网架结构设计
网架结构设计建议
网架结构设计
1.网架结构类型
正放四角锥网架的节点、杆件数量最少、用钢量最省,屋面排水处理方便。
本工程网架选型合理。
2.网格尺寸:网格尺寸宜取(1/12~1/6L2)=2~4m,本工程取2m,合理。
3.高跨比:1/10~1/18L2=2.4~1.3m,本工程取1.8m,合理
4.荷载取值:按建筑做法及实际工程需要取值,请自校
5.温度作用:考虑±20°的温差作用,合理
6.强度控制(内力):杆件应力比宜控制在0.85以下,请自校
7.长细比(杆件):杆件长细比按压杆和拉杆分别控制长细比,请自
校
8.变形控制(位移):屋面结构控制在1/250内,请自校
9.杆件截面构造要求:相连续的构件截面差别不应超过20%,截面
规格差不宜大于2档。
避免刚度突变。
请自校
节点:
10.螺栓球:球直径按规范公式计算。
请自校
11.螺栓:受力满足承载力要求(由杆件内力控制),另外构造还应根
据相邻杆件及相关封板、锥头、套筒等零部件不相碰的要求核算螺栓直径(核算方法可通过检查可能相碰点至球心的连线与相邻杆件轴线间的夹角之和不大于杆件之间夹角)。
请自校
12.套筒:根据相应杆件的最大轴向承载力按压杆计算,构造上内孔
径可比螺栓直径大1mm。
请自校
13.支座:本工程属于较小跨度的网架结构,采用平板支座,合理。
采用全固接的方式,网架构件需要考虑温度作用产生的受力。
《网架结构设计》课件
实验验证
对网架结构进行模型试验 或实际工程试验,验证设 计的可行性和安全性。
网架结构的形式选择
平板网架
由多个平板通过节点连接而成, 适用于大跨度、大空间的屋盖结
构。
曲面网架
通过节点连接形成曲面形状,适 用于具有曲线形状的屋盖结构。
立体网架
由多个平面网架组合而成,形成 三维空间结构,适用于高层或大
跨度建筑。
船舶工程
在船舶工程中,网架结构可应用 于船体内部支撑和甲板铺面。
核电站
在核电站中,网架结构可应用于 安全壳和相关辅助设施的结构支
撑。
网架结构的发展趋势与展望
智能化设计
01
随着计算机技术的发展,网架结构的优化设计 、稳定性分析等将更加智能化。
绿色环保
03
未来网架结构设计将更加注重绿色环保,采用 可再生材料和节能技术,降低能耗和碳排放。
整体稳定性
评估网架结构在外部荷载作用下的整体稳定性,防止结构发 生失稳。
局部稳定性
分析网架杆件在压力或弯曲作用下的稳定性,防止杆件屈曲 或失稳。
网架结构的优化设计
结构形式优化
根据工程需求和条件,选 择合适的网架结构形式, 如三角形、四边形、六面 体等。
尺寸优化
根据网架的内力分析和稳 定性要求,对网架杆件截 面尺寸进行优化,降低用 钢量。
新材料的应用
02
新型材料的不断涌现,如碳纤维、玻璃纤维等 ,将为网架结构的设计和应用提供更多可能性
。
定制化设计
04
随着个性化需求的增加,网架结构的定制化设 计将更加普遍,以满足不同领域和特定需求的
结构设计要求。
THANKS
施工精度控制
在施工过程中,对网架结构的拼装、 吊装等环节进行精度控制,确保安装 误差在允许范围内。
空间网架结构设计
第22页/共33页
网架和网壳结构(12)
a)肋环型四角锥球面网壳 d)平板组成式球面网壳
b)联方型四角锥球面网壳
c)联方型三角锥球面网壳
双层球面网壳的网格形式 1.交叉桁架体系
只需将单层球面网壳中的杆件用平面网片代替(略) 2.角锥体系(常见四种)
第20页/共33页
网架和网壳结构(10)
a)正放四角锥柱面网壳 d)三角锥柱面网壳
b)正放抽空四角锥柱面网壳 c)斜置正放四角锥柱面网壳
e)抽空三角锥柱面网壳
双层柱面网壳的网格形式 1.交叉桁架体系(略) 2.四角锥体系
a):刚度大,杆件少,最常用 b):适用于小跨度,轻屋面 c):系将a)斜置 3.三角锥体系 常用d) , e) 两种
水平梁和框架一起 承受悬索拉力
水平梁 承受悬索ቤተ መጻሕፍቲ ባይዱ力
悬索直接 锚挂于框架
斜拉索将 悬索拉力 拉向地锚
第25页/共33页
悬索结构(2)
•幅射式布置形式(适用于圆形,椭圆形平面)
下凹双曲率碟形屋面 不便于排水,最大的 碟形屋面:美国阿拉 美达比赛馆,跨径 128m(1967)
伞形屋面 最大的伞形屋面: 前苏联伊利姆斯克 汽车库,跨径206m
第28页/共33页
悬索结构(5)
•鞍形索网布置形式
a)
第29页/共33页
悬索结构(6)
一些典型建筑
•单层悬索
德国乌柏特市游泳馆
德国多特蒙特展览大厅
前苏联克达斯若牙尔斯克车库 第30页/共33页
日本古川市民会馆
•双层悬索
悬索结构(7)
瑞典斯德哥尔摩约翰尼绍夫滑冰场
网架结构建筑案例
网架结构建筑案例网架结构是一种由杆件和节点组成的空间结构,其特点是构件轻巧、构造简单、适应性强,因此在建筑领域得到了广泛的应用。
下面我们将介绍几个典型的网架结构建筑案例,以便更好地了解网架结构的设计和应用。
首先,让我们来看看北京鸟巢体育馆。
作为2008年北京奥运会的主要比赛场馆之一,鸟巢采用了大跨度网架结构,其外形犹如一个巨大的鸟巢,因此得名“鸟巢”。
整个建筑采用了约110,000吨的钢材,结构设计采用了网架结构,使得整个建筑具有了轻盈的外观,同时也满足了大跨度空间的要求。
