初三期中考试数学试题
初三数学期中考试试卷及答案
![初三数学期中考试试卷及答案](https://img.taocdn.com/s3/m/c850abe8294ac850ad02de80d4d8d15abe2300b1.png)
初三数学期中考试试卷及答案第一卷:选择题(共80分)一、选择题(每小题1分,共40分)1. 下列各组函数中,相等的是()a) y = x^2 - 2x + 1,y = (x - 1)^2b) y = |2x - 1|,y = -(2x - 1)c) y = |2x - 1|,y = 2|x| - 1d) y = 2|x + 1|,y = -2|x + 1|2. 单项式 2x^3 y z^2 的次数是()a) 2 b) 3 c) 4 d) 53. 若 a:b = 7:5,b:c = 4:3,求 a:b:c =a) 7:5:3 b) 7:4:5 c) 7:10:12 d) 28:20:154. 圆心坐标为 (-4, 2),半径为 5 的圆方程是()a) (x + 4)^2 + (y - 2)^2 = 5^2b) (x - 4)^2 + (y + 2)^2 = 5^2c) (x + 4)^2 + (y + 2)^2 = 5^2d) (x - 4)^2 + (y - 2)^2 = 5^2...第二卷:非选择题(共70分)五、计算题(共30分)1. 化简:(3a^2b)^3 / (6a^5b^2) =2. 解方程:4x - 5 = 3x + 73. 已知图中三角形 ABC,其中∠B = 90°,AC = 8cm,BC = 6cm。
求 sin A 和 cos C 的值。
...八、解答题(共20分)1. 某商店购进一批相同的商品,第一天卖出了商品总数的 1/4,第二天又卖出了剩余商品总数的1/3 ,已知最后剩下的商品总数是60 件,求原先购进的商品总数。
2. 一辆汽车从 A 地开往 B 地,全程 300 km,开了 4 个小时到达终点。
第二天,汽车原路返回,回到 A 地用了 6 个小时。
求汽车在去程和返程时的平均速度。
...第三卷:答题卡(共10分)请将你的答案填写在答题卡上。
注意事项:1. 请认真核对试卷上的题号和试卷形式,确保填涂无误。
2023-2024学年全国初三上数学人教版期中考试试卷(含答案解析)
![2023-2024学年全国初三上数学人教版期中考试试卷(含答案解析)](https://img.taocdn.com/s3/m/c5abe22732687e21af45b307e87101f69f31fb15.png)
专业课原理概述部分一、选择题:5道(每题1分,共5分)1. 下列哪个选项不属于《论语》中的思想?()A. 孝道B. 忠诚C. 仁爱D. 勤奋2. 《诗经》是我国最早的诗歌总集,其内容分为三部分,下列哪一项不属于这三部分?()A. 风诗B. 雅诗C. 颂诗D. 赋诗3. 下列哪个选项是《离骚》的作者?()A. 屈原B. 宋玉C. 李白D. 杜甫4. 下列哪个选项是《史记》的作者?()A. 司马迁B. 司马光C. 司马相如D. 司马炎5. 下列哪个选项是《资治通鉴》的作者?()A. 司马迁B. 司马光C. 司马相如D. 司马炎二、判断题5道(每题1分,共5分)1. 《论语》是孔子及其弟子的言论汇编,由孔子弟子及再传弟子编写而成。
()2. 《诗经》是我国最早的诗歌总集,共有305篇,分为风、雅、颂三部分。
()3. 《离骚》是屈原的代表作,被誉为中国古代浪漫主义诗歌的代表作。
()4. 《史记》是西汉史学家司马迁所著,是我国第一部纪传体通史。
()5. 《资治通鉴》是北宋史学家司马光所著,是我国第一部编年体通史。
()三、填空题5道(每题1分,共5分)1. 《论语》中,孔子曰:“学而时习之,不亦说乎?有朋自远方来,不亦乐乎?人不知而不愠,不亦君子乎?”这句话表达了孔子的______思想。
2. 《诗经》中的“风”是指______地区的民歌,具有浓厚的地方特色。
3. 《离骚》是屈原创作的长篇政治抒情诗,表达了诗人对楚国命运的深切忧虑和对理想的执着追求,被誉为中国古代浪漫主义诗歌的______。
4. 《史记》全书共130篇,包括12本纪、30世家、70列传、10表、8书,其中本纪、世家、列传是按______体例编写的。
5. 《资治通鉴》是北宋史学家司马光主编的一部多卷本编年体史书,记载了从______到______共1362年间的历史。
四、简答题5道(每题2分,共10分)1. 简述《论语》的主要思想内容。
2. 简述《诗经》的艺术特色。
2024年北京六十六中初三(上)期中数学试题及答案
![2024年北京六十六中初三(上)期中数学试题及答案](https://img.taocdn.com/s3/m/b42ac52aff4733687e21af45b307e87101f6f8cb.png)
2024北京六十六中初三(上)期中数 学2024.111.中国瓷器,积淀了深厚的文化底蕴,是中国传统艺术文化的重要组成部分.瓷器上的图案设计精美,极富变化,下面瓷器图案中,既是轴对称图形又是中心对称图形的是A .B .C .D .2.二次函数y =3(x +1)2-4的最小值是 A .1B .-1C .4D .-43.把抛物线23xy =向左平移2个单位长度,再向上平移5个单位长度,得到的抛物线的解析式为A .2)5(32+−=xy B .2)5(32++=xy C .5)2(32++=xyD .5)2(32+−=xy4.用配方法解方程x 2+6x =2,变形后结果正确的是A .(x +3)2=2B . (x +3)2=11C .(x -3)2=2D .(x -3)2=11 5.如图,四边形ABCD 内接于⊙O ,若∠A =60°,⊙O 的半径为3,则BD 的 长为率为x ,根据题意可列方程为A .23.5 6.8x =B .3.5(1) 6.8x +=C .23.5(1) 6.8x +=D .23.5(1) 6.8x −=7.在如图所示的正方形网格中,四边形ABCD 绕某一点旋转某一角度得到四边形A'B'C'D',(所有顶点都是网格线交点),在网格线交点M ,N ,P ,Q 中,可能是旋转中心的是 A .点MB .点NC .点PD .点Q7题8.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,C.现有下面四个推断:①抛物线开口向下;② 4a<b③当m≤4时,关于x的一元二次方程ax2+bx+c=m必有两个不相等的实数根;④直线y=kx+c(k≠0)经过点A,C,当kx+c<ax2+bx+c时,x的取值范围是-4<x<0;其中推断正确的是A.①②③B.①③④ C.①④ D.①②③④二、填空题(本题共16分,每小题2分)9.开口向上,对称轴为y轴,顶点坐标(0,3)的抛物线的解析式.10.关于x的一元二次方程x2-x+m-2=0,有一个根是0,则m=.11.如图,⊙O为Rt ABC∆的内切圆,点D、E、F为切点,若6AD=,4BD=,则△ABC的面积为.第11题第12题12.如图,将△AOB绕点O逆时针旋转50°后得到△AOB′,若∠AOB=15°,则∠AOB′等于_________. 13.已知点A(-1,y1),B(4,y2)在二次函数的y=(x-2)2+c图象上,y1与y2的大小关系为y1y2.(填“>”,“<”或“=”)14.如图,PA,PB分别与⊙O相切于A,B两点,60P∠=°,6PA=,则⊙O的半径为.第14题第15题C EOFDBA8题15.函数21y x bx c =++与2y ax =的图象如图所示,当y 1≥y 2时,x 的取值范围是____. 16.下表记录了二次函数 y= ax 2+ bx +2(a ≠0)中两个变量x 与y 的5组对应值,其中x 1< x 2 <1.根据表中信息,当025<<−x 时,直线y=k 与该二次函数图象有两个公共点,则k 的取值范围是 .三、解答题(本题共68分,第17题8分,第18--25题各5分,第26题6分,第27,28题各7分) 17.解下列一元二次方程:(1) x 2+2x -8=0 (2) 2x 2-2x -1=0 18.已知:x 2+2x -1=0,求代数式3x 2+6x +10的值.19.在平面直角坐标系中,二次函数2y x mx n =++的图象经过点(0,1),(3,4).求此二次函数的表达式及顶点的坐标.(2)若m 为正整数,求此时方程的根.23.如图,在边长均为1个单位长度的小正方形组成的网格中,O ,B为格点(每个小正方形的顶点叫做格点),OA =3,OB =4,且∠AOB=150°.线段OA 关于直线OB 对称的线段为OA ′,将线段OB 绕点O 逆时针旋转45︒得到线段OB ′. (1)画出线段OA ′,OB ′;(2)将线段OB 绕点O 逆时针旋转角()4590αα︒<<︒得到线段OC ′,连接,若A ′C ′=5,求∠B OC ''的度数.24.如图,D 是等边三角形ABC 内一点,将线段AD 绕点A 顺时针旋转60°,得到线段AE ,连接CD ,BE .(1)求证:∠AEB =∠ADC ;(2)连接DE ,若∠ADC =110°,求∠BED 的度数.xOy A B25.如图1,某公园一个圆形喷水池,在喷水池中心O 处竖直安装一根高度为1.25m 的水管OA ,A 处是喷头,喷出水流沿形状相同的曲线向各个方向落下,喷出水流的运动路线可以看作是抛物线的一部分,建立如图2所示的平面直角坐标系,测得喷出水流距离喷水池中心O 的最远水平距离OB 为2.5m ,水流竖直高度的最高处位置C 距离喷水池中心O 的水平距离OD 为1m .(1)求喷出水流的竖直高度y (m)与距离水池中心O 的水平距离x (m)之间的关系式,并求水流最大竖直高度CD 的长;(2)安装师傅调试时发现,喷头竖直上下移动时,抛物线形水流随之竖直上下移动(假设抛物线水流移动时,保持对称轴及形状不变),若水管OA 的高度增加0.64m 时,则水流离喷水池中心O 的最远水平距离为___________m .26.在平面直角坐标系xOy 中,抛物线2(0)y ax bx c a =++>经过点(33)A a c +,.(1)求该抛物线的对称轴;(2)点1(12)M a y −,,2(2)N a y +,在抛物线上.若12c y y <<,求a 的取值范围.27.如图,△ABC 中,AC =BC ,∠ACB =90°,∠APB =45°,连接CP ,将线段CP 绕点C 顺时针旋转90°得到线段CQ ,连接AQ .(1)依题意,补全图形,并证明:AQ =BP ; (2)求∠QAP 的度数;(3)若N 为线段AB 的中点,连接NP ,请用等式表示线段NP 与CP 之间的数量关系,并证明.28.定义:对于给定函数y=ax 2+bx+c (其中a ,b ,c 为常数,且a ≠0),则 称 函数()()⎩⎨⎧−−<++≥=0022cx ax bx c x ax bx y 为函数y=ax ²+bx+c(其中a ,b ,c 为常数,且a ≠0)的“相依函数”,此“相依函数”的图像记为G . (1)已知函数y=-x 2+2x -1.①写出这个函数的“相依函数” ;ABCDE②当-1≤ x ≤1时,此相依函数的最大值为 .(2)若直线y=m 与函数212=−+−y x x 的相依函数的图象G 恰好有两个公共点,求出m 的取值范围;(3)设函数()01212>++−=n nx xy 的相依函数的图象G 在-4≤ x ≤ 2上的最高点的纵坐标为y 0,当9230≤≤y 时,直接写出n 的取值范围.参考答案本试卷满分100分,依据得分率,成绩以等级制呈现,具体等级划分标准如下:一、选择题(每题2分,共16分)二、填空题(每题2分,共16分) 9.32+=xy10. m =2 11. 24 12. 35° 13. >14.15. 13≤≥xx 或16. 2<k <83三、解答题 (本题共68分,第17题8分,第18-25题各5分,第26题6分,第27-28题,各7分) 17. (1) x 2+2x -8=0解: +4)(2)0x x =(- …………………3分12=4=2x x -,………………4分(2) 2x 2-2x -1=0解: a =2 b = -2 c= -1∆=b 2−4ac =12 …………………1分 x =−b±√b 2−4ac 2a =2±√124=2±2√34………………2分231,23121−=+=x x ………………4分18. 解: ∵3x 2+6x +10=3(x 2+2x )+10 ………………4分∵2210x x +−=∴ 3x 2+6x +10=3(x 2+2x )+10=13 ………………5分 19. 解:∵二次函数2y x mx n =++的图象经过点(0,1),(3,4);A B∴1934n m n =⎧⎨++=⎩…………………2分解得:21m n =−⎧⎨=⎩.…………………3分∴221y x x =−+ 当 2121x −=−=⨯ ,…………………4分 ∴212110y =−⨯+=…………………5分∴顶点的坐标为(1,0).20.设这两年该市进出口贸易总额的年平均增长率为x : …………………1分60000(1+x )2=86400…………………2分(1+x )2=36251+x=65± 解得: x 1=0.2 x 2=-2.2…………………4分经检验:x =-2.2不符实际意义,舍去∴x =0.2=20%答:这两年该市进出口贸易总额的年平均增长率为20%. 5分21.解:连接OC ,如图.………… 1分设⊙O 的半径为x .∵AB 是⊙O 的直径,CD AB ⊥,∴132CE CD ==.在Rt OEC △中,90OEC ∠=°, 由勾股定理,得222OC OE CE =+. 即 222(1)3x x =−+.…………………… 4分解得 5x =. ∴⊙O 的半径为5.……………………5分22.解:(1)∵1a =,4b =−,2c m =+∴ 24164(2)84b ac m m ∆=−=−+=− …………………1分∵一元二次方程有两个不相等的实数根 ∴840m −> …………………2分∴2m < …………………3分(2)∵2m <∴1m =∴2430x x −+=∴11x =,23x = …………………5分23.(1)……………….2分(2)如图,在△A OC ''中,==3OA OA ',==4OC OB ',=5A C '',∴222=A C OA OC ''''+. ∴△A OC ''是直角三角形. ∴=90.A OC ''︒∠………………..3分∵∠AOB =150°,OA OA OB '与关于直线对称, ∴=150.A OB '︒∠………………..4分∴=60C OB '︒∠,即=60α︒.∴=604515B OC C OB B OB '''''−=︒−︒=︒∠∠∠. ………………..5分24.(1)证明:∵ AD 绕点A 顺时针旋转60°得到线段AE∴AE AD =,60EAD ∠=° ……………………1分∵ABC ∆是等边三角形 ∴AB AC =,60BAC ∠=° ……………………2分∴EAB DAC ∠=∠ ∴EAB DAC ∆≅∆∴AEB ADC ∠=∠……………………3分(2)解: ∵∠ADC =110°∴AEB ADC ∠=∠=110°……………………4分∵AE AD =,60EAD ∠=° ∴EAD ∆是等边三角形 ∴60AED ∠=50∠=∠−∠=AED AEB BED ………………5分25.解:(1)由题意,A 点坐标为(0,1.25),B 点坐标为(2.5,0).设抛物线的解析式为y =a (x -1)2+k (a ≠0)………………1分∵抛物线经过点A ,点B .∴ ()21250251.a k,a .k.=+⎧⎪⎨=−+⎪⎩解得:1225a ,k ..=−⎧⎨=⎩∴y =-(x -1)2+2.25(0≤x ≤2.5) . ……………………………….…………… 3分 ∴x =1时,y =2.25.∴水流喷出的最大高度为2.25 m . ……………… 4分(2)2.7………………5分26.解:(1)∵抛物线2(0)y ax bx c a =++>经过点(33)A a c +,,∴393a c a b c +=++. ∴2b a =−.∴12bx a=−=. 即抛物线的对称轴为1x =. ………………………… 2分 (2)∵0a >,抛物线的对称轴为1x =,∴121a −<,21a +>∴点1(12)M a y −,在对称轴左侧,点2(2)N a y +,在对称轴右侧. 依题意可得点M ,N (0)c ,在抛物线上的位置如右图(示意图)所示. 设点2(2)N a y +,关于对称轴1x = 的对称点为点'N , 则2'()N a y −,. ∵0a >,12c y y <<, ∴120a a −<−<.∴112a <<……………… 5分∴ <<.………………6分27.(1)补全图形,如图1.证明:∵ 线段CP 绕点C 顺时针旋转90°得到线段CQ , ∴ CP =CQ ,∠PCQ =90°. ∵ ∠ACB =90°,∴ ∠BCP =∠ACQ . ∵ AC =BC , ∴ △BCP ≌△ACQ .2y 3y 1y+2,y 2)∴ AQ =BP . ………………2分(2)解:连接QP ,如图2.由(1)可得△PCQ 是等腰直角三角形, ∴ ∠CQP =∠CPQ =45°. ∴ ∠CQA +∠PQA =45°. ∵ ∠APB =45°, ∴ ∠APQ =∠CPB .由△BCP ≌△ACQ 可得∠CQA =∠CPB . ∴ ∠APQ +∠PQA =45°.∴ ∠QAP =135°. ………………4分(3)CP =2NP .证明:延长PN 至K ,使得NK=PN ,连接AK ,如图3. ∵ N 为线段AB 的中点, ∴ AN =BN ∵ ∠ANK =∠BNP∴ △ANK ≌△BNP∴ ∠KAN =∠PBN ,AK =BP ∴ AK ∥BP ,AK =AQ∴ ∠KAP +∠APB =180° ∵ ∠APB =45° ∴ ∠KAP =135° ∵ ∠QAP =135° ∴ ∠KAP =∠QAP ∵ AP =AP ∴ △KAP ≌△QAP ∴ KP =QP∵ 在等腰直角△PCQ 中,CP =CQ ∴ KP =QP =2CP∵ KP =2NP∴ CP =2NP ………………7分28. 解:(1)① y ={−x 2+2x −1,(x ≥0)−x 2−2x +1,(x <0) ………………1分② 2 ………………2分(2)m <-1 或 m =0 或 1<m <2 ………………5分(3)1≤ n ≤ ………………7分29图3图2。
黑龙江省绥化市望奎县第五中学(五四学制)2024-2025学年九年级上学期期中数学试卷(含答案)
![黑龙江省绥化市望奎县第五中学(五四学制)2024-2025学年九年级上学期期中数学试卷(含答案)](https://img.taocdn.com/s3/m/55fb83ebd1d233d4b14e852458fb770bf78a3b83.png)
