受力特点,分别选用 压力支座节点、拉力支座节点、可滑移与转动的弹性支座节 点以及兼受轴力、弯矩与剪力的刚性支座节点。
节点构造简单、加工方便,但支座底板下应力分布不均匀,与计 算假定相差较大。一般仅适用于较小跨度的网架支座。
➢ 网架周边支承、验算方向的跨度小于40m,且支承结构为独立柱; ➢ 在单位力作用下,柱顶水平位移大于或等于下式的计算值
结构计算
对用作屋盖的网架结构,其抗震验算应符合下列规定:
➢ 在抗震设防烈度为8度的地区,对于周边支承的中小跨度网架结构 应进行竖向抗震验算,对于其他网架结构均应进行竖向和水平抗震 验算;
网架结构设计总结
2012年11月
目录
➢网架选型 ➢ 基本规定 ➢ 结构计算 ➢ 节点计算与构造 ➢支座
一、网架选型
交叉桁架体系
四角锥体系
三角锥体系
二、基本规定
基本规定
网架的最优高跨比则主要取决于屋面体系(采用钢筋混凝土屋 面时为1/10~1/14,采用轻屋面时为1/13~1/18)
网架二相邻杆件间夹角不宜小于30度,以免杆件相碰或节点尺 寸过大要合并的数据文件名;
结构计算
在抗震分析时,应考虑支承体系对空间网格结构受力的影响。 此时宜将空间网格结构与支承体系共同考虑,按整体分析模 型计算;亦可把支承体系简化为空间网格结构的弹性支座, 按弹性支承模型进行计算
在进行结构地震效应分析时,对于周边落地的空间网格结构,
阻尼比值可取0.02;对设有混凝土结构支承体系的空间网格结 构,阻尼比可取0.03.
支座
支座
支座
能较好地承受水平力又能自由转动,比较不符合不动球铰支 承的约束条件且有利于抗震。但构造复杂,一般用于多点支 承的大动铰支座节点、板式橡胶支座节点可按有侧移铰支座计 算。常用压力支座节点可按相对于节点球体中心的铰接支座 计算,但应考虑下部结构的侧向刚度。
空间网格结构应经过位移、内力计算后进行杆件截面设计,如 杆件截面需要调整应重新进行计算,使其满足设计要求。空间 网格结构设计后,杆件不宜替换,如必须替换时,应根据截面 及刚度等效的原则进行
结构计算
当网架结构符合下列条件之一时,可不考虑温度而引起的内力:
➢ 支座节点的构造允许网架侧移,且允许侧移值大于或等于网架结构 的温度变形值;
四、节点设计与构造
节点设计与构造
确定杆件的长细比时,其计算长度
➢ 注:l为杆件的几何长度(即节点中心间距离)
杆件的长细比要求
节点设计与构造
空间网格结构杆件分布应保证刚度的连续性,受力方向相邻 的弦杆其杆件截面面积之比不宜超过1.8倍,多点支承的网架 结构其反弯点处的上、下弦杆宜按构造要求加大截面。
支座
支座节点的设计与构造应符合下列规定:
➢ 支座竖向支承板中心线应与竖向反力作用线一致,并与支座 节点连接的杆件汇交于节点中心;
➢国内大跨度结构中采用较多,设计简单,规格 不需统一,球加工制作也简单,有优越性, ➢不足之处:现场工作量大,质量检验工作量大。 国内人工便宜尚有市场,而螺栓球节点内力受到 限制,因此尚有一定的使用价值
螺栓球节点
节点设计与构造
➢ 越来越为工程师接受,发展迅速 ➢ 节点精度高,工厂化生产,现场安装方便,工作量小,速度快 ➢ 高强螺栓质量的重要性
算等效刚度和等效质量作为上部空间网格结构分析时的条件; 也可把上部空间网格结构折算等效刚度和等效质量作为下部支 承结构分析时的条件;也可将上、下部结构整体分析。 分析空间网格结构时,应根据结构形式、支座节点的位置、数
量和构造情况以及支承结构的刚度,确定合理的边界约束条件。
支座节点的边界约束条件,对于网架应按实际构造采用两向或 一向可侧移、无侧移的铰接支座或弹性支座。 空间网格结构的支承条件对结构的计算结果有较大的影响,支 座节点在哪些方向有约束或为弹性约束应根据支承结构的刚度 和支座节点的连接构造来确定。
空间网格结构的外荷载可按静力等效原则将节点所辖区域内的 荷载集中作用在该节点上。当杆件上作用有局部荷载时,应另 行考虑局部弯曲内力的影响。
大跨度结构中风荷载往往非常关键,特别强调风荷载作用下的 计算。
结构计算
空间网格结构分析时,应考虑上部空间网格结构与下部支承结 构的相互影响。空间网格结构的协同分析可把下部支承结构折
结构计算
网架结构一般下部为独立柱或框架柱支承,柱的水平侧向刚度 较小,并由于网架受力为类似于板的弯曲型,因此对于网架支 座的约束可采用两向或一向可侧移铰接支座或弹性支座
空间网格结构施工安装阶段与使用阶段支承情况不一致时,应 区别不同支承条件分析计算施工安装阶段和使用阶段在相应荷 载作用下的结构位移和内力
网架设计按满应力设计,将会造成沿受力方向相邻杆件规格
过于悬殊,而造成杆件截面刚度的突变,故从构造要求考虑,
其受力方向相连续的杆件截面面积之比不宜超过1.8倍。 (相邻杆件相差悬殊应人工加以调整,以内力重分布) 对于低应力、小规格的受拉杆件其长细比宜按受压杆件控制
节点设计与构造
焊接空心球节点
➢ 在抗震设防烈度为9度的地区,对各种网架结构应进行竖向和水平 抗震验算
《抗规》10.2.6 下列屋盖结构可不进行地震作用计算,但应符 合本节有关的抗震措施要求:
➢ 7度时,矢跨比小于1/5的单向平面桁架和单向立体桁架结构可不进 行沿桁架的水平向以及竖向地震作用计算;
➢ 7度时,网架可不进行地震作用计算。
网架屋面排水找坡可采用下列方式: ➢ 上弦节点设置小立柱找坡 ➢ 网架变高度 ➢ 网架结构起坡
容许挠度: ➢ 网架为屋盖短向跨度的1/250
三、结构计算
结构计算
网架结构整体以承受弯曲内力为主,支承条件应提供竖向约束 (结构计算时水平约束可以放松,只是应加局部水平约束处理 以保证不出现刚体位移,或直接采用下部结构的水平刚度), 网架计算时节点可采用铰接模型,并在网架设计与制作中可采 用接近铰接的螺栓球节点。