鸟巢的设计不仅在结构上具有创新性,而且在建筑美学上也具有很高的艺术价值,成为了北京奥运会的标志性建筑之一。
接下来,我们来看看迪拜哈利法塔。
哈利法塔是世界上最高的建筑,其高度达828米,采用了网架结构设计。
在哈利法塔的设计中,网架结构被用于支撑建筑的高层结构,使得建筑在高度上能够保持稳定。
同时,网架结构也使得建筑在视觉上具有了轻盈的外观,给人一种飘逸的感觉。
哈利法塔的建筑结构设计充分展示了网架结构在超高层建筑中的应用价值。
最后,让我们来看看上海世博会中国馆。
中国馆是2010年上海世博会的标志性建筑,其外形采用了传统的“藕丝篮”造型,整个建筑采用了大跨度网架结构设计。
中国馆的网架结构设计不仅使得建筑具有了独特的外观,而且在功能上也具有了很高的灵活性,使得馆内空间得以合理利用。
中国馆的网架结构设计充分展示了网架结构在文化建筑中的应用潜力。
通过以上几个典型的网架结构建筑案例,我们可以看到,网架结构不仅具有轻盈、灵活的特点,而且在建筑美学上也具有很高的价值。
网架结构的应用不仅可以满足建筑的功能要求,而且可以赋予建筑更多的艺术魅力。
因此,我们相信,在未来的建筑设计中,网架结构将会得到更广泛的应用,为人们创造出更多美丽、实用的建筑作品。
网架结构节点设计解析
网架结构节点设计解析网架结构节点是指构成整个网架结构的基本组成部分,它们之间的连接和关系决定了网架的功能和性能。
设计好网架结构节点是一个关键的任务,本文将从设计的目标、关键要素、节点类型和实现方法四个方面对网架结构节点的设计进行解析。
一、设计目标网架结构节点的设计目标是确保整个系统的稳定性、可靠性、可扩展性和性能。
稳定性要求节点之间的通信和数据传输效率高、可靠性高,系统能够长时间运行而不发生故障;可扩展性要求节点能够扩展和缩小,适应不同规模和负载的需求;性能要求节点能够快速响应用户请求,处理大量的数据和并发访问。
二、关键要素1.节点类型:节点可以分为核心节点、边缘节点和终端节点。
核心节点是整个网架的核心部分,负责处理核心任务和协调各个节点的工作;边缘节点是核心节点和终端节点之间的桥梁,负责缓冲和转发数据,减轻核心节点的负载;终端节点是最终的用户访问节点,负责接收用户请求和返回处理结果。
2.节点连接:节点之间的连接可以通过物理连接或逻辑连接来实现。
物理连接是指直接通过网络、硬件等传输媒介进行连接,适用于距离较近、传输速度要求高的情况;逻辑连接是通过软件协议、API等进行连接,适用于跨网络、跨地域的通信。
3.节点功能:节点的功能包括数据处理、存储、计算、通信等,不同节点的功能可以根据具体需求进行配置和分配。
例如,核心节点的存储和计算能力要求较高,边缘节点的通信和转发能力要求较高,终端节点的用户接口和交互能力要求较高。
三、节点类型1.核心节点:核心节点是整个网架的核心部分,负责处理核心任务、协调各个节点的工作和维护整个系统的稳定性和可靠性。
核心节点的设计要考虑高可用性、高性能和高扩展性。
可以采用分布式架构,将不同功能和任务的核心节点分开部署,通过负载均衡和集群技术来分担负载和提高系统性能。
2.边缘节点:边缘节点是核心节点和终端节点之间的桥梁,负责缓冲和转发数据,减轻核心节点的负载,并提高系统的响应速度。
网架结构设计方案
3.网架几何不变的充分条件 分析网架结构几何不变的充分条件时,应先对组成网架的基本单元进 行分析,进而对网架的整体作出评价。 三角形是几何不变的。如果网架基本单元的外表面是由三角形所组 成,则此基本单元也将是几何不变的。在对组成网架的基本单元进行分析 时,一般有以下两种类型和两种分析方法。 1)两种类型: 自约结构体系 自身就为几何不变体系; 它约结构体系 需要加设支承链杆,才能成为几何不变体系。 2)两种分析方法:
三边支承,开口)采用了这种网架结构型式。
图 4-14 斜放四角锥网架
④ 星形四角锥网架
图 4-15 星形四角锥网架 7
网架结构设计找江苏八方 一级施工资质 质优价廉 网架加工制作安装一条龙服务
这种网架的单元体形似星体,星体单元由两个倒置的三角形小桁架相 互交叉而成(图 4-15)。两个小桁架底边构成网架上弦,它们与边界成 45 º角。在两个小桁架交汇处设有竖杆,各单元顶点相连即为下弦杆。因此, 它的上弦为正交斜放,下弦为正交正放,斜腹杆与上弦杆在同一竖直平面 内。上弦杆比下弦杆短,受力合理。但在角部的上弦杆可能受拉。该处支 座可能出现拉力。网架的受力情况接近交叉梁系,刚度稍差于正放四角锥 网架。
类较多,屋面排水坡的形成也较困难。
当平面长宽比为 1~2.25 之间时,长跨跨中下弦内力大于短跨跨中的
下弦内力;当平面长宽比大于 2.5 之间时,长跨跨中下弦内力小于短跨跨
中的下弦内力。当平面长宽比为 1~1.5 之间时,上弦杆的最大内力不在跨
中,而是在网架 1/4 平面的中部。这些内力分布规律不同于普通简支平板
平面
上弦
剖面
下弦
腹杆
上弦节点 下弦节点
图 4-7 网架结构图示图例
图 4-8 两向正交正放网架
网架结构设计建议
网架结构设计
1.网架结构类型
正放四角锥网架的节点、杆件数量最少、用钢量最省,屋面排水处理方便。
本工程网架选型合理。
2.网格尺寸:网格尺寸宜取(1/12~1/6L2)=2~4m,本工程取2m,合理。