2024-2025学年度初三上学期期中考试数学试题考生注意:考试时间90分钟;本题共计五道大题,满分120分.一、填空题(每题3分,共30分)1.等腰三角形中,有一个角是,则另外两个角分别为__________.2.两边长分别为的等腰三角形的周长是__________.3.如图,在中,,则的长为__________.4.如图.,那么,__________,__________.假设.那么__________.5.如图,相交于点,请你补充一个条件,使得.你补充的条件是__________.6.点关于轴对称的点的坐标是__________,直线与轴的位置关系是__________.7.已知中,,则__________.8.如图,直线,点在上,假设的面积为16,那么的面积为__________.70 6cm 10cm 、ABC 90,60,4A C BC ∠=∠== AC ABC ADE ≌AB =E ∠=∠12040BAE BAD ∠=∠= BAC ∠=,AB CD ,O AD CB =AOD COB ≌()2,1M -x N MN x ABC ()23B C A ∠+∠=∠A ∠=AE ∥BD C BD 4,8,AE BD ABD == ACE9.如图,在中,是的垂直平分线,的周长为的周长为,则的长为__________.10.如图,在中,平分交于点,点分别是线段上一动点且,则的最小值为__________.二、选择题(每小题3分,计30分)11.2023年全国民航工作会议介绍了2023年民航业发展目标:民航业将按照安全第一、市场主导、保障先行的原则,在做好运行保障能力评估的基础上,把握好行业恢复发展的节奏,下列航空图标,其文字上方的图案是轴对称图形的是( ).A. B.C. D.12.下列长度的三条线段,能组成三角形的是()A. B. C. D.13.一个边形的每个外角都是,则这个n 边形的内角和是().A.1080B.540C.2700D.216014.过一个多边形的一个顶点的所有对角线把多边形分成4个三角形,则这个多边形的边数为( )A.3B.4C.5D.6ABC DE AC ABC 19cm,ABD 13cm AE ABC BD ABC ∠AC D ,M N BD BC 、AB BD >10,5S ABC AB == CM MN +2,4,66,8,157,5,116,7,14n 4515.某公路急转弯处设立了一面圆形大镜子,车内乘客从镜子中看到汽车前车牌的部分号码如图所示,则该车牌的部分号码为( )A. B.C. D.16.如图,某同学把一块三角形的玻璃打碎成了四块,现在要到玻璃店去配一块完全一样的玻璃,那么,最省事的方法是()A.带①去 B.带③去 C.带②去 D.带④去17.如图,在中,,以顶点为圆心,适当长为半径画弧,分别交于点,再分别以为圆心,大于的长为半径画弧,两弧交于点,作射线交于点,若,则的面积是( )A.15B.30C.40D.4518.如图,在中,为线段的垂直平分线与直线的交点,连结,则( )A. B. C. D.19.如图,已知是等边三角形,点在同一直线上,且,则( )E9362E9365E6395E6392Rt ABC 90C ∠= A AC AB 、M N 、M N 、12MN P AP BC D 5,18CD AB ==ABD ABC 50,20,ABC BAC D ∠=∠= AB BC AD CAD ∠=40 30 20 10ABC ,B C D E 、、,CG CD DF DE ==E ∠=A.35B.20C.15D.1020.如图,已知,直角的顶点是的中点,两边分别交于点.给出以下四个结论:①;②;③是等腰直角三角形;④,上述结论始终正确的有( )A.①②③ B.①③ C.①② D.①③④三、作图题(共18分)21.最近几年来,国家实施“村村通”工程和农村医疗卫生改革,某县打算在张村、李村之间建一座定点医疗站P ,张、李两村座落在两相交公路内(如下图).医疗站必需知足以下条件:①使其到两公路距离相等,②到张、李两村的距离也相等,请你通过作图确信点的位置.(不写作法,要保留作图痕迹)(8分)22.如图是由边长为1的若干个小正方形拼成的方格图,的顶点均在小正方形的顶点上.(10分)(1)在图中建立恰当的平面直角坐标系,且使点的坐标为,并写出两点的坐标;(4分)(2)在(1)中建立的平面直角坐标系内画出关于y 轴对称的;(3分)(3)求的面积.(3分)四、解答题(满分42分)23.如图,是的中线,的周长比的周长多.若的周长为,且,求和的长.(8分),,90ABC AB AC A =∠= EPF ∠P BC ,PE PF ,AB AC E F 、AE CF =BE CF EF +=EPF 12ABC AEPF S S = 四边形P ABC ,,A B C A ()4,2-,B C ABC A B C ''' ABC BD ABC ABD BCD 2cm ABC 18cm 4cm AC =AB BC24.如图,为上一点,.求证:.(6分)25.如图,中,于,且分别是的中点,延长至点,使.(8分)(1)的度数.(4分)(2)求证:.(4分)26.如图,在中,边的垂直平分线与的外角平分线交于点,过点作于点于点.若.求的长度(8分)27.(12分)(1)问题发现:如图①,和都是等边三角形,点在同一条直线上,连接.E BC AC ∥,,BD AC BE ABD CED =∠=∠AB ED =ABC ,AB AC BE AC =⊥E D E 、AB AC 、BCF CF CE =ABC ∠BE FE =ABC AB PQ ABC P P PD BC ⊥,D PE AC ⊥E 8,4BD AC ==CE ABC EDC B D E 、、AE①的度数为__________.②线段之间的数量关系为__________.(2)拓展探究:如图②,和都是等腰直角三角形、,点在同一条直线上,为中边上的高,连接,试求的度数及判断线段之间的数量关系,并说明理由;(3)解决问题:如图③,和都是等腰三角形,,点在同条直线上,请直接写出的度数.AEC ∠AE BD 、ABC EDC 90ACB DCE ∠=∠= B D E 、、CM EDC DE AE AEB ∠CM AE BE 、、ABC EDC 36ACB DCE ∠=∠= B D E 、、EAB ECB ∠+∠参考答案一、填空题(每题3分,共30分)或2.或3.24.,,5.(答案不唯一)6.垂直7.8.89.10.4二、选择题(每小题3分,计30分)11-15DCADC16-20CDBCD三、作图题(共18分)21.如图所示(8分)22.(1);(3分)(2)(3分)(3)(4分)(1)点的坐标表明点在第二象限,横坐标离坐标原点的距离为4,纵坐标离坐标原点的距离为2,由此确定坐标原点的位置,再画坐标轴,结果如下:结合点在方格图中的位置可得它们的坐标为:;(2)点关于y 轴对称:横坐标互为相反数,纵坐标相同则三点的坐标分别为:1.55,55 70,4022cm 26cmAD C ∠80A C ∠=∠(2,1)--723cm()()1,0,3,1B C ---72A ()4,2-A O O OBC 、()()1,0,3,1B C ---,,A B C '''()()()4,2,1,0,3,1A B C ''-'先在平面直角坐标系中描出三点,再连接,画图如下:(3)如图,的面积等于正方形的面积减去三个直角三角形的面积即则.四、解答题(满分42分)23...(8分)由题意知①,点D 为AC 的中点,,,,即②,由①②得24.(6分)在与中,,,A B C '''ABC ABC ADC BCE ABFADEF S S S S S =--- 正方形111373313122391322222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=---= 8cm,6cm AB BC ==18cm,4cm,14cm C ABC AC AB BC ==∴+= AD DC ∴=2cm C ABD C BCD -= ()()2cm AB BD AD BC BD DC ∴++-++=2cm AB BC -=8cm,6cmAB BC ==AC ∥BDACB EBD∴∠=∠,,ABD CED ABD ABC EBD CED EBD EDB ∠=∠∠=∠+∠∠=∠+∠ ABC EDB∴∠=∠ABC EDB ABC EDB ACB EBDAC BE ∠=∠⎧⎪∠=∠⎨⎪=⎩.25.(8分)(1);(4分)(2)(4分)(1)于是的中点,是等腰三角形,即,,是等边三角形,;(2),,,,是等边三角形,,,,;26.(8分)连接是的平分线,是线段的垂直平分线在和中27.(12分)解:(1);()ABC EDB AAS ∴ ≌AB ED ∴=60 BE AC ⊥ ,E E AC ABC ∴ AB BC =AB AC = ABC ∴ 60ABC ∴∠= CF CE = F CEF ∴∠=∠60ACB F CEF ∠==∠+∠ 30F ∴∠= ABC BE AC ⊥30EBC ∴∠= F EBC ∴∠=∠BE EF ∴=PA PB、CP BCE ∠,PD BC PE AC ⊥⊥PD PE∴=PQ AB PA PB∴=Rt AEP Rt BDP PE PD=PA PB=()Rt Rt HL AEP BDP ∴ ≌AE BD∴=4CE BD AC ∴=-=4CE ∴=1120(2).;(2),理由如下:是等腰直角三角形,由(1)得,,,都是等腰直角三角形,为中边上的高,;(3)AE BD =2CM AE BM +=DCE 45CDE ∴∠=135CDB ∴∠=ECA DCB ≌135,CEA CDB AE BD ∴∠=∠== 45CEB ∠= 90AEB CEA CEB ∴∠=∠-∠=DCE CM DCE DE CM EM MD∴==EM MD BD BE++= 2CM AE BE ∴+=180EAB ECB ∠+∠=。
初三数学期中试题及答案
![初三数学期中试题及答案](https://img.taocdn.com/s3/m/85525f5c590216fc700abb68a98271fe900eaf6b.png)
初三数学期中试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14B. √2C. 0.33333...D. 0答案:B2. 一个数的相反数是-5,这个数是:A. 5B. -5C. 1/5D. -1/5答案:A3. 以下哪个方程是一元一次方程?A. x^2 + 2x - 3 = 0B. 2x - 3y = 5C. 3x + 4 = 7x - 2D. x/2 + 3 = 5答案:C4. 一个等腰三角形的底角是45°,那么顶角是:A. 45°B. 90°C. 135°D. 无法确定答案:B5. 一个数的立方根是2,那么这个数是:A. 2B. 4C. 8D. 6答案:C6. 以下哪个函数是正比例函数?A. y = 2x + 3B. y = 3x^2C. y = 5/xD. y = 4x答案:D7. 如果一个角的补角是120°,那么这个角是:A. 60°B. 120°C. 180°D. 240°答案:A8. 以下哪个图形是中心对称图形?A. 等边三角形B. 等腰梯形C. 正方形D. 圆答案:D9. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 以上都不是答案:C10. 以下哪个选项是不等式?A. 3x + 2 = 7B. 2x - 3 > 5C. x^2 - 4x + 4 = 0D. 3x - 2 ≤ 7答案:D二、填空题(每题3分,共30分)11. 一个数的平方是36,这个数是____。
答案:±612. 如果一个角的余角是30°,那么这个角是____。
答案:60°13. 一个等腰三角形的周长是18cm,底边长6cm,那么腰长是____。
答案:6cm14. 一个数的算术平方根是4,那么这个数是____。
答案:1615. 如果一个数的立方根是-2,那么这个数是____。
北京市2024-2025学年北京八十中初三(上)期中考试数学试卷
![北京市2024-2025学年北京八十中初三(上)期中考试数学试卷](https://img.taocdn.com/s3/m/c5b85da70d22590102020740be1e650e53eacf4c.png)
2024北京八十中初三(上)期中数 学2024.11班级: 姓名: 考号: 总成绩:一、 选择题(每题3分,共24分)下面各题均有四个选项,其中只有一个是符合题意的.1.下列各曲线是在平面直角坐标系xOy 中根据不同的方程绘制而成的,其中是中心对称图形的是(A) (B) (C) (D)2.将抛物线2y x =向上平移1个单位,得到的抛物线的解析式为( )A.21y x =+B.21y x =− C.()21y x =+D.()21y x =−3.在△ABC 中,CA CB =,点O 为AB 中点.以点C 为圆心,CO 长为半径作⊙C ,则⊙C 与AB 的位置关系是 A.相交 B.相切 C.相离D.不确定4.用配方法解方程2230x x −−=时,配方后得到的方程为( ) A.2(1)=4x − B.2(1)4x −=− C.2(1)=4x + D.2(1)=4x +−5.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,59ABD ∠=︒,则C ∠等于( ) A. 29° B.31°C.59°D. 62°6.已知二次函数24y x x m =−+(m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程240x x m −+=的两个实数根是( )A.121,1x x ==−B.121,2x x =−=C.121,0x x =−=D.121,3x x ==7.如图,A ,B ,C 是某社区的三栋楼,若在AC 中点D 处建一个5G 基站,其覆盖半径为300 m ,则这三栋楼中在该5G 基站覆盖范围内的是(A) A ,B ,C 都不在(B) 只有BxyO x y OxyO xyO OD CBA OCBACBA500 mD(C) 只有A ,C (D) A ,B ,C8. 二次函数228y x x m =−+满足以下条件:当21x −<<−时,它的图象位于x 轴的下方;当67x <<时,它的图象位于x 轴的上方,则m 的值为 A .8B .10−C .42−D .24−二、填空题(本题共16分,每小题2分)9.如图,PA ,PB 分别与⊙O 相切于点A ,B ,连接AB .60APB ∠=︒,5AB =,则PA 的长是 .10.若关于的一元二次方程240x x k −+=有两个相等的实数根,则的值为_________.11.已知点A (a-1,b +2)与B (-2,4)关于原点对称,则a = _________, b =_________.12.已知O 为△ABC 的外接圆圆心,若O 在△ABC 外,则△ABC 是________(填“锐角三角形”或“直角三角形”或“钝角三角形”).13.石拱桥是中国传统桥梁四大基本形式之一,它的主桥拱是圆弧形. 如图,已知某公园石拱桥的跨度AB =16米,拱高CD =4米,那么桥拱所在圆的半径OA = 米.14.已知二次函数的图象经过点(0,1),且顶点坐标为(2,5),则此二次函数的解析式为 .15. 如图,直线b kx y +=与抛物线322++−=x x y 交于点A ,B ,且点A 在y 轴上,点B 在x 轴上,则不等式322++−x x >b kx +的解集为 .16. 当x >0时,均有[(a +1)x −1][x 2−ax −1]≥0,则实数a 的所有可能值为____________.三、解答题( 17—18题每题4分,19—26题每题5分,27—28题每题6分) 17.解方程:2310x x +−=. 18. 解方程:.74)6(21+=−x x x 19.如图,在等腰直角△ABC 中,∠BAC =90°,D 是BC 边上任意一点(不与B ,C 重合),将线段AD 绕点A 逆时针旋转90°得到线段AE ,连接CE ,DE . (1)求∠ECD 的度数;(2)若AB =4,BD =√2,求DE 的长. 20.已知二次函数.322−−=x x y(1)求二次函数322−−=x x y 图象的顶点坐标;(2)在平面直角坐标系xOy 中,画出二次函数322−−=x x y 的图象; (3)结合图象直接写出自变量0≤x ≤3时,函数的最大值和最小值.x k21.用长为6米的铝合金条制成如图所示的窗框,若窗框的高为x 米,窗户的透光面积为y 平方米(铝合金条的宽度不计).(1)y 与x 之间的函数关系式为 (不要求写自变量的取值范围);(2)如何安排窗框的高和宽,才能使窗户的透光面积最大?并求出此时的最大面积.22.如图,AB 是⊙O 的直径,CD 是⊙O 的一条弦,AB ⊥CD ,连接AC ,OD .(1)求证:∠BOD =2∠A ;(2)连接DB ,过点C 作CE ⊥DB ,交DB 的延长线于点E ,延长DO ,交AC 于点F .若F 为AC 的中点,求证:直线CE 为⊙O 的切线. 23.已知关于x 的一元二次方程2(2)10x m x m +−+−=.(1)求证:方程总有两个实数根;(2)若0m <,且此方程的两个实数根的差为3,求m 的值.24.装有水的水槽放置在水平台面上,其横截面是以AB 为直径的半圆O ,AB =50cm .如图①和图②所示,MN 为水面截线,GH 为台面截线,MN ∥GH . 计算 在图①中,已知MN =48cm ,作OC ⊥MN 于点C .(1)求OC 的长.操作 将图①中的水槽沿GH 向右作无滑动的滚动,使水流出一部分,当∠ANM =30°时停止滚动,如图②.其中,半圆的中点为Q ,GH 与半圆的切点为E ,连接OE 交MN 于点D . 探究 在图②中.(2)操作后水面高度下降了多少?(3)连接OQ 并延长交GH 于点F ,求线段EF 的长度.x米25.如图,在Rt △ABC 中,∠ACB =90°,O 为AC 上一点,以点O 为圆心,OC 为半径的圆恰好与AB 相切,切点为D ,⊙O 与AC 的另一个交点为E .(1)求证:BO 平分∠ABC ;(2)若∠A =30°,AE =1,求BO 的长.26.在平面直角坐标系xOy 中,抛物线2y ax bx c =++(0a >)的对称轴为x t =,点1()2A t m ,,(2)B t n ,,00()C x y ,在抛物线上. (1)当2t =时,直接写出m 与n 的大小关系;(2)若对于067x <<,都有0m y n <<,求t 的取值范围.27.如图,在△ABC 中,∠ABC =90°,BA =BC .将线段AB 绕点A 逆时针旋转90°得到线段AD ,E 是边BC上的一动点,连接DE 交AC 于点F ,连接BF . (1)求证:FB =FD ;(2)点H 在边BC 上,且BH =CE ,连接AH 交BF 于点N .①判断AH 与BF 的位置关系,并证明你的结论;②连接CN .若AB =4,请直接写出线段CN 长度的最小值.备用图28.对于平面直角坐标系xOy 中的线段MN 和点P ,给出如下定义:点A 是线段MN 上一个动点,过点A作线段MN 的垂线l ,点P 是垂线l 上的另外一个动点.如果以点P 为旋转中心,将垂线l 沿逆时针方向旋转60°后与线段MN 有公共点,我们就称点P 是线段MN 的“关联点”. 如图,M (1,2),N (4,2).(1)在点P 1(1,3),P 2(4,0),P 3(3,2)中,线段MN 的“关联点”有 ;(2)如果点P 在直线1y x =+上,且点P 是线段MN 的“关联点”,求点P 的横坐标x 的取值范围; (3)如果点P 在以O (1,1−)为圆心,r 为半径的⊙O 上,且点P 是线段MN 的“关联点”,直接写出⊙O 半径r 的取值范围.备用图。
