九年级数学浙教版与圆有关的动点问题PPT教学课件

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)在(2)的条件下切点F在CD的 位置如何,并加以证明.
(4)问以CD为直径的圆是否与(2) 条件下的AE相切,说明理由.
解: (1)正方形ABCD中,AE2=BE2+AB2, BE=x,AB=1,∴ AE2=x2+1
y(X2 1 )X2 (0≤x≤1).
4
44
(2)作OF⊥CD,垂足为F,
F
显然AD∥OF∥CE
∵AO=OE ∴ CF=DF,
FO是梯形ADCE的中位线
OF 1(AD C)E 2
1(11x)11x
2
2
若⊙O与CD相切必有OFOEAE
2
AE2=BE2+AB2 (2FO)2=BE2+AB2
F
(2-x)2=x2+12
4-4x+x2=x2+1
x 3 4
(3)从(2)可得F是CD的中点
(1)t为何值时,四边形APQD为矩形/
(2)如图(2),如果⊙P和⊙Q的半径都是2cm,那么 t为何值时, ⊙P和⊙Q外切?
4.例 如图,点E为正方形ABCD中BC上一动点,正方形 边长为1,以AE为直径作圆,圆心为O.
(1)设BE=x, ⊙O的面积为y, 求y与x的函数关系及定义域.
(2)BE为何值时⊙O与CD相切.
2
1H
(4)作FH⊥AE于H
∵OF∥BC ∴∠1=∠2,∠FHO=∠B=90° ∴△OFH∽△EAB OFFH1
AE AB 2
∵OF∥BC
∴FD=FH ∴AE与以CD为直径的圆F相 切.
如图,半圆O直径DE=12,Rt△ABC中,BC=12,∠ACB=900, ∠ACBC=300.半圆O以每秒2个单位从左到右运动,在运动过 程中,点D,E始终在直线BC上,设运动时间为t秒.当t=0时, 半圆O在△ABC的左侧,OC=8.
(3)若AO+CD=11,求AB的长.
3.如图,在矩形ABCD中,AB=20cm,BC=4cm,点p从 A开始折线A——B——C——D以4cm/秒的 速度 移动, 点Q从C开始沿CD边以1cm/秒的速度移动,如果点P、 Q分别从A、C同时出发,当其中一点到达D时,另一点 也随之停止运动,设运动的时间t(秒)
与圆有关的动点 问题
初三数学组
1.如图,⊙O的半径为百度文库,圆心O在正三角形的边 AB上沿图示方向移动,当⊙O移动到与AC边相
23
切时,OA的长是 3 .
2.如图,从⊙O外一点A作⊙O的切线AB,AC,切点 分别为B、C, ⊙O的直径BD为6,连结CD,AO.
(1)求证:CD∥AO;
(2)设CD=x,AO=y,求y与x之间的函数关系式,并写 出x的取值范围;
(1)当t为何值时,△ABC的一边与半圆O所在的圆相切?
(2)当△ABC的一边与半圆O所在的圆相切时,如果半圆O与 直径DE围成的区域与△ABC的三边围成的区域有重叠部分, 求重叠部分的面积.
相关文档
最新文档