3.高跨比:1/10~1/18L2=2.4~1.3m,本工程取1.8m,合理
4.荷载取值:按建筑做法及实际工程需要取值,请自校
5.温度作用:考虑±20°的温差作用,合理
6.强度控制(内力):杆件应力比宜控制在0.85以下,请自校
7.长细比(杆件):杆件长细比按压杆和拉杆分别控制长细比,请自
校
8.变形控制(位移):屋面结构控制在1/250内,请自校
9.杆件截面构造要求:相连续的构件截面差别不应超过20%,截面
规格差不宜大于2档。
避免刚度突变。
请自校
节点:
10.螺栓球:球直径按规范公式计算。
请自校
11.螺栓:受力满足承载力要求(由杆件内力控制),另外构造还应根
据相邻杆件及相关封板、锥头、套筒等零部件不相碰的要求核算螺栓直径(核算方法可通过检查可能相碰点至球心的连线与相邻杆件轴线间的夹角之和不大于杆件之间夹角)。
请自校
12.套筒:根据相应杆件的最大轴向承载力按压杆计算,构造上内孔
径可比螺栓直径大1mm。
请自校
13.支座:本工程属于较小跨度的网架结构,采用平板支座,合理。
采用全固接的方式,网架构件需要考虑温度作用产生的受力。
网架结构概述、荷载、设计和节点构造
梁式结构(平面桁架、空间桁架),平面刚架和拱式结构
空间结构体系:
平板网架结构,网壳结构,悬索结构,斜拉结构,张拉整体结构等
我国采用平板网架结构最早的是上海师范学院球类房(1954年建成),采 用了31.4m×40.5m的正放四角锥网架。
1966年天津市科学宫采用了斜放四角锥网架,平面尺寸14.84m×23.32m , 网架高度1m,网格为7×11,采用3号钢(相当于目前的Q235钢),由高 频焊接管组成,周边简支于钢筋混凝土圈梁上,耗钢量只有6.26kg/m2。 使用前,对6.36m×10.6m的3×5个网格的1/5模型进行了试验,在第一根 压杆失稳时,荷载为设计荷载的2.1倍,证明结构安全可靠。
大跨度覆盖的空间结构。空间网架结构具有以下特点: 1.网架结构整体性好、空间刚度大、结构稳定。 2.网架结构靠杆件的轴力传递载荷,材料强度得到充分利用,既
节约钢材,又减轻了自重。 3.网架结构自重轻,地震力就小,钢材具有良好的延伸性,可吸
收大量地震能量,网架空间刚度大,抗震性能优良。 4.网架结构高度小,可有效利用空间,普通钢结构高跨比为1/8—网架按Biblioteka 杆层数不同可分为双层网架和三层网架。
双层网架是由上弦、下弦和腹杆组成的空间结构,是常用的网 架形式。
三层网架是由上弦、中弦、下弦、 上腹杆和下腹杆组成的间结构,其特 点是增加网架高度,减小弦杆内力, 减小网格尺寸和腹杆长度。当网架跨 度较大时,三层网架用钢量比双层网 架用钢量省。但由于节点和杆件数量 增多,尤其是中层节点所连杆件较多, 使构造复杂,造价有所提高。
c.三向网架:三个方向的竖向 平面桁架互成60°角斜向交叉。 上下弦平面内的网格均为几何不变 的三角形,因此,这种网架是由若 干以稳定的三棱体作为基本单元所 组成的几何不变体系。网架空间刚 度大,受力性能好,内力分布也较 均匀,但汇交于一个节点的杆件最 多可达13根。节点构造较复杂,宜 采用钢管杆件及焊接空心球节点。 三向网架适用于三角形、六边形、多边形和圆形并且跨度较大的建筑平面。 当用于圆形平面时,周边将出现一些不规则网格,需另行处理。三向网架的 节间一般较大,有时可达6m以上。
网架结构设计的一般规定
网架结构设计的一般规定1.模块化设计:将系统划分为多个独立的模块,每个模块负责特定的功能。
模块之间应该松耦合、高内聚,便于维护、测试和扩展。
2.分层架构:将系统划分为多个层次,每个层次负责特定的功能。
常见的分层架构包括三层架构(界面层、业务逻辑层和数据访问层)和MVC (模型-视图-控制器)架构。
3.分布式架构:将系统的不同组件部署在多个物理或虚拟机上,以提高系统的性能和可扩展性。
常见的分布式架构包括分布式计算、分布式存储和分布式数据库。
4.缓存设计:使用缓存来提高系统的性能和响应时间。
常见的缓存技术包括内存缓存、分布式缓存和页面缓存。
5.异步处理:将耗时的操作放入消息队列中异步处理,以提高系统的并发性和可扩展性。
6.容灾设计:保障系统的高可用性和容错性,采用冗余设计、负载均衡、故障转移等技术。
7.安全设计:保障系统的数据安全和用户隐私,采取合适的身份验证、访问控制、数据加密等措施。
8.性能优化:通过合理的系统设计和优化调整,使系统具备较好的性能。
包括代码优化、数据库优化、网络优化等方面。
9.日志与监控:设计适当的日志记录和监控系统,以便于及时发现系统的问题和异常,并进行及时处理。
10.可扩展性和可维护性:在设计时考虑系统的可扩展性和可维护性,使系统能够方便地进行功能扩展和代码维护。
11.标准化设计:遵循一定的设计规范和标准,使系统具有良好的一致性和可读性。
12.代码复用:通过合理的模块划分和接口设计,实现代码的复用,减少冗余代码。
13.抽象和封装:将复杂的功能进行抽象和封装,隐藏细节,减少模块之间的依赖,提高系统的灵活性和可维护性。
14.单元测试和集成测试:在开发过程中进行合理的单元测试和集成测试,保证系统的质量和稳定性。