2024-2025学年第一学期期中质量自查-初三年级数学试题(道滘中学初三数学考试)
![2024-2025学年第一学期期中质量自查-初三年级数学试题(道滘中学初三数学考试)](https://img.taocdn.com/s3/m/146705497275a417866fb84ae45c3b3567ecdde7.png)
2024-2025学年第一学期期中质量自查初三年级数学试题一、选择题(本大题共10小题,每小题3分,共30分,每小题给出的四个选项中,只有一个选项是符合要求的)1.下列方程是一元二次方程的是 ( )A. x2+x+3=0B. 3x2−2=0C.x2+−=7D.5.-3=02.下面各组图形中,不是相似图形的是A. B. C. D.3.一元二次方程x2+4x=2配方后化为A. (x+2)2=6B.(x−2)2=6C.(x+2)2=−6D. (x+2)2=−24.一元二次方程x2+x−2=0的根的情况是A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根5.在我市组织的一次青少年足球比赛预赛中,每两队之间都要进行一场比赛,共要比赛28场,则参赛队个数是( )A.7B.8 a 12 D.146.把抛物线x=x2的图象向右平移2个单位,再向上平移3个单位,所得函数解析式为A. x=(x−2)2+3B. x=(x+2)2+3C. x=(x−3)2−2D. x=(x−3)2+27.下列对抛物线x=−2(x+3)2-1描述本正确的是A.开口向下B.y有最大值C.对称轴是直线x=-3D.顶点坐标为(3,-1)8.已知抛物线x=x2−2x−1与x轴的一个交点为(m,0),则代数式x2−2x+2024的值为()A.2022B. 2023C. 2024D. 20259.如图,在□ABCD中,对角线AC,,BD相交于点O,点E为OC的中点,EFIIAB交BC于点F.若AB=4,则EF为A.12B.1 C.310D.210.根据表格中二次函数y=ax3+bx+c的自变量x与函数值y的对应值,可以判断方程ax2+bx+c=0的一个解x的范围是A.0<x<0.5B.0.5<x<1C.1<x<1.5D.1.5<x<2 二、填空题(本大题共6小题,每小题3分,共18分)11.一元二次方程2=2024x的解是12.二次函数的图象与y轴的空点坐标为13.设x1,x2是一元二次方程x2−6x+x=0的两个亦数根,若x1=2,则x2的值为14.若点x(3,x1)⋅x(5,x2)在函数x=−x2+4x+1的图象上,则x1−x2(用"<"、">”或者“=”连接).15.如图,为测量学校旗杆高度,小艺同学在脚下水平放置一平面镜,然后向后退,直到她刚好在镜子中看到旗杆的顶端,已知小艺的眼睛离地面高度为1.6米,同时量得小艺与镜子的水平距离为2米,镜子与旗杆的水平距离为10米.则旗杆的高度为米.16如图,抛物线x=xx2+xx+x(x≠0)与x轴交于点(3,0),对称轴为直线x=1.结合图象分析下列结论:①abc<0;②4a+2b+c<0;③2a+c<0;④一元二次方程x2+xx+x=x的两根分别为x1=13,x2=−1.其中正确的结论有(请填序号)第15题图)(第16题图)三、解答题(本大题共9小题,满分72分,解答写出必要的文字说明、证明过程或计算步骤)17.(本题满分4分)解方程:x2+2x−3=018.(本题满分4分)已知二次函数的图象以A(5-4)为顶点,且过点B(-2,5),求该函数的关系式.19.(本小题满分6分)如图,在等腰AABC中,AD是顶角<BAC的角平分线,BE是腰AC 边上的高,垂足为点B.求证:ACDABCE.x 0 0.5 1.5 2 x=+xx+x-1 -0.5 1 3.5 7220.(本小题满分6分)已知二次函数x=x2−4x+3,(1)补全表格,并在平面直角坐标系中用描点法画出该二次函数的图象:(2)当x时,y随x的增大而减小;(3)当y>0时,x的取值范围是、(4)根据图象回答:当0≤x<3时,y的取值范围是21.(本小题满分8分)已知关于x的一元二次方程2x2−(x+1)x+x−1=0(x为常数.(1)当a=2时,求出该一元二次方程实数根:(2)若 3 m是这个一元二次方程两根,且x,x2是以5为斜边的直角三角形两直角边,求a的值.22.(本小题满分10分)根据以下素材,探索完成任务.23.(本小题满分10分)小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A,C在x轴上,球网AB与y轴的水平距离OA=3m,CA=2m,击球点P在y轴上.若选择扣球,羽毛球的飞行高度y(m)与水平距离x(m)近似满足一次函数关系y=-0..4x+2.8;;若选择吊球,羽毛球的飞行高度y(m)与水平距离x(m)近似满足二次函数关系x=x(x−1)2+3.2.(1)求点P的坐标和a的值:(2)小林分析发现,上面两种击球方式均能使球过网,要使球的落地点到C点的距离更近,请通过计算判断应选择哪种击球方式.(参考√2≈1.414)24.(本小题满分12分)如图,抛物线x=x4x2+10x+2与x轴交于点A,与y轴交于点B1C为线段OA上的一个动点,过点C作x轴的垂线,交直线AB于点D,交该抛物线于点E.(1)求直线AB的表达式:(2)若ΔABE的面积取得最大值,求出这个最大值:(3)当以B,B,D为顶点的三角形与ΔCDA相似时,求点C的坐标.25.(本小题满分12分)已知关于x的一元二次方程x2−(x+1)x+12(x2+1)=0有实数报.(1)求m的值:(2)先作x=x2−(x+1)x+12(x2+1)的图象关子/x轴为对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式:(3)在(2)的条件下,当直线y=2x+n(n≥m)与变化后的图象有公共点时,求n-4π的最大值和最小值.素材1 随着数字技术、新能源、新材料等不断突破,我国制造业发展迎来重大机遇.某工厂一车间借助智能化,对某款车型的零部件进行一体化加工,生产效率提升,该零件4月份生产100个,6月份生产144个.素材2该厂生产的零件成本为30元/个,销售一段时间后发现,当零件售价为40元/个时,月销售量为600个,若在此基础上售价每上涨1元,则月销售量将减少10个.问题解决任务1 该车间4月份到6月份生产数量的平均增长率;任务2 为使月销售利润达到10000元,而且尽可能让车金得到实惠,则该零件的实际售价应定为多少元?x ... 0 1 2 3 4 ... y ... m 0 -1 ...。
2024年北京二中初三(上)期中数学试题及答案
![2024年北京二中初三(上)期中数学试题及答案](https://img.taocdn.com/s3/m/58de2848e3bd960590c69ec3d5bbfd0a7956d5c6.png)
2024北京二中初三(上)期中数 学考查目标1.知识:人教版九年级上册《一元二次方程》、《二次函数》、《旋转》、《圆》的全部内容.2.能力:数学运算能力,逻辑推理能力,阅读理解能力,实际应用能力,数形结合能力,分类讨论能力.一、选择题(以下每题只有一个....正确的选项,每小题2分,共16分) 1.数学世界奇妙无穷,其中曲线是微分几何的研究对象之一,下列平面直角坐标系中的数学曲线既是轴对称图形,又是中心对称图形的是( )A. B.C. D. 2.抛物线()2225y x =−−−的顶点坐标是( )A.()2,5−B.()2,5C.()2,5−−D.()2,5−3.若关于x 的方程2210ax ax −+=的一个根是1−,则a 的值是( )A.1B.1−C.13− D.3−4.下表是用计算器探索函数253y x x =+−时所得的数值:x 0 0.25 0.5 0.75 1y 3− 1.69− 0.25− 1.31 3则方程2530x x +−=的一个解x 的取值范围为( )A.00.25x <<B.0.250.5x <<C.0.50.75x <<D.0.751x << 5.已知圆锥的底面半径为3cm ,母线长为6cm ,则圆锥的侧面积是( )A.218cm πB.227cm πC.218cmD.227cm 6.如图,将ABC △绕点C 顺时针旋转90°得到EDC △.若点A ,D ,E 在同一条直线上,30ACB ∠=°,则ADC ∠的度数是( )A.60°B.65°C.70°D.75°7.在一次聚会上,每两个人之间都互相赠送了一份礼物,若一共送出了90份礼物,则参加聚会的人有( )A.9人B.10人C.11人D.12人8.如图,等边ABC △的边长为2,点O 是ABC △的中心,120FOG ∠=°绕点O 旋转FOG ∠,分别交线段AB ,BC 于D ,E 两点,连接DE ,给出下列四个结论:①OD OE =; ②DOE △的面积等于BDE △的面积;③四边形DBEO 的面积始终保持不变; ④BDE △的周长的最小值为3.上述结论中,所有正确结论的序号是( )A.①③B.①②④ C .②③④ D .①③④第Ⅱ卷(非选择题共84分)二、填空题(共16分,每题2分)9.点()1,2−关于原点对称的点坐标是______.10.写出一个开口向上,并且与y 轴交于点()0,1的抛物线的解析式______.11.已知关于x 的一元二次方程220x x a −−=有两个相等的实数根,则a 的值是______.12.把抛物线21y x =−向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为______.13.如图,某品牌扫地机器人的形状是“莱洛三角形”,它的三“边”分别是以等边三角形的三个顶点为圆心,边长为半径的三段圆弧,若该等边三角形的边长为3,则这个“莱洛三角形”的周长是______.14.已知二次函数21y x x =−−,当x m <时,y 随x 的增大而减小,则m 的取值范围是______.15.如图,P A ,PB 分别切O 于A ,B 两点,40P ∠=°,点C 是O 上一点,则ACB ∠的度数为______.16.2024年4月1日,北京二中喜迎300年华诞,小元和小聪两名同学合作制作四个主题为“春”“夏”“秋”“冬”的书签,为校庆献礼,每个书签都先由小元进行绘画,然后再由小聪题字,两位同学完成每个书签各自的工序需要的时间(单位:分钟)如下表所示:______分钟;(2)若想用最短的时间完成这四个书签的制作,制作的顺序应该是______.三、解答题(共68分,其中第17—22题每题5分,第23—26题每题6分,第27—28题每题7分)17.解方程:2280x x −−=.18.如图,在平面直角坐标系中,ABC △三个顶点的坐标分别为()4,4A ,()2,3B ,()5,2C .(1)①以点B 为旋转中心,画出将ABC △按顺时针方向旋转90°后的11A BC △;②以原点O 为旋转中心,画出将ABC △按逆时针方向旋转180°后的222A B C △;(2)在(1)的条件下,222A B C △可以由11A BC △绕某点按顺时针方向旋转得到,则该点坐标为______,旋转角的度数为______.(3)ABC △的外接圆半径长______.19.如图1所示,圆形拱门屏风是中国古代家庭中常见的装饰隔断,既美观又实用,彰显出中国元素的韵味.图2是一款拱门的示意图,其中拱门最下端18AB =分米,C 为AB 中点,D 为拱门最高点,圆心O 在线段CD 上,27CD =分米,求拱门所在圆半径的长.图1 图220.下面是小宁设计的“作三角形的高”的尺规作图过程.已知:ABC △.求作:AD BC ⊥,垂足为D .作法:如图所示,①分别以点A 和点C 为圆心,大于12AC 的长为半径作弧,两弧相交于P ,Q 两点; ②作直线PQ ,交AC 于点O ;③以点O 为圆心,OA 长为半径作圆,交线段BC 于点D (点D 不与点C 重合),连接AD .所以线段AD 就是所求作的高.根据小宁设计的尺规作图过程,解决问题:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:AP CP =,AQ =___①___,∴点P 、Q 都在线段AC 的垂直平分线上,∴直线PQ 为线段AC 的垂直平分线,∴O 为AC 中点.∵AC 为直径,O 与线段BC 交于点D ,∵∠ADC=___②___°.(___③___)(填推理的依据)AD BC ∴⊥.21.第十七届北京国际茶业及茶艺博览会于2024年9月6日至9日在北京全国农业展览馆举办,展览馆工作人员利用一边靠墙(墙长26米)的空旷场地为提前到场的观众设立面积为300平方米的封闭型长方形等候区,如图,为了方便观众进出,在两边空出两个宽各为1米的出入口,共用去隔栏绳48米.请问,工作人员围成的这个长方形的相邻两边长分别是多少米?22.已知二次函数()20y ax bx c a =++≠的y 与x 的部分对应值如表: x … 3− 1− 1 3 …y … 3− 0 1 0 …(1)求这个二次函数表达式;(2)在平面直角坐标系中画出这个函数图象;(3)当x 的取值范围为______时,3y >−.23.已知关于x 的一元二次方程()2430x m x m +−+−=. (1)求证:该方程总有两个实数根;(2)若该方程只有一个实数根为负数,求m 的取值范围.24.如图,AB 为O 的直径,C 为O 上一点,D 是弧BC 的中点,过点D 作AC 的垂线,交AC 的延长线于点E ,连接AD .(1)求证:DE 是O 的切线;(2)连接CD ,若30CDA ∠=°,2AC =,求CE 的长.25.2024年巴黎奥运会8月6日单人10米决赛中,全红婵以425.60分的总分夺得金牌,陈芋汐获得银牌,在精彩的比赛过程中,全红婵选择了一个极,具难度的207C (向后翻腾三周半抱膝),如图2所示,建立平面直角坐标系xOy ,如果她从点A 起跳后的运动路线可以看作抛物线的一部分,从起跳到入水的过程中,她的竖直高度y (单位:米)与水平距离x (单位:米)近似满足二次函数关系.图1 图2(1)在平时训练完成一次跳水动作时,全红婵的水平距离x 与竖直高度y 的几组数据如下表: 水平距离x /m 3 h 4 4.5竖直高度y /m 10 11.25 10 6.25根据表中数据,直接写出h 的值为______,满足的二次函数关系式为:______;(2)在(1)的条件下,记全红婵训练时入水点的水平距离为1d ;比赛当天的某一次跳水中,全红婵的竖直高度y 与水平距离x 近似满足二次函数关系:254068y x x =−+−,记比赛当天入水点的水平距离为2d ,判断1d 与2d 的大小关系,并说明理由.26.在平面直角坐标系xOy 中,抛物线()()22130y ax a x a =−++>的对称轴为直线x t =. (1)t =______(用含a 的式子表示);(2)已知点12,y a ⎛⎫− ⎪⎝⎭,25,y a ⎛⎫ ⎪⎝⎭在抛物线上,若12y y =,求出a 的值; (3)已知点()12,y −,()21,y ,334,y a ⎛⎫+⎪⎝⎭在抛物线上,比较1y ,2y ,3y 的大小,并说明理由. 27.如图,ABC △中,ACB α∠=,AC BC =,点D 在AB 上(不与A ,B 重合),取AD 的中点F ,连结CD ,CF ,将线段CD 绕点C 顺时针旋转180α−°得到线段CE ,连结AE ,BE .(1)依题意,请补全图形;(2)判断BE 与CF 的数量关系,并证明;(3)当90α=°,4AC BC ==时,设BE 与CF 相交于点H ,则点D 在AB 上运动的过程中,线段AH 的最小值为______.28.在平面直角坐标系xOy 中,设O 的半径为r ,对于O 外一点P ,给出如下定义:若O 上存在点M ,使点P 绕点M 逆时针旋转120°后的对应点Q 落在O 的内部或O 上,则称点P 是点M 关于O 的“逆转点”.备用图(1)如图,当1r =,()1,0M 时,①点()2,1A −,3,22B ⎛ ⎝⎭,()3,0C 中,点______是点M 关于O 的“逆转点”; ②若点P 是点M 关于O 的“逆转点”,则点P 的横坐标的最大值是______;(2)当r =P 是直线3y =+P 的横坐标为t ,当点P 是点M 关于O 的“逆转点”时,求出t 的取值范围.北京二中教育集团2024—2025学年度第一学期初三数学期中考试参考答案一、选择题(共16分,每小题2分)1-5.BACCA 6-8.DBD二、填空题(共16分,每小题2分)9. (1,-2) 10.例如21y x =+ 11.-1 12.2(1)2y x =++ 13.3π 14.12m ≤ 15.70︒或110︒ 16.35,夏秋春冬三、解答题(共68分,其中第17-22题每题5分,第23-26题每题6分, 第27-28题每题7分)17.解:(4)(2)0x x -+= ………………………………………… 3分 ∴1242x x ==-, ………………………………………… 5分18.(1)略 ………………………………………… 2分(2)(-3,2),90° ………………………………………… 4分 (3)102 ………………………………………… 5分19.解:连接AO ,CD 过圆心,C 为AB 的中点,CD AB ∴⊥, ……………………… 1分18AB =,C 为AB 的中点,9AC BC ∴==, ……………………… 2分设圆的半径为x 分米,则OA OD x ==分米,27CD =,27OC x ∴=-,在Rt OAC ∆中,222AC OC OA +=, …………………………………… 3分 2229(27)x x ∴+-=,15x ∴=(分米), …………………………………… 4分 答:拱门所在圆的半径是15分米. ………………………………… 5分 20.(1)图略 ………………………………………………… 1分 (2)①CQ ………………………………………………… 2分②90°………………………………………………… 3分 ③直径所对的圆周角是直角 ……………………………… 5分21.解:设封闭型长方形等候区的边AB 为x 米, …………… 1分由题意得,x(48−2x +2)=300, …………… 2分 整理得,x 2−25x +150=0,解得x 1=10,x 2=15, …………… 3分 当x =10时,BC =30>26;当x =15时,BC =20<26, ∴x =10不合题意,应舍去. …………… 4分 答:封闭型长方形等候区的边AB 为15米,BC 为20米. …… 5分22.解:(1)设二次函数的表达式为(1)(3)y a x x =+-,把(1,1)代入得12(2)a =⨯⨯-, 解得14a =-,∴二次函数的表达式为1(1)(3)4y x x =-+-, 即2113424y x x =-++; ……………………………… 2分 (或顶点式:21(1)14y x =--+) (2)如图,……………………………… 3分(3)35x -<< ……………………………… 5分23.(1)证明:由题意得,∆=24-b ac =2(4)41(3)--⨯⨯-m m=244-+m m =2(2)-m ≥0,……………………………… 1分 ∴该方程总有两个实数根. ……………………………… 2分(2)解:2(4)30x m x m +-+-=,解得 1=3-x m ,2=1-x . ……………………………… 3分 ∵只有一个实数根为负数,∴3-m ≥0, ……………………………… 4分 ∴m ≥3. ……………………………… 5分24.(1)证明:连接OD ,D 是BC 的中点,BAD CAD ∴∠=∠,………………… 1分 OA OD =,OAD ODA ∴∠=∠,即BAD ODA ∠=∠,CAD ODA ∴∠=, //OD AE ∴, …………………………………… 2分 DE AC ⊥,∴∠ODE =180°-∠AED =90° DE OD ∴⊥半径,DE ∴是O 的切线; ……………………………… 3分(2)解:连接OC ,CD ,30CDA ∠=︒,223060AOC CDA ∴∠=∠=⨯︒=︒, OA OC =,AOC ∴是等边三角形, AC OA OD ∴==, ∵由(1)可得//OD AC ,∴四边形ACDO 是菱形,2CD AC ∴==,60CDO CAO ∠=∠=︒, DE 是O 的切线,90ODE ∴∠=︒,906030CDE ∴∠=︒-︒=︒, 112CE CD ∴==. ……………………………… 6分 (或连接BC 构造小矩形,酌情给分)25.(1)3.5,25( 3.5)11.25y x =--+; ……………………………… 3分(2)d 1<d 2 ……………………………… 4分25( 3.5)11.25y x =--+,当0y =时:205( 3.5)11.25x =--+, 解得:5x =或2x =(不合题意,舍去); ……………… 5分 15d ∴=米;254068y x x =-+-,当0y =时:2540680x x -+-=, 解得:21545x =+或21545x =-+(不合题意,舍去); ∴2215455d =+>,12d d ∴< ……………………………… 6分26.(1)1a a+ ………………………………1分 (2)∵y 1=y 2∴点(2a -,y 1),(5a,y 2)关于直线x=t 对称 ∴ 5a -1a a +=1a a +-(2a-) ……………………………2分 解得12a = ……………………………3分 (3)111a t a a+==+ ,∵a >0 ∴t >1 ……………………………4分∵(34a +,y 3)关于直线x=t 对称点为(12a--,y 3) ∴1221t a ---<<< ∵当x <t 时,y 随x 的增大而减小 ……………………………5分 ∴y 3>y 1>y 2 ……………………………6分 (或代数法直接做差,对一个给2分)27.(1)………………………………………1分(2)BE =2CF ………………………………………2分 证明:延长EC 至M ,使CM =CE ,连接BM∵F 是AD 的中点∴CF ∥DM ,2CF=DM∵∠ACB =α∴∠BCM =180°-∠ACB=180°-α=∠ECD∴∠BCM +∠BCD =∠ECD +∠BCD即∠DCM=∠ECB∴在△DCM 和△ECB 中CD CE DCM ECB CM CB =⎧⎪∠=∠⎨⎪=⎩∴△DCM ≌△ECB (SAS ) ………………………………… 6分∴BE =DM= 2CF(或倍长中线,第一个全等给1分,倒角给2分,第二个全等给1分)(3)2 ………………………………………8分28.(1)①B ………………………………1分 ②52………………………………3分 (2)如图,点M 关于⊙O 的“逆转点”所形成的区域是圆环,外圆半径为3+……………………………4分直线3y =+y 轴交点M (0,3+……………5分 连接ON ,则ON =OM ,且∠MON =120° ……………………6分 作NH ⊥x 轴于点H ,则∠NOH =30°故N x=3322+-=-∴32+-≤t ≤0 ………………………………7分。
北京市2024-2025学年北京中学初三(上)期中考试数学试卷
![北京市2024-2025学年北京中学初三(上)期中考试数学试卷](https://img.taocdn.com/s3/m/afd04d2a842458fb770bf78a6529647d27283438.png)
2024北京北京中学初三(上)期中数 学满分100分 考试时间120分钟一、选择题(本题共16分,每小题2分)下面1-8题均有四个选项,其中符合题意的选项只有..一个. 1.剪纸艺术是最古老的中国民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.以下剪纸中,为中心对称图形的是( )A .B .C .D . 2.方程29x =的解是( )A .3x =B .3x =−C .121,9x x ==D .123,3x x ==−3.将抛物线2y x =向上平移3个单位长度得到的抛物线是( )A .23y x =+B .23y x =−C .2(3)y x =+D .2(3)y x =−4.风力发电机可以在风力作用下发电.如图的转子叶片图案绕中心旋转n ︒后能与原来的图案重合,那么n 的值可能是( )A .45B .60C .90D .1205.用配方法解方程2420x x −+=,配方正确的是( )A 2(2)2x −=B .2(2)2x +=C .2(2)2x −=−D .2(2)6x −=6.关于二次函数2(2)3y x =−−+,以下说法正确的是( )A .当2x >−时,y 随x 增大而减小B .当2x >−时,y 随x 增大而增大C .当2x >时,y 随x 增大而减小D .当2x >时,y 随x 增大而增大7.根据下列表格的对应值,判断方程210x x +−=一个解的取值范围是( )x 0.590.60 0.61 0.62 0.63 21x x +−0.061− 0.04− 0.018− 0.0044 0.027 A .0.590.60x << B .0.600.61x << C .0.610.62x << D .0.620.63x <<8.如图,矩形OABC 中,(3,0),(0,2)A C −,抛物线22()1y x m m =−−−+的顶点M 在矩形OABC 内部或其边上,则m 的取值范围是( )A .30m −≤≤B .10m −≤≤C .12m −≤≤D .31m −≤≤−第二部分 非选择题二、填空题(本题共16分,每小题2分)9.点(1,2)P −关于原点的对称点的坐标为______.10.写出一个开口向下,与y 轴交于点(0,1)的抛物线的函数表达式:______.11.若关于x 的一元二次方程220x x m −+=有一个根为1,则m 的值为______.12.已知()()12,1,,1P x Q x 两点都在抛物线241y x x =−+上,那么12x x +=______. 13.若关于x 的方程20x bx c ++=有两个相等的实数根,写出一组满足条件的实数b ,c 的值:b =______,c =______.14.如图,在平面直角坐标系xOy 中,以某点为中心,将右上方图形“”旋转到图中左下方“”的位置,则旋转中心的坐标是______.15.小明热爱研究鸟类,每年定期去北京各个湿地公园观鸟.从他的观鸟记录年度总结中摘取部分数据如上面表格所示,设小明从2020年到2022年观测鸟类种类数量的年平均增长率为x ,可列方程为______.小组有甲、乙、丙三名工作人员,工作要求如下:①“打扫卫生”只能由甲完成:每间客房“打扫卫生”完成后,才能进行该客房的其他三个步骤,这三个步骤可由任意工作人员完成并可同时进行;②一个步骤只能由一名工作人员完成,此步骤完成后该工作人员才能进行其他步骤;③每个步骤所需时间如下表所示:分钟;若由甲、乙、丙合作完成四间客房的清洁工作,则最少需要______分钟.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题每题6分,第27-28题每题7分)17.解方程:2280x x −−=18.已知二次函数22y x x =−.(1)补全表格,并在右图所示的平面直角坐标系中画出该二次函数的图象;(2)点(2,7)P −______该函数的图象上(填“在”或“不在”).19.如图,在Rt ABC △中,90,3,4ACB AC BC ∠=︒==,将ABC △绕点C 逆时针旋转得到DEC △,使点A 的对应点D 落在BC 边上,点B 的对应点为E ,求线段,BD DE 的长.20.已知m 是方程220x x −−=的根,求代数式()15m m −+的值. 21.如图,在平面直角坐标系xOy 中()()2,4,2,0A B −−,将OAB △绕原点O顺时针旋转90︒得到OA B ''△(,A B ''分别是A 、B 的对应点).(1)在图中画出OA B ''△,点A '的坐标为______;(2)若点(),2M m 位于OAB △内(不含边界),点M '为点M 绕原点O 顺时针旋转90︒的对应点,直接写出M '的纵坐标n 的取值范围.22.在平面直角坐标系xOy 中,二次函数2y x bx c =++的图象经过点()()1,03,0,. (1)求该二次函数的解析式;(2)当13x −<<时,直接写出函数值y 的取值范围.23.阅读下面的材料并完成解答.《田亩比类乘除捷法》是我国南宋数学家杨辉的著作,其中记载了这样一个数学问题:“直田积八百六十四步,只云长阔共六十步,欲先求阔步,得几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽之和为60步,问它的宽是多少步?书中记载了这个问题的几何解法:(1)将四个完全相同的面积为864平方步的矩形,按如图所示的方式拼成一个大正方形,则大正方形的边长为______步;(2)中间小正方形的面积为______平方步;(3)若设矩形田地的宽为x 步,则小正方形的面积可用含x 的代数式表示为______;(4)由(2)(3)可得关于x 的方程______,进而解得矩形田地的宽为24步.24.已知关于x 的一元二次方程2)440x k x k −++=(. (1)求证:该方程总有两个实数根;(2)若该方程有一个根小于2,求k 的取值范围.25.如图1,是某条公路的一个具有两条车道的隧道的横断面.经测量,两侧墙AD 和BC 与路面AB 垂直,隧道内侧宽8AB =米.为了确保隧道的安全通行,工程人员在路面AB 上取点E ,测量点E 到墙面AD 的距离AE ,点E 到隧道顶面的距离EF .设AE x =米,EF y =米.图1 图2 通过取点、测量,工程人员得到了x 与y 的几组值,如下表:x (米)0 2 4 6 8 y (米) 4.05.56.0 5.5 4.0 (1)根据上述数据,直接写出隧道顶面到路面AB 的最大距离为______米,并求出满足的函数关系式()2(0)y a x h k a =−+<;(2)若如图2的汽车在隧道内正常通过时,汽车的任何部位需离左侧墙及右侧墙的距离不小于1米,且到隧道顶面的距离不小于0.35米.按照这个要求,隧道需标注的限高应为多少米(精确到0.1米)?26.已知:二次函数221y ax ax a =−++.(1)求这个二次函数图象的对称轴和顶点坐标;(2)若点()12)1,,2,A n y B n y +−(在抛物线()2210y ax ax a a =−++>上,且12y y <,求n 的取值范围.27.如图,在等边三角形ABC 中,点P 为ABC △内一点,连接,,AP BP CP ,将线段AP 绕点A 顺时针旋转60︒得到AP ',连接,PP BP ''.(1)用等式表示BP '与CP 的数量关系,并证明;(2)当120BPC ∠=︒时,①直接写出P BP '∠的度数为______;②若M 为BC 的中点,连接PM ,请用等式表示PM 与AP 的数量关系,并证明.28.对于平面直角坐标系xOy 内的点P 和图形M ,给出如下定义:如果点P 绕原点O 顺时旋转90︒得到点P ,点P '落在图形M 上或图形M 围成的区域内,那么称点P 是图形M 关于原点O 的“伴随点”.已知点()()()1,1,3,1,3,2A B C .(1)在点()()()1232,0,1,1,1,2P P P −−−中,点______是线段AB 关于原点O 的“伴随点”;(2)如果点(),2D m 是ABC △关于原点O 的“伴随点”,直接写出m 的取值范围;(3)已知抛物线2y x bx c =++的顶点坐标为1n −(,),其关于原点对称的抛物线上存在ABC △关于原点O 的“伴随点”,求出n 的最大值和最小值.。
广东深圳福田区外国语学校(集团)2024年九年级上学期11月期中考试数学试题
![广东深圳福田区外国语学校(集团)2024年九年级上学期11月期中考试数学试题](https://img.taocdn.com/s3/m/8171d42ee55c3b3567ec102de2bd960590c6d9d3.png)
2024-2025 学年第一学期期中考试九年级数学试卷说明:命题人、审题人:九年级备课组答题前,务必用黑色字迹的签字笔将自己的姓名、学号等填写在答题卷规定的位置上。
选择题用 2B 铅笔作答,填涂答题前,务必用黑色字迹的签字笔将自己的姓名、学号等填写在答题卷规定的位置上。
选择题用 2B 铅笔作答,填涂时要将选中项框内涂黑、涂满。
修改时须用橡皮将原作答擦除干净,再重新作答。
主观题用黑色字迹的签字笔作答; 答题字迹不可压在黑色框线上,更不可写在框线外。
考试结束后,不要将试卷、草稿纸或其它物品夹在答题卡中。
1、考生必须在答题卷上按规定作答:凡在试卷、草稿纸上作答的,其答案一律无效。
2、全卷共 4 页,考试时间 90 分钟,满分 100 分。
一、选择题(本大题共 8 小题,每小题 3 分,共 24 分,每小题有四个选项,其中只有一个是正确的)1、如图所示的几何体,其俯视图是()A .B .C .D .1 题2、在传统游戏“石头、剪子、布”中,随机出一个手势,出“石头”的概率是( )A .B .C .D . 3、不解方程,判断方程 x 2﹣4x ﹣1=0 的根的情况是( ) A .没有实数根 B .有两个相等实数根C .有两个不相等实数根D .无法确定4、如图,在△ABC 中,DE ∥BC , ,DE =4,则 BC 的长是()3 题A .8B .10C .11D .125、如图,张老汉想用长为 70 米的栅栏,再借助房屋的外墙(外墙足够长)围成一个面积为 640 平方米的矩形羊圈AB 并在边 BC 上留一个 2 米宽的门(建在 EF 处,门用其他材料),设 AB 的长为 x 米,则下面所列方程正确的是()A .x (70﹣x )=640B .x (70﹣2x )=640 5 题C .x (72﹣x )=640D .x (72﹣2x )=6406、如图,△ABC 和△A 1B 1C 1 是以点 P 为位似中心的位似图形,若 ,△ABC 的周长为 6,则△A 1B 1C 1 的周长是( )A .12B .8C .6D .36 题7、如图,在▱ABCD 中,点E,F 分别在边AD 和CD 上,EF∥AC,连接BE 交对角线AC 于点G,若点G 是AC 的四等分点(AG<CG),AC=4,则EF 的长为()A.B.2 C.D.38、在正方形ABCD 中,AB=4,点E 是边AD 的中点,连接BE,将△ABE 沿BE 翻折,点A 落在点F 处,BF 与AC交于点H,点O 是AC 的中点,则OH 的长度是()A.B.C.4﹣27 题8 题二、填空题(本题共5 小题,每小题 3 分,共15 分)9、已知,则=10、在测量旗杆高度的活动课中,某小组学生于同一时刻在阳光下对一根直立于平地的竹竿及其影长和旗杆的影长进行了测量,得到的数据如图所示,根据这些数据计算出旗杆的高度为m.11、一个不透明的箱子里有3 个球,其中2 个白球,1 个红球,它们除了颜色外其他都相同,从中任意摸出一个球,记下颜色后放回,搅匀,再摸出一个球,则摸出的两个球恰好颜色不同的概率为.12、如图,Rt△ABC 中,∠ABC=90°,BD⊥AC,垂足为D,AE 平分∠BAC,分别交BD,BC 于点F,E.若AB:BC=3:4,则13、在菱形ABCD 中,E,F 分别是AB,BC 边上的中点,G 为DE 上一点,若AB=6,∠B =∠EGF = 60 ,则DG的长为10 题12 题13 题三、解答题(本题共7 小题,其中第14 题6分,第15 题 6 分,第16 题9 分,第17 题8 分,第18 题8 分,第19 题12 分,第20 题12 分,共61 分)14、(6 分)解一元二次方程:(x+2)2 =3(x+2);(2)x2﹣3x﹣1=0.D.15、(6 分)如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A(1,﹣2)、B(4,﹣1),C(3,﹣3).(1)画出将△ABC 向左平移5 个单位,再向上平移3 个单位后的△A1B1C1;(2)以原点O 为位似中心,在位似中心的同侧画出△A1B1C1 的一个位似△A2B2C2,使它与△A1B1C1 的相似比为2:1;(3)若△A1B1C1 内部任意一点P1 的坐标为(a,b),直接写出经过(2)的变化后点P1 的对应点P2 的坐标(用含a、b 的代数式表示)16、(9 分)本期开学以来,初三2015 级开展了轰轰烈烈的体育锻炼,为了解体育科目训练的效果,九年级学生中随机抽取了部分学生进行了以此中考体育科目测试(把测试结果分为四个等级,A 等:优秀;B 等:良好;C 等:及格;D 等:不及格),并将结果汇成了如图1、2 所示两幅不同统计图,请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;(2)图1 扇形图中D 等所在的扇形的圆心角的度数是,并把图2 条形统计图补充完整;(3)我校九年级有1800 名学生,如果全部参加这次中考体育科目测试,请估计不及格的人数为;(4)已知得A 等的同学中有一位男生,体育老师想从4 位A 等的同学中随机选择两位同学向其他同学介绍经验,请用列表法或画树形图的方法求出选中的两人刚好是一男一女的概率.17、(8 分)济南市公安交警部门提醒市民:“出门戴头盔,放心平安归”.