15. 持续集成和持续交付:采用持续集成和持续交付的方式,实现频繁地发布新功能和修复bug。
总结起来,网架结构设计的规定包括模块化设计、分层架构、分布式架构、缓存设计、异步处理、容灾设计、安全设计、性能优化、日志与监控、可扩展性和可维护性、标准化设计、代码复用、抽象和封装、单元测试和集成测试、持续集成和持续交付等方面。
网架结构设计与施工规程
网架结构设计与施工规程一、引言。
网架结构是一种常见的建筑结构形式,它具有轻巧、美观、经济的特点,被广泛应用于各种建筑中,如体育馆、展览馆、停车场等。
网架结构的设计与施工规程对于确保建筑的安全性、稳定性和美观性具有重要意义。
本文将从网架结构设计与施工规程的角度,对其进行详细介绍。
二、网架结构设计。
1. 结构形式选择。
网架结构的结构形式多种多样,如球面网架、双曲面网架、单曲面网架等。
在设计网架结构时,需要根据建筑的功能、使用要求和环境条件等因素,选择合适的结构形式。
同时,还需要考虑结构的稳定性、承载能力和施工难度等因素,以确保结构的安全性和经济性。
2. 材料选择。
网架结构的材料选择对于结构的性能和成本具有重要影响。
一般来说,网架结构的材料主要包括钢材、铝合金、玻璃钢等。
在选择材料时,需要考虑材料的强度、耐腐蚀性、成本和施工性能等因素,以确保结构的稳定性和经济性。
3. 结构分析与设计。
在进行网架结构设计时,需要进行结构分析,包括静力分析、动力分析和有限元分析等,以确定结构的受力情况和变形情况。
然后根据结构的受力情况和变形情况,进行结构设计,包括结构尺寸、连接方式和支撑方式等,以确保结构的安全性和稳定性。
4. 美学设计。
网架结构作为建筑的一部分,其美学设计也是非常重要的。
在进行网架结构设计时,需要考虑结构的形态、比例和色彩等因素,以确保结构与建筑的整体风格和环境相协调。
三、网架结构施工规程。
1. 施工前准备。
在进行网架结构的施工前,需要进行施工前准备工作,包括施工方案的制定、施工图纸的编制、施工材料的准备和施工设备的调试等。
同时,还需要进行现场勘察和安全评估,以确保施工的安全性和顺利性。
2. 施工工艺。
网架结构的施工工艺主要包括材料的加工、构件的制作、连接件的安装和结构的组装等。
在进行施工工艺时,需要严格按照设计要求和施工规范进行,以确保结构的质量和稳定性。
3. 安全措施。
在进行网架结构的施工时,需要严格遵守安全规程,采取必要的安全措施,包括施工现场的封闭、施工人员的安全防护和施工设备的检查等,以确保施工的安全性和顺利性。
网架结构的设计与分析
网架结构的设计与分析摘要:网架结构在我国广泛用作厂房、体育馆、展厅、俱乐部等的屋盖结构。
本文详细阐述了网架结构的特点和设计过程,最后呈现了一组钢网架结构、火力发电厂的设计案例。
关键词:网架结构;结构设计;钢结构1.网架结构特点分析网架结构的结构特点决定了网架作为一种空间杆系结构系统,具有三向受力强度,可以承受不同方向的荷载。
网架结构的特点具体包括以下几个方面:1.网架结构刚度大,材料强度高,抗震性强。
(2)网架结构重量轻,节约钢材。
(3)网架结构适合工厂化生产。
由于网架结构的构件是标准化的,也可以提前组装,适合工厂化生产,为加快项目进程提供了有利条件和保障。
2.网架结构设计流程网架结构的设计必须符合我国相关法律法规的要求。
同时,具体设计必须结合各自项目的特点来实现。
一般来说,可分为方案分析、网架计算、施工图深化三个阶段。
2.1方案分析阶段要注意确定关键点,如网架的高度不能过大,以保证下方设备的使用高度;初始杆件规格尺寸、网架高度、连接方式的选择等。
应当本专业的规范规程以及各个专业的使用功能等原则。
其次,即既要满足网架结构的特点,又要满足承载力的要求,并考虑现场施工安装的便利性。
2.2网架结构计算阶段在结构计算过程中,应注意设置网架支座的支撑条件、设计工况和调整计算结果。
针对于真实情况下的支座构件情况的模拟是否准确,各个工况组合中子荷载及其分项系数的取值是否合适;或计算结构内力或挠度的修正方法是否正确,是否符合结构的安全性和规范的构造要求;检查网架结构的连接节点,如螺栓布置或焊缝尺寸是否合适等。
2.3施工图深化阶段施工图深化阶段大部分是节点施工图的计算和施工图的过程。
水平网架一般选择水平面作为基准面,弧形网架一般使用合适的布局,但计算中网架图案计算多条弧线的交点最好使用其他数据布局。
平面的位置一定要移到基点,否则画图的时候会有很多小的角度差异,影响网架球的组成。
3.设计实例3.1工程概况项目建设规模为2x 1000 MW模块化热电厂设计。
网架结构的支座设计要点
网架( 网壳)结构作为一种高次超静定空间杆系结构,由于其受力性能好(理论上杆件只受轴力作用)、刚度大、整体性及抗震性能好、承载力强、受支座不均匀沉降影响小、适应性强,而计算理论的日益完善以及计算机技术飞速发展,使得对任何极其复杂的三维结构的分析与设计成为可能,因此网架结构被广泛应用于工业与民用建筑领域中。
但网架结构如果其支承结构、支座型式及边界条件设计不合理会对网架结构的安全性和经济性造成重要影响。
1. 支承结构与支承方式目前在很多工程中,网架(网壳)一般由专业的钢构公司根据事先假定的边界约束条件进行设计,再将他们算出来的支座反力作为外加荷载作用到下部支承结构中。