某商店统计了某品牌头盔的销售量,四月份售出375 个,六月份售出540 个,且从四月份到六月份月增长率相同.(1)求该品牌头盔销售量的月增长率;(2)经市场调研发现,此种品牌头盔如果每个盈利10 元,月销售量为500 个,若在此基础上每个涨价1 元,则月销售量将减少20 个,现在既要使月销售利润达到6000 元,又要尽可能让顾客得到实惠,那么该品牌头盔每个应涨价多少元?18、(8 分)如图,在四边形ABCD 中,AB∥DC,AB=AD,对角线AC,BD 交于点O,AC 平分∠BAD,过点C 作CE⊥AB 交AB 的延长线于点E.(1)求证:四边形ABCD 是菱形;(2)若,BD=2,求BE 的长(直接写出答案)3 19、(12 分)在数学综合与实践活动课上,同学们用两个完全相同的矩形纸片展开探究活动:【实践探究】:(1)小红将两个矩形纸片摆成图 1 的形状,连接 AG 、AC ,则∠ACG =°;【解决问题】:(2)将矩形 AQGF 绕点 A 顺时针转动,边 AF 与边 CD 交于点 M ,连接 BM ,AB =10,AD =6.①如图 2,当 BM =AB 时,求证:AM 平分∠DMB ;写出证明过程 ②如图 3,当点 F 落在 DC 上时,连接 BQ 交 AF 于点 O ,则 AO =;【迁移应用】:(3)如图4,正方形 ABCD 的边长为5 2 ,E 是 BC 边上一点(不与点 B 、C 重合),连接 AE ,将线段 AE 绕点 E 顺时针旋转 90°至 FE ,作射线 FC 交 AB 的延长线于点 G ,则 BG =;(4) 如图 5,在菱形 ABCD 中,∠A =120°,E 是 CD 边上一点(不与点 C 、D 重合),连接 BE ,将线段 BE 绕点 E顺时针旋转 120°至 FE ,作射线 FD 交 BC 的延长线于点 G ,若 BG= 6 ,则 CG=;20、(12 分)在正方形 ABCD 中,AB =10,AC 是对角线,点 O 是 AC 的中点,点 E 在 AC 上,连接 DE ,点 C 关于DE 的对称点是 C ′,连接 DC ′,EC ′.(1) 如图 1,若 DC ′经过点 O ,求证:;(2) 如图 2,连接 CC ′,BC ′,若∠ADC ′=2∠CBC ′,则 CC ′的长为;并说明理由?(3) 当点 B ,C ′,E 三点共线时,直接写出 CE 的长.备用图。
2024-2025学年北京四中初三上学期期中数学试题及答案
![2024-2025学年北京四中初三上学期期中数学试题及答案](https://img.taocdn.com/s3/m/60e71c563868011ca300a6c30c2259010302f36a.png)
数学试卷班级__________ 姓名__________学号__________ 成绩__________一、选择题 (共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.下面四个标志中是中心对称图形的是( ).A .B .C .D .2.方程220x x -=的根是( ). A .0x =B .2x =C .0x =或2x =D .0x =或2x =-3.若1(3,)A y -,2(2,)B y -,3(3,)C y 为二次函数21y x =+()图象上的三点,则1y ,2y ,3y 的大小关系是( ). A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<4.二次函数(5)(7)y x x =-+的图象的对称轴是(). A .直线1x =- B .直线1x =C .直线2x =D .直线6x =5.如图,AB 为O 直径,点C 、D 在O 上,如果70ABC ∠=︒,那么D ∠的度数为( ).A .20︒B .30︒C .35︒D .70︒6.2024年北京第一季度GDP 约为1.058万亿元,第三季度GDP 约为1.167万亿元,设2024年北京平均每季度GDP 增长率为x ,则可列关于x 的方程为( ). A .21.058(1) 1.167x -= B .1.058(12) 1.167x +=C .21.058(1) 1.167x +=D .21.167(1)1.058x -=7.如图是一个钟表表盘,连接整点2时与整点10时 的B 、D 两点并延长,交过整点8时的切线于点P ,若切线长2PC =,则表盘的半径长为( ).A .3B. C . D.A8.某农场用篱笆围成饲养室,一面靠现有墙(墙足够长),已知计划中的篱笆(不包括门)总长为12m ,现有四种方案(如图)中面积最大的方案为( ). A 方案为一个封闭的矩形B 方案为一个等边三角形,并留一处1m 宽的门C 方案为一个矩形,中间用一道垂直于墙的篱笆隔开,并在如图所示的三处各留1m 宽的门D 方案为一个矩形,中间用一道平行于墙的篱笆隔开,并在如图所示的四处各留1m 宽的门A. B.C. D.二、填空题(共16分,每题2分)9.在平面直角坐标系xOy 中,将抛物线23y x =向上平移1个单位,得到的抛物线表达式为 .10.如图,四边形ABCD 内接于O ,E 为BC 延长线上一点,50A ∠=︒,则DCE ∠的度数为 .11.抛物线256y x x =-+与y 轴的交点的坐标是 .12.如图,PA 、PB 分别切O 于A 、B 两点,点C 为AB 上一点,过点C 作O 的切线分别交PA 、PB 于M 、N 两点,若△PMN 的周长为10,则切线长PA 等于 .第10题图 第12题图13.已知22310a a -+=,则代数式2(3)(3)a a a -++的值为 .14.“青山绿水,畅享生活”,人们经常将圆柱形竹筒改造成生活用具,图1所示是一个竹筒水容器,图2为该竹筒水容器的截面.已知截面的半径为10cm ,开口AB 宽为12cm ,这个水容器所能装水的最大深度....是 cm .图1 图2 第15题图15.二次函数2(0)y ax bx c a =++≠的部分图象如图所示,图象过点(1,0)-, 对称轴为直线2x =,抛物线与y 轴交点在(0,1)A 和(0,2)B 之间(不与A 、B 重合).下列结论:①0abc >; ②93a c b +>; ③40a b +=; ④当0y >时,15x -<<; ⑤a 的取值范围为2155a -<<-. 其中正确结论有 .(填序号)16.如图,在直角三角形ABC 中,∠A =90°,D 是AC 上一点,BD =10, AB =CD ,则BC 的最大值为 .三、解答题(共68分,第17题8分,第18、21、25题每题4分,第19、23、24题每题5分,第20、26题6分,第22、27、28题每题7分)17.解下列方程:(1)23610x x -+=; (2)2(3)3x x x -=-.18.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为(1,1)A -,(3,1)B -,(1,4)C -.将△ABC 绕着点B 顺时针旋转90︒后得到△11A BC , (1)请在图中画出△11A BC ; (2)线段BC 旋转过程中所扫过的面积是 (结果保留π).19.如图,D 是等边三角形ABC 内一点,将线段AD 绕点A 顺时针旋转60︒,得到线段AE ,连接CD ,BE . (1)求证:△AEB ≌△ADC ; (2)连接DE ,若96ADC ∠=︒,求BED ∠的度数. 20.已知关于x 的一元二次方程22(8)40x k x k +--=.(1)求证:该方程总有两个实数根;(2)若该方程有一个根小于3,求k 的取值范围. 21.已知:如图O 及O 外一点P .求作:直线PB ,使PB 与O 相切于点B .李华同学经过探索,想出了两种作法.具体如下(已知点B 是直线OP 上方一点):A ,A 交O 于点B ,则直线PB 是O 的切O 于点M ;②以点的长为半径作弧,交直线,交O 于点B PB 是O 的切线. 证明:如图1,连接OB , A 直径,90PBO =︒.( OB . OB 是O 的半径,∴直线PB 是O 的切线.请仔细阅读,并完成相应的任务.(1)“作法一”中的“依据”是指 ; (2)请写出“作法二”的证明过程.NQ M P22.在平面直角坐标系xOy 中,二次函数2y x bx c =++的图象经过(0,2)A -,(2,0)B 两点.(1)求这个二次函数的解析式;(2)填写表格并在给出的平面直角坐标系中画出这个函数的图象;(3)若一次函数y mx n =+的图象也 经过A ,B 两点,结合图象,直接写出 不等式2x bx c mx n ++<+的解集.23.如图,在Rt △ABC 中,90C ∠=︒,BE 平分ABC ∠交AC于点E ,点D 在AB 上,DE EB ⊥. (1)求证:AC 是△BDE 的外接圆的切线;(2)若2AD =,AE =,求EC 的长.24.如图1所示的某种发石车是古代一种远程攻击的武器.将发石车置于山坡底部O 处,以点O 为原点,水平方向为x 轴方向,建立如图2所示的平面直角坐标系,将发射出去的石块当作一个点看,其飞行路线可以近似看作抛物线2(20)y a x k =-+的一部分,山坡OA 上有一堵防御墙,其竖直截面为ABCD ,墙宽2BC =米,BC 与x 轴平行,点B 与点O 的水平距离为28米,竖直距离为6米.若发射石块在空中飞行的最大高度为10米. (1)求抛物线的解析式;(2)试通过计算说明石块能否飞越防御墙.25.如图1,线段AB 及一定点C ,P 是线段AB 上一动点,作直线CP ,过点A 作AQ CP ⊥于点Q ,已知7AB =cm ,设A 、P 两点间的距离为x cm ,A 、Q 两点间的距离为1y cm ,P 、Q 两点间的距离为2y cm .小明根据学习函数的经验,分别对函数1y 、2y 随自变量x 的变化而变化的规律进行了探究.下面是小明的探究过程:第一步:按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y 、2y 与x 的几组对应值.1(,)x y ,2(,)x y ,并画出函数1y 、2y 的图象. 解决问题:(1)在给出的平面直角坐标系中(图2)补全函数2y 的图象;(2)结合函数图象,解决问题:当△APQ 中有一个角为30︒时,AP 的长度约为 cm .图1图226.在平面直角坐标系xOy 中,已知抛物线224(0)y ax a x a =-≠. (1)当1a =时,求抛物线的顶点坐标;(2)已知1(M x ,1)y 和2(N x ,2)y 是抛物线上的两点.若对于15x a =,256x ,都有12y y <,求a 的取值范围.27.已知,如图,在△ABC 中,∠ACB =90°,∠ABC =45°,点D 在BC 的延长线上,点E 在CB 的延长线上,DC =BE ,连接AE ,过C 作CF ⊥AE 于F ,CF 交AB 于G ,连接DG . (1)求证:∠AEB =∠ACF ;(2)用等式表示CG ,DG 和AE 的数量关系,并证明.28. 对于平面直角坐标系xOy 内的直线l 和点P ,若点A 关于l 作轴对称变换得到点1A ,点1A 关于点P 作中心对称变换得到点2A ,我们则称点2A 为点A 关于直线l 和点P 的“正对称点”. 已知B (-1,0),C (2,0),(1)写出B 关于y 轴和点C 的“正对称点”的坐标________;(2)已知点1C (2,m )(102m ),存在过原点O 的直线1l ,使得点B 关于直线1l 和点1C 的“正对称点”在直线2l :y =x+b 上,求b 的取值范围;(3)已知点H 是直线x =1上的一点,且点H 的纵坐标小于0,C (3,0),E 点在以C 为圆心1为半径的圆上,对于直线x =6上的点F (6,h ),以F 为圆心,1为直径作圆F ,若圆F 上存在点B 关于直线OH 和点E 的“正对称点”,直接写出h 的取值范围.备用图数学参考答案一、选择题1.D 2.C 3.B 4.A 5.A 6.C 7.B 8.C二、填空题9. 231y x =+ 10. 50° 11.(0,6) 12.5 13.8 14.18 15.③④⑤16. 5+ 补充说明:T15只有一个正确答案得1分,有错误答案不得分。
广东省深圳市深圳高级中学2024-2025学年九年级上学期期中考试数学试卷
![广东省深圳市深圳高级中学2024-2025学年九年级上学期期中考试数学试卷](https://img.taocdn.com/s3/m/ed8af772cd7931b765ce0508763231126fdb7706.png)
高级中学2024-2025学年第一学期期中测试初三数学注意事项:1、答题前,考生务必在答题卡写上姓名、班级,准考证号用2B 铅笔涂写在答题卡上。
2、每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动用橡皮擦干净后,再涂其它答案,不能答在试题卷上。
3、考试结束,监考人员将答题卡收回。
第一部分选择题一.选择题:(每小题只有一个选项,每小题3分,共计24分)1.如图所示,该几何体的左视图是( )A. B. C. D.2.若两个相似三角形周长的比为,则这两个三角形对应边的比是( )A. B. C. D.3.下列说法错误的是( )A.一组对边平行且一组对角相等的四边形是平行四边形B.四条边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形D.四个角都相等的四边形是矩形4.在一幅长为、宽为的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示.如果要使整个挂图的面积是,设金色纸边的宽为,那么满足的方程是( )A. B. C. D.5.如图,点在正方形的对角线上,于点,连接并延长,交边于点,交边的延长线于点.若,,则()1:41:21:41:81:1650cm 30cm 22400cm cm x x 2402250x x +-=2802250x x +-=2402250x x --=2802250x x --=E ABCD AC EF AB ⊥F DE BC M AB G 4AF =2FB =MG =A. B. C. D.6.如图,平面直角坐标系中,在边长为1的正方形的边上有一动点沿A →B →C →D →A 运动一周,则的纵坐标与点走过的路程之间的函数关系用图象表示大致是( )A. B. C. D.7.如图,在中,,,以点为圆心,以为半径作弧交于点,再分别以,为圆心,以大于的长为半径作弧,两弧相交于点,作射线交于点,连接.以下结论不正确的是( )A. B. C.D.8.若一个菱形的两条对角线长分别是关于的一元二次方程的两个实数根,且其面积为21,则该菱形的边长为( )A. B. C. D.二、填空题(每小题3分,共计15分)9.方程的根是_____.2+ABCD P P y P s ABC AB AC =36BAC ︒∠=C BC AC D B D 12BD P CP AB E DE 36BCE ︒∠=BC AE =BE AC =AEC BEC S S =△△x 2140x x m -+=22x x =10.《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度如图,点A ,,在同一水平线上,和均为直角,与相交于点.测得,,,则树高___.11.如图,4张卡片正面分别呈现了几种常见的生活现象,它们的背面完全相同.现将所有卡片背面朝上洗匀后从中随机抽取两张,这两张卡片正面图案呈现的现象恰好都属于化学变化的概率是_____.火柴燃烧水结成冰玻璃杯破碎铁锅生锈12.边长分别为5,3,2的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为_____.13.如图,在四边形中,,对角线,相交于点.若,,,则的长为_____.三、解答题(共计61分)14.(6分)用适当的方法解下列方程:(1);(2).15.(7分)某商场“五一”期间为进行有奖销售活动,设立了一个可以自由转动的转盘.商场规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:ABC B Q ABC ∠AQP ∠AP BC D 40cm AB =20cm BD =10m AQ =PQ =m ABCD 90BCD ︒∠=AC BD O 5AB AC ==6BC =2ADB CBD ∠=∠AD 2290x x +-=()()251315x x -=-转动转盘的次数n1002004005008001000落在“可乐”区域的次数m60122240295a 604落在“可乐”区域的频率0.60.610.6b 0.590.604(1)完成上述表格,其中_____,_____;(2)请估计当很大时,频率将会接近_____,假如你去动该转盘一次,你获得“可乐”的概率约是_____;(本小问结果全部精确到0.1)(3)转盘中,表示“洗衣粉”区域的扇形的圆心角约是_____°;(4)在这次购物中,甲、乙两人随机从“微信”、“支付宝”、“银行卡”(依次用、、表示)三种支付方式中各选一种方式进行支付.请用画树状图或列表的方法,求甲、乙两人恰好都选择同一种支付方式的概率.16.(8分)如图,在正方形格纸中.(1)请在正方形格纸上建立平面直角坐标系,使,,并写出点坐标_____;(2)以坐标原点为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形并写出点的对应点的坐标_____;(3)若线段绕原点旋转后点的对应点为,写出点的坐标_____.17.(8分)如图,四边形是矩形,点在边上,点在延长线上,.(1)下列条件:①点是的中点;②平分;③点A 与点关于直线对称.请从中选择一个能证明四边形是菱形的条件,并写出完整证明过程.m na =b =n A B C ABC △()2,3A ()6,2C B O ABC △111A B C △A 1A AB O 90︒B 2B 2B ABCD E CD F DC AE BF E CD BE ABF ∠F BE ABFE选择条件:_____(填序号),理由如下.(2)若,,,求四边形的面积是多少.18.(8分)2024年奥运会在巴黎顺利召开,奥运会吉祥物“弗里热”爆红.(1)据统计某“弗里热”玩偶在某电商平台7月份的销售量是5万件,9月份的销售量是7.2万件,问月平均增长率是多少?(2)市场调查发现,某实体店“弗里热”玩偶的进价为每件60元,若售价为每件100元,每天能销售20件,售价每降价1元,每天可多售出2件,为了推广宣传,商家决定降价促销,同时尽量减少库存,若使销售“弗里热”玩偶每天获利1200元,则售价应降低多少元?19.(12分)某数学兴趣小组的同学在学完一元二次方程后,发现配方法可以求二次三项式的最值:他们对最值问题产生了浓厚兴趣,决定进行深入的研究.下面是该学习小组收集的素材,汇总如下,请根据素材帮助他完成相应任务:BEF DAE ∠=∠6AE =8BE =ABFE20.(12分)阅读理解:两个三角形中有一个角相等或互补,我们称这两个三角形是共角三角形,这个角称为对应角.根据上述定义,判断下列结论,正确的打“√”,错误的打“×”.(1)三角形一条中线分成的两个三角形是共角三角形.(_____)(2)两个等腰三角形是共角三角形.(_____)问题提出:小明在研究图1的时发现,因为点,分别在和上,所以和是共角三角形,并且还发现.以下是小明的证明思路,请帮小明完善证明过程.证明:分别过点,作于点,于点,得到图2,,又,(_____),.,,即.延伸探究:如图3,已知,请你参照小明的证明方法,求证:.D E AB AC ADE △ABC △ADE ABC S AD AE S AB AC⋅=⋅△△E C EG AB ⊥G CF AB ⊥F AGE AFC ∠=∠ A A ∠=∠ GAE ∴△∽()_____EG AE CF ∴=②1212ADE ABCAD EG S S AB CF ⋅=⋅ △△ADE ABC S AD EG AD AE S AB CF AB AC⋅∴==⋅⋅△△ADE ABC S AD AE S AB AC⋅=⋅△△180BAC DAE ︒∠+∠=ADE ABC S AD AE S AB AC ⋅=⋅△△结论应用:(1)如图4,在平行四边形中,是边上的点且满足,延长到,连接交的延长线于,若,,,的面积为60,则的面积是_____.(2)如图5,的面积为2,延长的各边,使,,,,则四边形的面积为_____.ABCD G BC 2BG GC =GA E DE BA F 6AB =5AG = 2.5AE =ABCD AEF △ABCD ABCD BE AB =2CF BC =3DG CD =4AH AD =EFGH。