把网架(网壳)和下部支承结构分开计算,网架支座相对于下部结构的位移虽然可以通过弹性约束方法模拟,但是由下部支承结构变形带来的支座沉陷等支座本身的变位很难估算准确,算出来的结构内力在某些情况下会与实际情况差别较大,可能会给工程留下安全隐患。
下部结构可能是柱,也可能是梁,也可能是其他结构形式,不仅刚度是有限的,而且具体工程刚度差异可能很大,在这种假定条件下,算出来的杆件内力、支座反力及下部结构内力与采用网架支座刚度为实际刚度且上、下部结构共同工作的力学模型所计算出来的结果肯定是不相同的。
另外,分开计算还割裂了上下部结构的协同工作,使得上、下部结构的周期和位移计算均不准确。
通常网架的支承可以分为:周边支承、点支承以及点支承与周边支承混合使用三种方式,周边支承是将网架周边节点搁置在梁或柱上,点支承则是将网架支座以较大的间距搁置于独立梁或柱上,柱子与其他结构无联系。
网架(网壳)搁置在梁或柱上时,可以认为梁和柱的竖向刚度很大,忽略梁的竖向变形和柱子轴向变形,因此网架(网壳)支座竖向位移为零,网架(网壳)支座水平变形应考虑下部结构共同工作。
在周边支承网架(网壳)支座的径向应将下部支承结构作为网架(网壳)结构的弹性约束,而点支承网架(网壳)支座的边界条件应考虑水平X和Y两个方向的弹性约束。
网架结构设计说明
网架结构设计说明一、设计概况:1、工程名称:长丰南、淮南西十车道收费雨蓬网架工程2、工程地点:安徽省准南市3、网架结构:采用正放四角锥螺栓球节点4、网架平面尺寸:见图;支承形式:见图。
5、建筑物使用基准期:50 年6、结构安全等级:二级.7、网架结构荷载:上弦静载0.35KN/㎡下弦静载0.00KN/㎡上弦活载0.5KN/㎡基本风压:0.75KN/㎡风振系数取1.35,体型系数根据建筑结构荷载规范GB50009-2012表8.3.1第22项取值。
地面粗糙度为B类。
抗震措施设防烈度为6度,建筑场地类别为Ⅱ设计基本地震加速度为0.05g,设计分组一组建筑抗震设防类别为丙类。
温差:±25℃设计容许挠度值: mm附注:以上荷载不含网架自重。
二、设计依据:1、依据甲方图纸。
2、依据现行国家规范规定:a、《空间网格结构技术规程》JGJ7-2010b、《建筑结构荷载规范》GB50009-2012c、《钢结构设计规范》GB50017-2003d、《冷弯薄壁型钢结构技术规范》GB50018-2002e、《建筑抗震设计规范》GB50011-2010f、《钢网架螺栓球节点》JG/T10-2009g、《优质碳素结构钢》GB/T699-1999h、《碳素结构钢》GB/T700-2006i、《碳钢焊条》GB/T5117-95j、《低合金钢焊条》GB5118-85三、网架结构的计算和设计:1、网架的计算采用同济大学编制的3D3S(V11.00)版网架网壳结构设计软件进行满应力优化设计,并符合《空间网格结构技术规程》2、材料设计强度193N/m㎡,受压杆件长细比不大于180;在受拉杆件中,支座附近的长细比不大于250,直接承受动力荷载的长细比不大于250,一般杆件长细比3003、网架结构的自重由计算机程序自动生成4、荷载必须作用在球节点上,杆件不承受荷载。
5、网架平面布置图中标有"口"为支座位置,分Rx RyRz分别为横向、纵向、竖向支座反力,单位为:KN6、图中几何尺寸为mm四、材料1、螺栓球采用45号钢,材质符合<优质碳素结构图>(GB/T699-1999)的规定。
JGJ-网架结构设计与施工规程
中华人民共和国行业标准《网架结构设计与施工规程》(JGJ 7-91)•第一章总则•第1.0.1条▪为了在网架结构的设计与施工中,做到技术先进、经济合理、安全适用、确保质量、特制定本规程。
•第1.0.2条▪本规程适用工业与民用建筑屋盖与楼层的平板型网架结构(简称网架结构),其中屋盖跨度不宜大于120m,楼层跨度不宜大于40m。
•第1.0.3条本规程是遵照国家标准《建筑结构设计统一标准》GBJ68-84、《建筑结构设计通用符号、计量单位和基本术语》GBJ83-85、《建筑结构荷载规范》GBJ9-87、《建筑抗震设计规范》GBJ11-89、《钢结构设计规范》GBJ17-88、《冷弯薄壁型钢结构设计规范》GBJ18-87和《钢结构工程施工及验收规范》GBJ205,结合网架结构的特点而编制的。
在设计与施工中,除符合本规程的要求外,尚应遵守《网架结构工程质量检验评定标准》JGJ78-91及其他有关规范的规定。
•第1.0.4条对受高温及强烈腐蚀等作用、有防火要求的网架结构,或承受动力荷载的楼层网架结构,应符合现行有关专门规范或规程的要求。
直接承受中级或重级工作制的悬挂吊车荷载并需进行疲劳验算的网架结构,其疲劳强度及构造应经过专门的试验确定。
•第1.0.5条网架的选型及构造应综合考虑材料供应和施工条件与制作安装方法,以取得良好的技术经济效果。
网架结构中的杆件和节点,宜减少规格类型,以便于制作安装。
•第二章设计的一般规定•第 2.0.1条网架结构可选用下列常用形式(附录一):一、有平面桁架系组成的两向正交正放网架、两向正交斜放网架、两向斜交斜放网架、三向网架、单向折线型网架。
二、由四角锥体组成的正放四角锥网架、正放抽空四角锥网架、棋盘型四角锥网架、斜放四角锥网架、星型四角锥网架。
三、由三角锥体组成的三角锥网架、抽空三角锥网架、蜂窝型三角锥网架。
•第2.0.2条网架的选型应结合工程的平面形状和跨度大小、支承情况、荷载大小、屋面构造、建筑设计等要求综合分析确定。
《网架结构设计》PPT课件 (2)
2.焊接空心球节点
(1)特点和适用范围
焊接空心球节点(Hollow spherical nodes)是目前在 国内得到广泛应用的一种节点形式,约占已建成网架 工程50%左右。这种节点是一种空心球体,它是将两块 圆钢板经热压或冷压(常用前者)成两个半球壳后再 对焊而成。空心球的钢材品种宜采用Q235钢和Q345 钢制作。
选杆
规格统一的问题
小跨度网架:2~3种
大中跨度网架: 6~7种,一般不超过8种。
3.杆件的计算长度和长细比限值
(1)网架杆件的计算长度l0
杆件
螺栓球
节点 焊接空心球
板节点
弦杆及支座
腹杆
l
0.9 l
l
腹杆
l
0.8 l
0.8 l
(2)网架杆件的长细比限值
1)受压杆件
180
2)受拉杆件
①一般杆件
400
角锥体系网架、四角锥体系网架和六角锥体系 网架。
3.2.2 .2 网架结构的形式 1.交叉桁架系网架
两向正交正放网架
两 向 正 交 斜 放 网 架
三 向 网 架
2.三角锥体系网架
架三 角 锥 网
蜂角 窝锥 形网 三架
锥抽 网
空架
三 角型
锥抽 网
空架
三 角型
Ⅱ Ⅰ
3.四角锥体系网架
网正
由于球体为各向同性,钢管杆件与空心球的配合不会产 生偏心,因此,焊接空心球节点适应性强,尤其对三向 网架、三角锥网架和六角锥网架更加适宜。
(2)焊接空心球的构造
焊接空心球按构造可分为两类:
不加肋空心球和加肋空心球。 当球直径≥300mm,且杆件内力较大需要提高空心球 承载能力要求时,可采用加肋空心球。加肋空心球的 承载力比不加肋空心球高约15%~30%。 加肋空心球的肋板厚度不应小于球壁厚度,通常可取 为与空心球壁厚相同。 肋板可用平台或凸台,采用凸台时,其高度不得大于 1mm,而且应使内力较大的杆件位于肋板平面内。
《网架结构设计》课件
总结词
适用场景
结构简单、受力明确、稳定性高、经济性好。
优势
适用于各种类型的建筑空间,如体育场馆、工业厂房 、高层建筑等。
四边形网架
总结词
详细描述
适用场景
优势
四边形网架是一种常见的网架 结构形式,具有较好的稳定性 和适应性。
四边形网架由多个四边形单元 组成,通过节点连接形成完整 的网架结构。它具有较好的稳 定性和适应性,能够适应不同 的建筑空间和跨度要求。
网架结构适用于各种工业厂房的建设,如机械制造、化工、电力等行业的厂房。
公共设施
网架结构还广泛应用于公共设施,如机场、火车站、汽车站等大型交通枢纽的屋 顶和站台雨棚。
感谢您的观看
THANKS
通过实验测试网架结构的性能,包括 静载实验、动载实验等。实验法可以 获得较为准确的数据,但成本较高。
网架结构优化设计
尺寸优化
通过调整网架杆件的截 面尺寸和节点形式,使 结构更加合理和经济。
形状优化
改变网架杆件的形状, 以改善结构的受力性能
和减小用钢量。
拓扑优化
在满足一定条件下,重 新排列或减少某些杆件 ,以达到更好的经济性
适用于各种类型的建筑空间, 如展览馆、会议中心、工业厂 房等。
结构简单、受力明确、稳定性 好、适应性强。
六面体网架
总结词
六面体网架是一种复杂的网架结构形式,具有较 高的承载能力和稳定性。
适用场景
适用于大跨度、大空间的建筑空间,如大型体育 场馆、会展中心等。
详细描述
六面体网架由多个六面体单元组成,通过节点连 接形成完整的网架结构。它具有较高的承载能力 和稳定性,适用于承受较大荷载和跨度的建筑空 间。
设备要求较低。
空间网架结构设计
07
空间网架结构应用案例分享
典型案例分析:成功案例剖析
案例一
某大型体育场馆网架结构设计。该案例采用了大跨度空间网架结构,通过优化节点设计和材料选择, 实现了结构的安全性和经济性。同时,设计中充分考虑了建筑功能需求和美学要求,使得整个结构既 实用又具有观赏性。
案例二
某会展中心网架结构设计。该案例采用了复杂的空间网架结构形式,通过精细化建模和分析,确保了 结构的稳定性和承载能力。设计中还注重了与建筑、机电等专业的协同配合,实现了多专业之间的无 缝对接。
要点三
注重细节设计
空间网架结构的细节设计对于整体结 构的性能表现至关重要。在设计中应 注重节点连接、构造措施等细节问题 的处理,确保结构的整体性和耐久性 。同时,还应关注施工可行性和经济 性等方面的考虑,提高设计的综合效 益。
感谢观看
THANKS
刚度
材料的刚度影响网架结构的变 形和振动特性。
耐腐蚀性
材料的耐腐蚀性对网架结构的 使用寿命和维护成本具有重要 影响。
加工性能
材料的加工性能决定了网架结 构的制造难度和成本。
材料选用建议和注意事项
01
02
03
04
根据网架结构的跨度、荷载和 使用环境等因素,选择合适的
材料类型。
在满足强度、刚度等基本要求 的前提下,尽量选用质量轻、 耐腐蚀性好、加工性能优良的
验收程序
网架结构验收应按以下程序进行:施工单位自检合格→提交验收申请报告→监理单位组织初验→建设单位组织正式验 收→办理竣工验收手续。