河南省新乡市河南师范大学附属中学联考2024-2025学年九年级上学期11月期中数学试题(含答案)
![河南省新乡市河南师范大学附属中学联考2024-2025学年九年级上学期11月期中数学试题(含答案)](https://img.taocdn.com/s3/m/1605afebcd22bcd126fff705cc17552706225e02.png)
2024-2025学年第一学期九年级期中考试数学试卷一、选择题(每小题3分,共30分)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.已知的半径为,圆心O 到直线l 的距离为,则直线l 与的位置关系是( )A .相离 B .相交C .相切D .无法判断3.一元二次方程经过配方变形为,则k 的值是( )A .B .C .1D .74.如图,A 、B 、C 为圆O 上的三点,,则的度数是( )A .B .C .D .5.关于二次函数,下列说法正确的是( )A .图象的对称轴在y 轴的右侧B .图象的顶点坐标为C .与x 轴交于点和D .当时,y 随着x 的增大而减小6.如图,是由绕点O 顺时针旋转后得到的图形,若点D 恰好落在AB 上,且,则的度数是( )A .B .C .D .7.如果关于x 的一元二次方程有实数根,则a 的取值范围是()O e 5cm 4cm O e 2430x x -+=2(2)x k -=3-7-78AOB ∠=︒ACB ∠35︒36︒37︒39︒2(1)9y x =+-(1,9)-(2,0)-(4,0)1x <-ODC △OAB △40︒105AOC ∠=︒C ∠55︒45︒42︒40︒20x x a +-=A .B .C .D .8.如图,已知的半径为5,弦AB 的长为8,P 是AB 的延长线上一点,,则OP 等于()A . B .C.D .9.已知二次函数(m 为常数),当时,函数值y 的最小值为,则m 的值是( )A .或B .或C .2或D .2或10.如图1,动点P 从菱形ABCD 的点A 出发,沿边匀速运动,运动到点C时停止.设点P 的运动路程为x ,PO 的长为y ,y 与x 的函数图象如图2所示,当点P 运动到BC 中点时,PO 的长为( )图1图2A .2 B .3 C D .二、填空题(每小题3分,共15分)11.把抛物线先向右平移1个单位再向上平移1个单位,所得到抛物线的解析式为________________.12.某种植物的主干长出若干个分支,每个支干又长出同样个数的小分支,主干、支干、小分支的总数是241,设每个支干长出小分支的个数是x ,则可列方程为________________。
北京三十五中2024-2025期中考试试卷初三上数学试卷2024.11
![北京三十五中2024-2025期中考试试卷初三上数学试卷2024.11](https://img.taocdn.com/s3/m/032db07bfd4ffe4733687e21af45b307e871f9fb.png)
初三数学 第 1 页 共 6 页班级 姓名 考场号 学号线订装2024—2025学年度第一学期北京市第三十五中学期中质量检测初三数学考生须知1.本试卷共6页,共三道大题,28道小题,满分100分。
2.考试时间120分钟。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
一、选择题(共16分,每题2分. 符合题意的选项只有一个) 1. 二次函数22(1)3y x =+-的图象的顶点坐标是( ).A.(1,3)B.(1,-3)C.(-1,3)D.(-1,-3)2.云纹是我国的传统纹样,象征着吉祥如意. 其以流动飘逸的曲线和回转交错的结构体现了流动之美. 以下云纹图案都是由朵云通过不同的变换形式构造出的,请你选出其中的中心对称图形( ).朵云 双分朵云 三合云 四合云 五福云A. B. C. D.3.若关于x 的方程22=0x x m --的一个根是3,则m 的值是( ).A. 3B. -3C. 15D. -154.二次函数y =x 2+4x +a 的图象与x 轴没有交点,则a 的值可以是( ).A .-2B .2C .4D .6 5.在如图所示的正方形网格中,四边形ABCD 绕某一点旋转某一角度得到四边形A'B'C'D',(所有顶点都是网格线交点),在网格线交点M ,N ,P ,Q 中,可能是旋转中心的是( ).A.点MB.点NC.点PD.点Q6.如图,△ABC 内接于⊙O ,连结OA ,OB ,∠ABO =40°,则∠C 的度数是( ).A. 100°B. 80°C. 50°D. 40° 7.定点投篮是同学们喜爱的体育项目之一,某位同学投出篮球的飞行路线可以看作是抛物线的一部分,篮球飞行的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系2y ax bx c =++(0a ≠).下表记录了该同学将篮球投出后的x 与y 的三组数据,根据上述函数模型和数据,可推断出篮球飞行到 最高点时,水平距离为( ).x (单位:m) 0 2 4y (单位:m)2.253.453.05A.3mB.2.5mC.2mD.1.5mBOAC第5题第6题初三数学 第 2 页 共 6 页8.如图,⊙O 的直径AB=12cm ,AM 和BN 是它的两条切线,DE 与⊙O 相切于点E ,并与AM ,BN 分别相交于D ,C 两点,设AD=x ,BC=y ,则y 关于x 的图象大致为( ).A. B. C. D. 二、填空题(共16分,每题2分)9.在平面直角坐标系xOy 中,点A (1,-2)关于原点对称的点的坐标是______________. 10.写出一个开口向上,且与y 轴交点在x 轴下方的抛物线的表达式:______________.11.若多项式2x ax b ++可以写成()2x m +的形式,且0ab ≠,则a 的值可以是_____,b 的值可以是_____ .(写出一组即可)12.在2022年北京冬奥会开幕式和闭幕式中,一片“雪花”的故事展现了“世界大同,天下一家”的主题,让世界观众感受了中国人的浪漫.如图,作出“雪花”图案(正六边形ABCDEF )的外接圆,已知正六边形ABCDEF 的边长是4,则长为______________.(结果保留π)13.蜂巢结构精巧,其巢房横截面的形状均为正六边形.如图是部分巢房的横截面图,图中7个全等的正六边形不重叠且无缝隙,将其放在平面直角坐标系中,点P ,Q ,M 均为正六边形的顶点.若(23,3)P -,(0,3)Q -,则点M 的坐标为 .14.某商品原来每件的售价为60元,经过两次降价后每件的售价为48.6元,并且每次降价的百分率相同.设该商品每次降价的百分率为x ,则根据关系可列方程为 .15.如图,正方形ABCD 边长为4,E 、F 分别是边AB 、BC 上的点, CE 、DF 交于点P ,当CE=DF 时,BP 的最小值为 .16.如图,已知⊙O 的半径为4,B 、C 是⊙O 上两定点,点A 是⊙O 上的动点,且∠BAC =60°,∠BAC 的平分线交⊙O 于点D ,过点D 作BC 的平行线交AB 的延长线于点F ,下列说法中正确的是 . ①AD 的最大值是8;②点D 为上一定点;③ABC S ∆的最大值是163;④DF 与⊙O 相交;⑤若△ABC 为锐角三角形,则2343DF <<.第8题第12题第13题第15题 第16题初三数学 第 3 页 共 6 页班级 姓名 考场号 学号线订装三、解答题(共68分,第17-18题,每题5分,第19题6分,第20题6分,第21题5分,第22-24题,每题5分,第25-26题,每题6分,第27题7分,第28题7分)17.解方程:2210x x +-=.18.已知2502=x x --,求代数式23(2)(1)x x x -+-的值.19.数学课上,王老师提出如下问题:已知:如图,AB 是⊙O 的直径,射线AC 交⊙O 于点C .求作:的中点D .同学们分享了如下四种方案:方案一,连接BC ,作BC 的垂直平分线,交⊙O 于点D . 方案二,过点O 作AC 的平行线,交⊙O 于点D .方案三,作∠BAC 的平分线,交⊙O 于点D .方案四,在射线AC 上截取AE ,使AE=AB ,连接BE ,交⊙O 于点D . 你选择的方案是 ,画出相应图形并证明. 20.已知关于x 的一元二次方程2(1)20x m x m --+-=. (1)求证:对于任意实数m ,方程都有实数根;(2)m 何值时,方程有负数根.21.在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现代语言表述为:如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,AE = 1寸,CD = 10寸,求直径AB 的长.请你解答这个问题.22.已知二次函数23(0)+y ax bx a =+≠的图象经过点A (1,0),B (3,0). (1) 求该函数的解析式;(2) 当x >3时,对于x 的每一个值,函数y x n =+的值小于二次函数23+y ax bx =+的值,结合函数图象,直接写出n 的取值范围.23.在平面直角坐标系xOy 中,△ABC 的三个顶点的坐标分别为 A (1,2),B (5,5), C (5,2),将△ABC 绕点A 顺时针旋转90°得到△AB′C′.(1)画出旋转后的△AB′C ′; (2)直接写出点B ′的坐标;(3)直接写出线段AB 在变换到AB′的过程中扫过的区域的面积.(结果保留π)1CBOA 第23题第21题第19题初三数学 第 4 页 共 6 页24.如图,⊙O 是△ABC 的外接圆,∠ABC =45°,连接OC 交AB 于点E ,过点A 作OC 的平行线交BC 延长线于点D . (1)求证:AD 是⊙O 的切线;(2)若⊙O 的半径为4,AD=6,求线段CD 的长.25.如图,是直径AB 所对的半圆弧,C 是上一定点,D 是上一动点,连接DA ,DB ,DC . 已知AB =5cm ,设D ,A 两点间的距离为x cm ,D ,B 两点间的距离为1y cm ,D ,C 两点间的距离为2y cm.小亮根据学习函数的经验,分别对函数1y ,2y 随自变量x 的变化而变化的规律进行了探究.下面是小亮的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y ,2y 与x 的几组对应值:表中m 的值大约为 .(保留两位小数)(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点1(,)x y ,2(,)x y ,并画出函数1y ,2y 的图象;(3)结合函数图象,解决问题:连接BC ,当△BCD 是以CD 为腰的等腰三角形时,DA 的长度约为 cm.x /cm0 1 2 3 4 5 y 1/cm 5 4.9 m 4 3 0 y 2/cm43.322.471.43初三数学 第 5 页 共 6 页班级 姓名 考场号 学号线订装xy O–1–2–3–4–5–6123456–1–2–3–4–5–612345626.在平面直角坐标系xOy 中,抛物线2y ax bx c =++(0a ≠)的对称轴为x t =. (1)若3a +2b =0,求t 的值;(2)已知点(-1,1y ),(2,2y ),(3,3y )在该抛物线上.若a >c >0,且3a +2b +c =0,比较1y ,2y ,3y 的大小,并说明理由.27.等边△ABC 中,点D 是边AB 上一点,点E 是直线BC 上一点,连接DE .将线段DE 绕点D 逆时针旋转60°至DF ,连接EF ,CF .(1)如图1,当点D 与点A 重合,点E 在线段BC 上时.①按照要求补全图形;②过BC 中点M 作AC 的垂线交AC 于G ,交EF 于H ,判断EH 与FH 的数量关系,并证明.(2)如图2,当点D 与点A 、点B 不重合时,若AD=BE ,判断CF 与AD 的数量关系并说明理由.28.对于平面直角坐标系xOy 内的点P 和图形M ,给出如下定义:如果点P 绕原点O 顺时旋转90°得到点P',点P' 落在图形M 上或图形M 围成的区域内,那么称点P 是图形M 关于原点O 的"伴随点".已知点A (1,1),B (3,1),C (3,2)(1)在点P 1(-2,0),P 2(-1,1),P 3(-1,2)中,点 是线段AB 关于原点O 的"伴随点";(2)如果点D (m ,2)是△ABC 关于原点O 的"伴随点",直接写出m 的取值范围; (3)已知抛物线2y ax bx c =++(0a ≠)的顶点坐标为(-1,n ),其关于原点对称的抛物线上存在△ABC 关于原点O 的"伴随点",求n 的最大值和最小值.图1图2 备用图草稿纸初三数学第6 页共6 页。
北京市2024-2025学年北京陈经纶中学初三(上)期中考试数学试卷及答案
![北京市2024-2025学年北京陈经纶中学初三(上)期中考试数学试卷及答案](https://img.taocdn.com/s3/m/0cd9499e760bf78a6529647d27284b73f3423633.png)
2024北京陈经纶初三(上)期中数 学时间:90分钟 满分:100分一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1. 抛物线()212y x =−+的顶点坐标是( ) A. ()1,2 B. ()1,2− C. ()1,2− D. ()1,2−− 2. 用配方法解方程242x x +=,变形后结果正确的是( )A. ()223x −=B. ()223x +=C. ()226x −=D. ()226x += 3. 图中的五角星图案,绕着它的中心O 旋转n ︒后,能与自身重合,则n 的值至少是( )A. 144B. 72C. 60D. 504. 若关于x 的一元二次方程240x x m −=有两个相等的实数根,则实数m 的值为( )A. 4B. 4−C. 4±D. 25. 将抛物线231y x =+的图象向左平移2个单位,再向下平移3个单位,得到的抛物线是( )A. ()2323y x =+−B. ()2322y x =+− C. ()2323y x =−− D. ()2322y x =−− 6. 如图,在平面直角坐标系中,△ABC 顶点的横、纵坐标都是整数.若将△ABC 以某点为旋转中心,顺时针旋转90°得到△DEF ,其中A 、B 、C 分别和D 、E 、F 对应,则旋转中心的坐标是( )A. (0,0)B. (1,0)C. (1,1)−D. ()0.5,0.5 7. 11(,)2A y −,2(1,)B y ,3(4,)C y 三点都在二次函数2(2)y x k =−−+的图像上,则123,,y y y 的大小关系为( ) A. 123y y y << B. 132y y y <<C. 312y y y <<D. 321y y y << 8. 四位同学在研究二次函数()260y ax bx a =+−≠时,甲同学发现函数图象的对称轴是直线1x =;乙同学发现当3x =时,y =−6;丙同学发现函数的最小值为8−;丁同学发现3x =是一元二次方程()2600ax bx a +−=≠的一个根,已知这四位同学中只有一位同学发现的结论是错误的,则该同学是( )A. 甲B. 乙C. 丙D. 丁二、填空题:本大题共8个小题,每小题3分,共24分.9. 方程260x x −=的解是_____.10. 请写出一个开口向上,并且与y 轴交于点()0,1−的抛物线的表达式______.11. 如图,将OAB △绕点O 逆时针旋转80︒,得到OCD ,若2100A D ∠=∠=︒,则α∠的度数__________.12. 如图,已知二次函数210y ax bx c a ++≠=()与一次函数20y kx b k +≠=()的图象相交于点(24),82A B ﹣,(,),则2ax bx c kx b +++=的解是 _____.13. 杭州亚运会的吉祥物“江南忆”出自唐朝诗人白居易的名句“江南忆,最忆是杭州”,它融合了杭州的历史人文、自然生态和创新基因.经统计,某商店吉祥物“江南忆”6月份的销售量为1200件,8月份的销售量为1452件,设吉祥物“江南忆”6月份到8月份销售量的月平均增长率为x ,则可列方程为______. 14. 若关于x 的一元二次方程()221310k x x k −++−=的一个根为0,则k 的值为___________. 