文件要求
网架结构验收应提交以下文件资料:原材料和构配件的质量证明文件和检验报告;网架加工制作的质量 检验记录和合格证明;网架安装的质量检验记录和合格证明;网架结构测量记录和偏差处理记录;其他 必要的文件和资料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4-1)
如果将网架作为刚体考虑,则最少的支座约束链杆数为 6,故 r ≥6。
由此可知,当 m ≥ 3J − r 时,为超静定结构的必要条件;当 m =
3J − r 时,为静定结构的必要条件;当 m ≤ 3J − r 时,为几何可变体系。
3.网架几何不变的充分条件 分析网架结构几何不变的充分条件时,应先对组成网架的基本单元进 行分析,进而对网架的整体作出评价。 三角形是几何不变的。如果网架基本单元的外表面是由三角形所组 成,则此基本单元也将是几何不变的。在对组成网架的基本单元进行分析 时,一般有以下两种类型和两种分析方法。 1)两种类型: 自约结构体系 自身就为几何不变体系; 它约结构体系 需要加设支承链杆,才能成为几何不变体系。 2)两种分析方法:
图 4-16 棋盘形四角锥网架
图 4-17 三角锥网架
3)三角锥体系 这类网架的基本单元是一倒置的三角锥体。锥底的正三角形的三边为 网架的上弦杆,其棱为网架的腹杆。随着三角锥单元体布置的不同,上下 弦网格可为正三角形或六边形,从而构成不同的三角锥网架。 ① 三角锥网架 三角锥网架上下弦平面均为三角形网格,下弦三角形网格的顶点对着 上弦三角形网格的形心(图 4-17)。三角锥网架受力均匀,整体抗扭、抗 弯刚度好;节点构造复杂,上下弦节点交汇杆件数均为 9 根。适用于建筑 平面为三角形、六边形和圆形的情况。 上海徐汇区工人俱乐部剧场(六边形,外接圆直径 24m)采用了这种 网架结构型式。
的平面桁架相交而成(图 4-11)。
这类网架受力均匀,空间刚度大。
但也存在一定的不足,即在构造上
汇交于一个节点的杆件数量多,最
多可达 13 根,节点构造比较复杂,
宜采用圆钢管杆件及球节点。
三向网架适用于大跨度 (L>60m),而且建筑平面为三角形、
图 4-11 三向网架
六边形、多边形和圆形等平面形状比较规则的情况。
腹杆
上弦节点 下弦节点
图 4-7 网架结构图示图例
图 4-8 两向正交正放网架
两向正交正放网架适用于建筑平面为正方形或接近正方形,且跨度较 小的情况。上海黄浦区体育馆(45×45m)和保定体育馆(55.34×68.42m) 采用了这种网架结构型式。
② 两向正交斜放网架 两向正交斜放网架由两组平面桁架互成 90º交叉而成,弦杆与边界成 45º角。边界可靠时,为几何不变体系(图 4-9)。各榀桁架长度不同,靠 角部的短桁架刚度较大对与其垂直的长桁架有弹性支撑作用,可以使长桁 架中部的正弯矩减小,因而比正交正放网架经济。不过由于长桁架两端有 负弯矩,四角支座将产生较大拉力。角部拉力应由两个支座负担。 两向正交斜放网架适用于建筑平面为正方形或长方形情况。首都体育 馆(99×112.2m)和山东体育馆(62.7×74.1m)采用了这种网架结构型式。
4)三边支承一边开口或两边支承两边开口的网架 在矩形平面的建筑中,由于考虑扩建的可能性或由于建筑功能的要求, 需要在一边或两对边上开口,因而使网架仅在三边或两对边上支承,另一 边或两对边为自由边(如图 4-5)。自由边的存在对网架的受力是不利的,
3
为此应对自由边作出特殊处理。一级可在自由边附近增加网架层数或在自 由边加设托梁或托架。对中、小型网架,亦可采用增加网架高度或局部加 大杆件截面的办法予以加强。
空间网架结构设计
高福聚
石油大学建筑工程系 二○○四年六月
第四章 网架结构设计
4.1 网架结构的形式及种类
4.1.1 网架结构的基本单元及几何不变性
1.基本单元 网架结构可以看作是平面桁架的横向拓展、也可以看作是平板的格构 化。网架结构的起源,据说是仿照金刚钻石原子晶格的空间点阵排布,因 而是一种仿生的空间结构,具有很高强度和很大的跨越能力。 网架结构是由许多规则的几何体组合而成,这些几何体就是网架结构 的基本单元。常用的有:三角锥、四角锥、三棱体、正方棱柱体,此外还 有:六角锥、八面体、十面体等(图 4-1)。
可变体系。
4.1.2 网架结构的形式
在对网架结构分类时,采取不同的分类方法,可以划分出不同类型的 网架结构型式。一般地,
1.按结构组成分 1)双层网架 具有上下两层弦杆,是最常用的网架结构形式。 2)三层网架 具有上中下三层弦杆,强度和刚度都比双层网架提高很 大。在实际应用时,如果跨度 l>50m,酌情考虑;当跨度 l>80m 时,应
满足工程要求。
正放抽空四角锥网架适用于屋面荷载较轻的中、小跨度网架。
石家庄铁路枢纽南站货棚(132×132m,柱网 24×24m,多点支承)
和唐山齿轮厂联合厂房(84×156.9m,柱网 12×12m,周边支承与多点支
承相结合)是采用这种网架型式较早的典型实例。
③ 斜放四角锥网架
斜放四角锥网架的上弦杆与边界成 45º角,下弦正放,腹杆与下弦在
5)悬挑网架 为满足一些特殊的需要,有时候网架结构的支承形式为一边支承、三 边自由。为使玩网架结构的受力合理,也必须在另一方向设置悬挑,以平 衡下部支承结构的受力,使之趋于合理,比如体育场看台罩棚(图 4-6)。