15. 汽车刹车后行驶的距离y (单位:m )关于行驶的时间x (单位:s )的函数解析式是:2156s x x =−,汽车刹车后前进了______米才能停下来.16. 车间里有五台车床同时出现故障.已知第一台至第五台修复的时间如下表:(1)若只有一名修理工,且每次只能修理一台车床,则下列三个修复车床的顺序:①D B E A C →→→→;②D A C E B →→→→;③C A E B D →→→→中,经济损失最少的是______(填序号);(2)若由两名修理工同时修理车床,且每台车床只由一名修理工修理,则最少经济损失为______元.三.解答题:共52分,第17-24题,每题5分,第25-26题,每题6分.解答应写出文字说明、演算步骤或证明过程.17. 解方程22730x x −+=.18. 若a 是关于x 的一元二次方程2390x x −+=的根,求代数式()()()4431a a a +−−−的值. 19. 如图,ABC 是直角三角形,90C ∠=︒,将ABC 绕点C 顺时针旋转90︒.(1)试作出旋转后的DCE △,其中B 与D 是对应点;(2)在作出的图形中,已知5,3AB BC ==,求BE 的长.20. 已知抛物线()20y ax bx c a =++≠图象上部分点的横坐标x 与纵坐标y 的对应值如下表:(1)并画出图象;(2)求此抛物线的解析式;(3)结合图象,直接写出当03x <<时y 的取值范围.21. 已知关于x 的一元二次方程2(2)10x m x m −+++=.(1)求证:无论m 取何值,方程总有两个实数根;(2)若方程的一个实数根是另一个实数根的两倍,求m 的值.22. 景区内有一块58⨯米的矩形郁金香园地(数据如图所示,单位:米),现在其中修建一条花道(阴影所示),供游人赏花.若改造后观花道的面积为12平方米,求x 的值.23. 数学活动课上,老师提出一个探究问题:制作一个体积为310dm ,底面为正方形的长方体包装盒,当底面边长为多少时,需要的材料最省(底面边长不超过3dm ,且不考虑接缝).某小组经讨论得出:材料最省,就是尽可能使得长方体的表面积最小.下面是他们的探究过程,请补充完整:(1)设长方体包装盒的底面边长为x dm ,表面积为2dm y 、可以用含x 的代数式表示长方体的高为210dm x.根据长方体的表面积公式:长方体表面积=2×底面积+侧面积. 得到y 与x 的关系式:_________(03x <≤);(2)列出y 与x 的几组对应值:(说明:表格中相关数值精确到十分位)(3)在下面的平面直角坐标系xOy 中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象:(4)结合画出的函数图象,解决问题:长方体包装盒的底面边长约为_______dm 时,需要的材料最省.24. 在平面直角坐标系xOy 中,抛物线 (²0)y ax bx c a =++>的对称轴为 x t =,点(),A t m −,()2,B t n , ()00,C x y 在抛物线上.(1)当2t =时,直接写出m 与n 的大小关系;(2)若对于 056x << 都有 0m y n >> 求t 的取值范围.25. 在ABC 中,AB AC =,090BAC ︒<∠<︒,将线段AC 绕点A 逆时针旋转α得到线段AD ,连接BD ,CD .(1)如图1,当BAC α∠=时,则ABD ∠=______(用含有α的式子表示);(2)如图2,当90α=︒时,作BAD ∠的角平分线交BC 的延长线于点F ,交BD 于点E ,连接DF . ①依题意在图2中补全图形,并求DBC ∠的度数;②用等式表示线段AF ,CF ,DF 之间的数量关系,并证明.26. 对于平面直角坐标系xOy 内的点P 和图形M ,给出如下定义:如果点P 绕原点O 顺时针旋转90︒得到点P ',点P '落在图形M 上或图形M 围成的区域内,那么称点P 是图形M 关于原点O 的“伴随点”.已知点()()()1,1,3,1,3,2A B C .(1)在点()()()1232,0,1,1,1,2P P P −−−中,点______是线段AB 关于原点O 的“伴随点”;(2)如果点(),2D m 是ABC 关于原点O 的“伴随点”,直接写出m 的取值范围;(3)已知抛物线()21y x n =−−+上存在ABC 关于原点O 的“伴随点”,求n 的最大值和最小值.参考答案一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1. 【答案】A【分析】本题考查了二次函数的性质,熟练掌握利用顶点式解析式写出顶点坐标的方法是解题的关键.根据抛物线的顶点解析式写出顶点坐标即可. 【详解】解:顶点式()2y a x h k =−+顶点坐标是(),h k ,∴抛物线()212y x =−+的顶点坐标是()1,2, 故选:A .2. 【答案】D【分析】本题考查配方法,根据配方法的步骤:一除二移三配方,进行配方即可.【详解】解:242x x +=24424x x ++=+∴()226x +=;故选D .3. 【答案】B【分析】五角星图案,可以被平分成五部分,因而每部分被分成的圆心角是72︒,并且圆具有旋转不变性,因而旋转72度的整数倍,就可以与自身重合.【详解】该图形被平分成五部分,旋转72度的整数倍,就可以与自身重合,∴旋转的度数至少为72︒,故选:B .【点睛】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.4. 【答案】A【分析】本题考查了一元二次方程根的判别式,一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=−有如下关系:①0∆>,方程有两个不相等的实数根,②0∆=,方程有两个相等的实数根,③0∆<,方程没有实数根.由题意得出()2440m ∆=−−=,计算即可得出答案.【详解】解:∵关于x 的一元二次方程240x x m −+=有两个相等的实数根,∴()2440m ∆=−−=,解得:4m =.5. 【答案】B【分析】此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线231y x =+向左平移2个单位所得直线解析式为:()2321y x =++;再向下平移3个单位为:()()223213322y x x =++−=+−.故选:B .6. 【答案】C【分析】根据对应点连接线段的垂直平分线的交点即为旋转中心,作出旋转中心,可得结论;【详解】如图,点Q 即为所求,(1,1)Q −;故选C .7. 【答案】B【分析】由二次函数解析式可得函数对称轴和增减性,再根据离对称轴的远近的点的纵坐标的大小比较,即可得出123,,y y y 的大小关系.【详解】解:二次函数2(2)y x k =−−+的图像开口向下,对称轴为2x =,∴3(4,)C y 关于对称轴的对称点为3(0,)C y ',∵在对称轴左侧,y 随x 的增大而增大, 又∵10122−<<<, ∴132y y y <<.故选:B .【点睛】本题主要考查了比较函数值的大小,解决此题的关键是理解当二次函数开口向下时,在函数图像上距离对称轴越远的点,函数值越小;当二次函数开口向上时,在函数图像上距离对称轴越远的点,函数值越大.【分析】分别根据四个人的信息得到相应的关系式,假设其中一个不对时,判断其它三个条件是否同时成立.【详解】解:当甲同学的结论正确,即当函数的对称轴是直线1x =时,12b a−=,即2b a =−. 当乙同学的结论正确,即当3x =时,y =−6时,9366a b +−=−,可得3b a =−.当丙同学的结论正确,即当函数的最小值为8−时,22424844ac b a b a a−−−==−,可得28b a =. 当丁同学的结论正确,即当3x =是一元二次方程()2600ax bx a +−=≠的一个根时,9360a b +−=,可得23b a =−.根据3b a =−和23b a =−不能同时成立,可知乙同学和丁同学中有一位的结论是错误的,假设丁同学的结论错误,联立2b a =−和3b a =−,得0a =,0b =,不满足0a ≠,故假设不成立; 假设乙同学的结论错误,联立2b a =−和23b a =−,得2a =,4b =−,此时满足28b a =,故假设成立;故选:B .【点睛】本题主要考查二次函数的图象及性质,熟练掌握二次函数抛物线的对称轴、顶点坐标与系数的关系是解题的关键.二、填空题:本大题共8个小题,每小题3分,共24分.9. 【答案】10x =,26x =【分析】利用因式分解法解答即可.【详解】解:260x x −=,∴()60x x −=,∴0x =或60x −=,解得:10x =,26x =.【点睛】本题主要考查了利用因式分解法解一元二次方程,熟练掌握因数分解法解一元二次方程是解题的关键.10. 【答案】221y x x =−−【分析】此题考查了二次函数的性质,熟练掌握二次函数性质是解本题的关键.写出一个二次函数,使其二次项系数为正数,常数项为1−即可.【详解】解:根据题意得:221y x x =−−(答案不唯一),故答案为:221y x x =−−(答案不唯一)11. 【答案】50︒【分析】根据旋转的性质可得D B ∠=∠,80BOD ∠=︒,求出B ∠,再利用三角形内角和定理求出AOB ∠,进而可求α∠的度数.【详解】解:由旋转得:D B ∠=∠,80BOD ∠=︒,∵2100A D ∠=∠=︒,∴50∠=∠=︒B D ,∴18030AOB A B ∠=︒−∠−∠=︒,∴803050BOD AOB α∠=∠−∠=︒−︒=︒,故答案为:50︒.【点睛】本题考查了旋转的性质,三角形内角和定理,熟练掌握旋转前后的对应角相等,旋转角的定义是解题的关键.12. 【答案】2x =−或=8x【分析】根据图象,2ax bx c kx b +++=的解就是二次函数210y ax bx c a ++≠=()与一次函数20y kx b k +≠=()的图象交点的横坐标,据此解答即可.【详解】解:由图形可得,2ax bx c kx b +++=的解就是二次函数210y ax bx c a ++≠=()与一次函数20y kx b k +≠=()的图象交点的横坐标,所以2ax bx c kx b +++=的解是2x =−或=8x ,故答案为:2x =−或=8x【点睛】本题考查了二次函数与一次函数交点问题,解决本题的关键是熟练掌握用数形结合解决二次函数与一次函数交点问题.13. 【答案】()2120011452x +=【分析】本题考查了一元二次方程的应用;设月平均增长率为x ,根据增长率问题的等量关系列方程即可.【详解】解:设月平均增长率为x ,根据题意得:()2120011452x +=,故答案为:()2120011452x +=.14. 【答案】1−【分析】本题考查了一元二次方程的解及定义,把x =0代入一元二次方程,再根据一元二次方程的定义可得10k −≠,由此即可求解.【详解】解:把x =0代入一元二次方程得,210k −=,且10k −≠,解得,1k =±,且1k ≠,∴1k =−,故答案为:1− .15. 【答案】758 【分析】本题考查了二次函数的应用,根据二次函数的解析式求得顶点,再利用二次函数的性质求出s 的最大值即可得出结论. 【详解】解:60<,∴函数有最大值.∴()201575468s −==⨯−最大值,即汽车刹车后前进了758米才能停下来. 故答案为:758. 16. 【答案】 ①. ① ②. 1010【分析】本题考查了有理数的混合运算,找出方案是解题的关键.(1)因为要经济损失最少,就要使总停产的时间尽量短,显然先修复时间短的即可;(2)一名修理工修按D ,E ,C 的顺序修,另一名修理工修按B ,A 的顺序修,修复时间最短,据此计算即可.【详解】解:(1)①总停产时间:574831021529156⨯+⨯+⨯+⨯+=分钟,②总停产时间:574153292108210⨯+⨯+⨯+⨯+=分钟,③总停产时间:529415310287258⨯+⨯+⨯+⨯+=分钟,故答案为:①;(2)一名修理工修按D ,E ,C 的顺序修,另一名修理工修按B ,A 的顺序修,7514936223101⨯+⨯+⨯+⨯+=分钟,101101010⨯=(元)故答案为:1010.三.解答题:共52分,第17-24题,每题5分,第25-26题,每题6分.解答应写出文字说明、演算步骤或证明过程.17. 【答案】13x =,212x = 【分析】直接代入求根公式求解即可.【详解】解:2a =,7b =−,3c =因为224(7)423250b ac −=−−⨯⨯=>所以754x ±== 所以13x =,212x = 【点晴】本题考查了一元二次方程的解法,熟练记住求根公式是解题的关键.18. 【答案】22−【分析】将x a =代入2390x x −+=得2390a a −+=,由()()()24431313a a a a a +−−−=−−即可求解;【详解】解:将x a =代入2390x x −+=得2390a a −+=,∴239a a −=−,()()()244311633a a a a a +−−−=−−+2313a a =−−913=−−22=−【点睛】本题主要考查一元二次方程的应用,根据所求代数式进行变换求解是解题的关键.19. 【答案】(1)见解析 (2)7【分析】(1)根据题意作出旋转图形即可;(2)由勾股定理得出4AC =,再由旋转的性质结合图形求解即可.【小问1详解】解:如图所示;【小问2详解】解:∵5,3,90AB BC C ==∠=︒,∴4AC ==,∵DCE △由ABC 旋转而成, ∴4CE AC ==,∵90DCE ACB ∠=∠=︒,∴B 、C 、E 共线,∴347BE BC CE =+=+=.【点睛】题目主要考查旋转图形的作法,勾股定理解三角形,熟练掌握运用这些基础知识点是解题关键. 20. 【答案】(1)见解析;(2)2=23y x x −−;(3)40y −≤<.【分析】本题考查了待定系数法求抛物线解析式,描点法画函数图象,根据图像求函数值范围,熟练掌握待定系数法和描点法画函数图象是解题关键.(1)再利用描点法画函数图象;(2)根据表格得出抛物线过点()1,4−、()1,0−、()3,0,将点坐标代入抛物线解析式求出a 、b 、c 即可,(3)分别求出,x =0,13x x ==,时的函数值,利用图象可直接得到答案.【小问1详解】解:抛物线图象如图,【小问2详解】解:∵设二次函数的解析式为2(0)y ax bx c a =++≠,由题意得:当0x =时,=3y −,∴3c =−,∵1x =时,4y =−,当1x =−时,0y =,∴3034a b a b −−=⎧⎨+−=−⎩, 解得12a b =⎧⎨=−⎩, ∴2=23y x x −−;【小问3详解】解:∵()22=23=14y x x x −−−−,∴当x =1时4y =−,当x =0时,2=0203=3y −−−⨯,当3x =时,2=3233=0y −−⨯,∴由图象可得,当03x <<时,40y −≤<. 21. 【答案】(1)见详解 (2)12−或1 【分析】(1)根据24b ac ∆=−即可证明;(2)根据公式法即可得()()122222m m xx ++==,再根据方程的一个实数根是另一个实数根的两倍即可求解;【小问1详解】解:根据题意,()()22Δ42410b ac m m m ⎡⎤=−=−+−+=≥⎣⎦,∴无论m 取何值,方程总有两个实数根.【小问2详解】由题意,根据公式法得,()222m b x a +−==,∴()()122222m m x x +++==,∴()()22222m m +++−=⋅, 解得:12112m m =−=,.【点睛】本题主要考查一元二次方程的应用,掌握相关知识是解题的关键.22. 【答案】1x =【分析】本题考查一元二次方程解决实际问题,根据面积公式可得园地修建花道后剩余的面积为()()85x x −−平方米,根据花道面积等于整个园地面积减去剩余的面积即可列出方程,求解即可. 【详解】解:根据题意,得()()185285122x x ⨯−⨯−−=, 整理,得213120x x −+=,解得:11x =,212x =,∵园地的宽为5米,而2125x =>,∴212x =不合题意,舍去.答:x 的值为1.23. 【答案】(1)2402y x x =+(2)28(3)见解析 (4)2.2【分析】(1)根据长方体表面积公式即可求解;(2)将2x =代入(1)中所得函数关系式即可;(3)描点连线即可完成作图;(4)观察图象,找到图象最低点的横坐标即可.【小问1详解】 解:2221040242y x x x x x=+⨯=+,故答案为:2402y x x=+; 【小问2详解】 解:当2x =时,82028y =+=,故答案为:28;【小问3详解】解:如图所示:【小问4详解】解:观察图象可知,当x 约为2.2dm 时,需要的材料最省,故答案为:2.2.【点睛】本题考查了二次函数在几何中的实际应用.掌握函数的研究方法是解题关键.24. 【答案】(1)m n >(2)6t ≤−或522t ≤≤ 【分析】本题考查了二次函数的图象与性质.熟练掌握二次函数的图象与性质并分情况求解是解题的关键. (1)由2(0)y ax bx c a =++>,可知图象开口向上,且抛物线上的点离对称轴越远,函数值越大,当2t =时,对称轴为2x =,()1,A m ,(4,)B n ,由4221−>−,可得m n <;(2)分当0t <,05t ≤<,56t ≤<, 6t ≥四种情况,作函数图象,根据抛物线上的点离对称轴越远,函数值越大,确定关于t 的不等式,然后求出满足要求的解即可.【小问1详解】解:∵2(0)y ax bx c a =++>,∴图象开口向上,则抛物线上的点离对称轴越远,函数值越大,当2t =时,对称轴为2x =,()2,A m −,(4,)B n ,∵()2242−−>−,∴m n >;【小问2详解】解:当0t <时,如图1,∴(),A t m −在抛物NQ 线段上,()2,B t n 在MN 段上,()00,C x y 在PQ 上,∵对于056x <<,都有0m y n >>,∴6t −≥且225t t t >≥−,且0t <,解得:6t ≤−;当05t ≤<时,如图2,∵对于056x <<,都有0m y n >>,∴26t t −≤−且025t <≤, 解得:522t ≤≤; 当56t ≤<时,如图3,∵对于056x <<,都有0m y n >>,又∵0y 在图象中已包含最小值,∴不存在0y n >的情况,即此种情况舍去;当6t ≥时,如图4,∵对于056x <<,都有0m y n >>,又∵225t t >−,∴0n y >,即此种情况与题意不符,舍去;综上所述,t 的取值范围为6t ≤−或522t ≤≤. 25. 【答案】(1)90α︒−(2)①图形见解析,45DBC ∠=︒.②DF CF +=,证明见解析.