图 4-6 体育场看台罩棚
3.按照跨度分类 网架结构按照跨度分类时,我们把跨度 L≤30m 的网架称之为小跨度 网架;跨度 30m<L≤60m 时为中跨度网架;跨度 L>60m 为大跨度网架。 此外,随着网架跨度的不断增大,出现了特大跨度和超大跨度的说法, 但目前还没有严格的定义。一般地,当 L>90m 或 120m 时称为特大跨度; 当 L>150m 或 180m 时为超度跨度。
图 4-9 两向正交斜放网架
图 4-10 两向斜交斜放网架
③ 两向斜交斜放网架 两向斜交斜放网架由两组平面桁架斜向相交而成,弦杆与边界成一斜 角(图 4-10)。 这类网架在网格布置、构造、计算分析和制作安装上都比较复杂,而 且受力性能也比较差,除了特殊情况外,一般不宜使用。
5
④ 三向网架
三向网架由三组互成 60º交角
① 以一个几何不变的单元为基础,通过三根不共面的杆件交出一个新
节点所构成的网架也为几何不变;如此延伸。
② 列出考虑了边界约束条件的结构总刚度矩阵 [K ], 如果 K ≠ [ ] 0, K 为非奇异矩阵,网架位移和杆力有唯一解,网架为几何不变体系; 如果 K =0, [K ]为奇异矩阵,网架位移和杆力没有唯一解,网架为几何
4
两向正交正放网架是由两组平面桁架互成 90º交叉而成,弦杆与边界 平行或垂直。上、下弦网格尺寸相同,同一方向的各平面桁架长度一致, 制作、安装较为简便(图 4-8)。由于上、下弦为方形网格,属于几何可 变体系,应适当设置上下弦水平支撑,以保证结构的几何不变性,有效地 传递水平荷载。
平面Biblioteka 上弦剖面下弦6
图 4-12 正放四角锥网架
图 4-13 正放抽空四角锥网架
② 正放抽空四角锥网架
正放抽空四角锥网架是在正放四角锥网架的基础上,除周边网格不动
外,适当抽掉一些四角锥单元中的腹杆和下弦杆,使下弦网格尺寸扩大一
倍(图 4-13)。其杆件数目较少,降低了用钢量,抽空部分可作采光天窗,
下弦内力较正放四角锥约放大一倍,内力均匀性、刚度有所下降,但仍能
图 4-1 网架结构的基本单元 1
网架在任何外力作用下都必须是几何不变体系。因此,应该对网架进 行机动分析。
2.网架几何不变的必要条件
网架是一个铰接的空间结构,其任意一个节点有三个自由度。对于一
个具有 J 个节点,m 个杆件的网架,支撑于具有 r 根约束链杆的支座上时,
其几何不变的必要条件是:
m + r − 3J ≥0 或 m ≥ 3J − r
上海体育馆(D=110m 圆形)和江苏体育馆(76.8×88.681m 八边形)
较早地采用了这种网架结构型式。
2)四角锥体系 四角锥体系网架的上、下弦均呈正方形(或接近正方形的矩形)网格, 相互错开半格,使下弦网格的角点对准上弦网格的形心,再在上下弦节点 间用腹杆连接起来,即形成四角锥体系网架。四角锥体系网架有五种形式, 分列如下: ① 正放四角锥网架 正放四角锥网架由倒置的四角锥体组成,锥底的四边为网架的上弦 杆,锥棱为腹杆,各锥顶相连即为下弦杆。它的弦杆均与边界正交,故称 为正放四角锥网架(图 4-12)。 这类网架杆件受力均匀,空间刚度比其它类的四角锥网架及两向网架 好。屋面板规格单一,便于起拱,屋面排水也较容易处理。但杆件数量较 多,用钢量略高。 正放四角锥网架适用于建筑平面接近正方形的周边支承情况,也适用 于屋面荷载较大、大柱距点支承及设有悬挂吊车的工业厂房情况。 较为典型的工程实例如上海静安区体育馆(40×40m)和杭州歌剧院 (31.5×36m)。
2
当优先考虑。 3)组合网架 根据不同材料各自的物理力学性质,使用不同的材料组
成网架的基本单元,继而形成网架结构。一般是利用钢筋混凝土板良好的 受压性能替代上弦杆。这种网架结构型式的刚度大,适宜于建造活动荷载 较大的大跨度楼层结构。
2.按支承情况分类 1)周边支承网架 周边支承网架是目前采用较多的一种形式,所有边界节点都搁置在柱 或梁上,传力直接,网架受力均匀(如图 4-2)。 当网架周边支承于柱顶时,网格宽度可与柱距一致;当网架支承于圈 梁时,网格的划分比较灵活,可不受柱距影响。 2)点支承网架 一般有四点支承和多点支承两种情形,由于支承点处集中受力较大, 宜在周边设置悬挑,以减小网架跨中杆件的内力和挠度(如图 4-3)。
同一垂直平面内(图 4-14)。上弦杆长度约为下弦杆长度的 0.707 倍。在
周边支承情况下,一般为上弦受压,下弦受拉。节点处汇交的杆件较少(上
弦节点 6 根,下弦节点 8 根),用钢量较省。但因上弦网格斜放,屋面板种
类较多,屋面排水坡的形成也较困难。
当平面长宽比为 1~2.25 之间时,长跨跨中下弦内力大于短跨跨中的
4.按网格形式分类 这是网架结构分类中最普遍采用的一种分类方式,根据《网架结构设 计与施工规程》JGJ7-91 的规定,我们目前经常采用的网架结构分为四个 体系十三种网架结构型式。 1)交叉平面桁架体系 这个体系的网架结构是由一些相互交叉的平面桁架组成,一般应使斜 腹杆受拉,竖杆受压,斜腹杆与弦杆之间夹角宜在 40~60º之间。该体系 的网架有以下四种: ① 两向正交正放网架