【分析】(1)本题由旋转的性质可知AC AD =,结合AB AC =推出AB AD =,再根据等腰三角形性质即可求解.(2)①本题考查等腰三角形性质,根据等腰三角形性质用BAC ∠表示出ABC ∠和ABD ∠,再利用DBC ABC ABD ∠=∠−∠即可解题.②延长CB ,取BM CF =,连接AM ,证明()ABM ACF SAS ≌,得到AF AM =,AFC AMB ∠=∠,利用AF 为BAD ∠的角平分线,再证明()AMC AFD SAS ≌,得到MC DF =,最后结合勾股定理即可解题.【小问1详解】解:由旋转的性质可知,DAC α∠=,AC AD =,AB AC =,BAC α∠=,AB AD ∴=,2BAD α∠=,ABD ∴为等腰三角形,1802902ABD αα︒−∴∠==︒−, 故答案为:90α︒−.【小问2详解】解:①补全图形如下:AB AC =,1802BAC ABC ACB ︒−∠∴∠=∠=, AC AD =, AB AD ∴=,90α=︒,()180902BAC ABD ADB ︒−∠+︒∴∠=∠=,()180901804522BAC BAC DBC ABC ABD ︒−∠+︒︒−∠∴∠=∠−∠=−=︒.②解:DF CF +=,证明如下:证明:延长CB ,取BM CF =,连接AM ,如图所示:AB AC =,,ABC ACB ∴∠=∠ABM ACF ∴∠=∠,()ABM ACF SAS ∴≌,AF AM ∴=,AFC AMB ∠=∠,AB AD =,AF 为BAD ∠的角平分线,AF BD ∴⊥,即90BEF ∠=︒,45DBC ∠=︒,45AMB AFC BEF DBC ∴∠=∠=∠−∠=︒,90MAF ∴∠=︒,AC AD =,90DAF CAF MAF CAF CAM ∠=︒−∠=∠−∠=∠,()AMC AFD SAS ∴≌,MC DF ∴=,222AF AM MF +=,()222AF MC CF ∴=+,即()222AF DF CF =+,整理得DF CF +=.【点睛】本题考查旋转的性质、等腰三角形性质和判定,角平分线性质、全等三角形性质和判定、勾股定理等,解题的关键在于旋转构造等腰三角形和全等三角形,再熟练运用其性质即可解题.26. 【答案】(1)2P 和3P(2)312m −≤≤− (3)最大值为12,最小值为5【分析】(1)根据“伴随点”的定义,画出每个点绕点O 旋转后的对应点,进行判断即可; (2)过点D 作DP x ⊥轴于点P ,过点D 作D Q x '⊥轴于点Q ,证明DPO OQD '≌,求出D 的坐标,再求出点D 在线段AC 上和在线段AB 上时,m 的值,即可得出结论;(3)将ABC 绕点O 逆时针旋转90︒得到A B C ''',根据抛物线上存在ABC 关于原点O 的“伴随点”,得到当抛物线过点A '时n C '时n 有最大值,即可得解.【小问1详解】解:∵()()1,1,3,1A B ,∴AB x ∥轴,如图所示,点()()()1232,0,1,1,1,2P P P −−−绕点O 顺时旋转90︒得到的对应点分别为:()()()1230,2,1,1,2,1P P P ''',其中点()()231,1,2,1P P '',在线段AB 上, ∴2P 和3P 是线段AB 关于原点O 的“伴随点”;【小问2详解】解:∵()()()1,1,3,1,3,2A B C , ∴ABC 在第一象限,∵点(),2D m 是ABC 关于原点O 的“伴随点”; ∴点D 在第二象限,过点D 作DP x ⊥轴于点P ,过点D 作D Q x '⊥轴于点Q ,则:90DPO D QO '∠=∠=︒,∵OD 绕点O 顺时针旋转90︒得到OD ', ∴OD OD '=,90DOD '∠=︒,∴90DOP OD Q D OQ ''∠=∠=︒−∠, ∴DPO OQD '≌,∴,OQ DP D Q OP '==,∵(),2D m , ∴,2OQ DP m D Q OP '====, ∵ABC 在第一象限,∴()2,D m '−,设直线AC 的解析式为:y kx b =+,则: 132k b k b +=⎧⎨+=⎩, 解得:1212k b ⎧=⎪⎪⎨⎪=⎪⎩,第21页/共21页 ∴1122y x =+, 当D 在AC 上时,112m −=+,解得:32m =−; 当D 在AB 上时,1m −=,解得:1m =−; ∴当312m −≤≤−时,点(),2D m 是ABC 关于原点O 的“伴随点”; 【小问3详解】 解:如图:ABC 绕点O 逆时针旋转90︒得到A B C ''',其中()()()1,1,1,3,2,3A B C '''−−−.∵抛物线上存在ABC 关于原点O 的“伴随点”, ∴当()21y x n =−−+过A ',即()2111n =−−−+,解得:5n =,∴n 的最小值为5;同理,当()21y x n =−−+过C ',得到n 的最大值为12.【点睛】本题考查坐标与图形,旋转的性质,一次函数和二次函数的综合应用,解题的关键是理解并掌握“伴随点”的定义,利用数形结合的思想进行求解.。
2024年人教版初三数学下册期中考试卷(附答案)
![2024年人教版初三数学下册期中考试卷(附答案)](https://img.taocdn.com/s3/m/0d7c11985ebfc77da26925c52cc58bd6318693a3.png)
2024年人教版初三数学下册期中考试卷(附答案)一、选择题:5道(每题1分,共5分)1. 下列哪个选项是勾股定理的正确表达?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^22. 在平面直角坐标系中,点P(2,3)关于x轴的对称点是?A. P'(2,3)B. P'(2,3)C. P'(2,3)D. P'(2,3)3. 下列哪个选项是平行四边形的性质?A. 对角线相等B. 对角线互相垂直C. 对角线互相平分D. 对角线互相平行4. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx^2 + cC. y = ax^2 + bx + dD. y = ax^3 + bx + d5. 下列哪个选项是圆的面积公式?A. A = πr^2B. A = 2πrC. A = πrD. A = 2πr^2二、判断题5道(每题1分,共5分)1. 一个等腰三角形的底角是60度,则顶角也是60度。
()2. 一个数的平方根只有一个。
()3. 任何两个圆都是相似的。
()4. 两个相似的三角形,它们的对应边长之比相等。
()5. 一个二次函数的图像是一个抛物线。
()三、填空题5道(每题1分,共5分)1. 勾股定理中,斜边的长度是直角边的长度的平方和的平方根。
2. 在平面直角坐标系中,点P(x,y)关于y轴的对称点是P'( , )。
3. 平行四边形的对角线互相_________。
4. 二次函数的一般形式是y = ________。
5. 圆的面积公式是A = ________。
四、简答题5道(每题2分,共10分)1. 简述勾股定理的内容。
2. 简述平行四边形的性质。
3. 简述二次函数的一般形式。
4. 简述圆的面积公式。
5. 简述两个相似的三角形的性质。
五、应用题:5道(每题2分,共10分)1. 一个直角三角形的两条直角边分别是3cm和4cm,求斜边的长度。
初三数学期中考试试卷
![初三数学期中考试试卷](https://img.taocdn.com/s3/m/91e5c861cd1755270722192e453610661ed95a2f.png)
初三数学期中考试试卷一、选择题(每题3分,共30分)1. 若a、b、c是三角形的三边,且满足a^2 + b^2 = c^2,则该三角形是A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形2. 下列不等式中,解集为x > 2的是A. x - 2 > 0B. x + 2 < 0C. 2x > 4D. x^2 - 4 < 03. 函数y = 2x + 3的图象不经过第A. 一象限B. 二象限C. 三象限D. 四象限4. 已知方程x^2 - 5x + 6 = 0的两个根为x1和x2,则x1 + x2的值为A. 1B. 2C. 3D. 55. 一个数的平方根是2或-2,则这个数是A. 4B. -4C. 0D. 无法确定6. 一个不透明的袋子中装有3个红球和2个白球,随机摸出一个球,摸到红球的概率是A. 0.3B. 0.4C. 0.5D. 0.67. 一个圆的半径为5厘米,它的面积是A. 25π平方厘米B. 50π平方厘米C. 75π平方厘米D. 100π平方厘米8. 一个正三角形的边长为a,则它的高为A. a/2B. a√3/2C. a√3D. 2a√39. 已知一个二次函数的图象开口向上,且经过点(1,0)和(-1,0),则该二次函数的对称轴是A. x = 1B. x = -1C. x = 0D. x = 210. 下列图形中,不是中心对称图形的是A. 正方形B. 等边三角形C. 圆D. 菱形二、填空题(每题3分,共15分)11. 已知一个等腰三角形的底边长为6,腰长为5,则该三角形的周长为______。
12. 一个数的立方根是-2,则该数为______。
13. 一个扇形的圆心角为60°,半径为4,则该扇形的面积为______。
14. 一个二次函数y = ax^2 + bx + c的顶点坐标为(2, -1),则b的值为______。
15. 一个正五边形的内角和为______。
2024年北京八中初三(上)期中数学试题及答案
![2024年北京八中初三(上)期中数学试题及答案](https://img.taocdn.com/s3/m/90e3c56f78563c1ec5da50e2524de518964bd3ec.png)
2024-2025学年度第一学期期中练习题年级:初三 科目:数学 班级:_________ 姓名:__________..1. 在平面直角坐标系中,点A (3,4)-关于原点对称的点的坐标是( ) A. (3,4) B. (3,-4) C. (-3,-4) D. (-4,3) 2.已知⊙O 的半径为4,如果OP 的长为3,则点P 在( )A .⊙O 内B .⊙O 上C .⊙O 外D .不确定3. 若关于x 的一元二次方程220x x m +-=有一个根为 1,则另一个根的值为( ) A. 3B. 3-C. 32-D.124. 如图,在⊙O 中,弦AB ,CD 相交于点E ,∠AEC =74°,∠ABD =36°,则∠BOC 的度数为( )A. 100°B. 110°C. 148°D. 140°5. 在 圆、正六边形、平行四边形、等腰三角形、正方形这五个图形中,既是轴对称图形又是中心对称图形的图形有( )A .2个B .3个C .4个D .5个 6. 在平面直角坐标系xOy 中,抛物线2y ax bx c =++如图所示,则关于x 的方程240++-=ax bx c 的根的情况为( )A.没有实数根B.有两个相等的实数根C. 有两个不相等的实数根D.有实数根 7. 如图,点O 为线段AB 的中点,∠ACB =∠ADB =90°, 连接OC,OD .则下面结论不.一定成立的是( )A .OC =ODB .∠BDC =∠BAC C .∠BCD+∠BAD =180° D .AC 平分∠BAD第4题图 第6题图 第7题图8. 在平面直角坐标系xOy 中,抛物线2(0)y ax bx c a =++≠的顶点为P (-1,k ),且经过点 A (-3,0),其部分图象如图所示,下面四个结论中, ①0abc >; ②2b a =-;③若点()N t n ,在此抛物线上且n c <,则02或><-t t ; ④对于任意实数t ,都有2(1)(1)0-++≤a t b t 成立. 正确的有( )个A. 0B. 1C. 2D. 3二、填空题(本题共16分,每小题2分)9. 写出一个开口向上,对称轴为1=x 的抛物线的表达式 .10. 将抛物线2=y x 向下平移3个单位,向左平移1个单位,得到新的抛物线的表达式是 . 11. ⊙O 的直径为17cm ,若圆心O 与直线l 的距离为7.5cm ,则l 与⊙O 的位置关系是________(填“相交”、“相切”或“相离”).12. 如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m ,另一边减少了3m ,剩余一块面积为20m 2的矩形空地,若原正方形空地边长是x m ,则可列关于x 的一元二次方程 .第12题图 第13题图 第16题图13. 如图,P A ,PB 分别与⊙O 相切于点A ,B ,点C 为劣弧AB 上的点,过点C 的切线分别交P A ,PB 于点M ,N .若P A =8,则△PMN 的周长为 .14. 在平面直角坐标系xOy 中,抛物线21(0)(3)a y a x +<=-的顶点坐标是 ;若点(2,1y ),(6,2y )在此抛物线上,则1y ,2y ,1的大小关系是 (用“<”号连接). 15. 已知二次函数2(2)2y a x a =--, 当14x ≤≤ 时,函数值y 的最大值为4,则a 的值为 .16. 如图,以点G (0,1)为圆心,2为半径的圆与x 轴交于A ,B 两点,与y 轴交于C ,D 两点,E 为G 上一动点,CF AE ⊥于点F ,连接FG ,则弦AB 的长度为 ;点E 在G 上运动的过程中,线段FG 的长度的最小值为 .三、解答题(本题共68分,17题每小题 3分;18-19题每题 4 分; 20-21题每题6分;22题5分;23题7分;24题6分;25题5分;26题6分;27题7分;28题6分) 17. 解方程:(1) 2410x x --=; (2)2230+=x x .18. 已知:如图,△ABC 绕某点按一定方向旋转一定角度后得到△A 1B 1C 1,点A ,B ,C 分别对应点A 1,B 1,C 1.(1)请通过画图找到旋转中心,将其记作O ; (2)直接写出旋转方向 (填顺时针或逆时针),旋转角度 °; (3)在图中画出△A 1B 1C 1.19. 如图, AB 是⊙O 的弦,半径OD ⊥AB 于点C . 若AB =16,CD =2,求⊙O 的半径的长.20. 已知关于x 的一元二次方程220mx x --=有两个不相等的实数根. (1)求m 的取值范围;(2)当m 取最小的正整数时,求方程的根.B21. 已知二次函数y=ax ²+bx+c (a ≠0)图象上部分点的横坐标x ,纵坐标y 的对应值如下表所示:(1值为 (2)求此二次函数的解析式,并用描点法画出该二次函数的图象;(不用列表) (3)一次函数3=+y kx ,当03x <<时,对于x 的每一个值,都有23kx ax bx c +>++,直接写出k 的取值范围.22. 如图,△ABC 中,∠C =90°. 将△ABC 绕点B 逆时针旋转60°得到△''A BC .若'3BC =,AC =4,求'AA 的长.23. 小明在学习了圆内接四边形的性质“圆内接四边形的对角互补”后,想探究它的逆命题“对角互补的四边形的四个顶点在同一个圆上”是否成立. 他先根据命题画出图形,并用符号表示已知,求证.已知:如图,在四边形ABCD 中,∠B+∠ADC=180º.求证:点A ,B ,C ,D 在同一个圆上.他的基本思路是依据“不在同一直线上的三个点确定一个圆”,先作出一个过三个顶点A ,B ,C 的⊙O ,再证明第四个顶点D 也在⊙O 上. 具体过程如下:步骤一 利用直尺与圆规,作出过A ,B ,C 三点的⊙O ,并保留作图痕迹.图1步骤二用反证法证明点D也在⊙O上.假设点D不在⊙O上,则点D在⊙O内或⊙O外.(ⅰ)如图2,假设点D在⊙O内.延长CD交⊙O于点D1,连接AD1,∴∠B+∠D1=180º(①).(填推理依据)∵∠ADC是△ADD1的外角,∴∠ADC=∠DAD1+∠D1.∴∠ADC>∠D1.∴∠B+∠ADC>180º.这与已知条件∠B+∠ADC=180º矛盾.∴假设不成立.即点D不在⊙O内.(ⅱ)如图3,假设点D在⊙O外.设CD与⊙O交于点D2,连接AD2,∴②+∠AD2C=180º.∵∠AD2C是△AD2D的外角,∴∠AD2C=∠DAD2+ ③.∴④<∠AD2C.∴⑤+∠ADC<180º.这与已知条件∠B+∠ADC=180º矛盾.∴假设不成立.即点D不在⊙O外.综上所述,点D在⊙O上.∴点A,B,C,D在同一个圆上.阅读上述材料,并解答问题:(1)根据步骤一,补全图1(要求:尺规作图,保留作图痕迹);(2)填写推理依据:①_____________________________________________;(3)填空:②,③,④,⑤.24. 如图,点C在以AB为直径的⊙O上,CD平分∠ACB交⊙O于点D,交AB于点E,过点D作DF∥AB,交CO的延长线于点F.(1)求证:直线DF是⊙O的切线;(2)若A∠=30°,AC DF的长.图2图325. 投掷实心球是北京市初中学业水平考试体育现场考试的选考项目之一. 实心球被投掷后的运动的运动路线可以看作是抛物线的一部分. 建立如图所示的平面直角坐标系,实心球从出手(点A 处)到落地的过程中,其竖直高度y (单位:m )与水平距离x (单位:m )近似满足二次函数关系.小石进行了三次训练,每次实心球的出手点A 的竖直高度为2m .记实心球运动路线的最 高点为P ,训练成绩(实心球落地点的水平距离)为d (单位:m ).训练情况如下:(1)求第二次训练时满足的函数关系式; (2)小石第二次训练的成绩2d 为 m ; (3)直接写出训练成绩1d ,2d ,3d 的大小关系.26. 在平面直角坐标系xOy 中,二次函数2222(0)y ax a x a =-+≠的图象与y 轴交于点A ,与直线x =2交于点B.(1)若AB ∥x 轴,求二次函数解析式;(2)记抛物线在A ,B 之间的部分为图象G (包含A ,B 两点),若对于图象G 上任意一点C (C x ,C y ),都有2C y ≤,求a 的取值范围.2OA27. 如图,Rt ABC∆中,∠B=90°,∠ACB=α(0°<α<45°),点E是线段BC延长线上一点,点D为线段EC的中点,连接EA. 将射线EA绕点E顺时针旋转α得到射线EM,过点A作AF⊥EM,垂足为点F,连接FD.(1)用等式表示线段BD与DF之间的数量关系,并证明;(2)求∠FDB的大小(用含α的代数式表示);(3)若点D满足BC=CD,直接写出一个α的值,使得CF⊥BE.28.在平面直角坐标系xOy 中,将对角线交点为T 的正方形记作正方形T ,对于正方形T 和点P (不与O 重合)给出如下定义:若正方形T 的边上存在点Q ,使得直线OP 与以TQ 为半径的⊙T 相切于点P ,则称点P 为正方形T 的“伴随切点”.(1)如图,正方形T 的顶点分别为点O ,A (2-,2),B (4-,0),C (2-,2-).①在点1P (1-,1),2P (1-,1-),3P (2-,1)中,正方形T 的“伴随切点”是_____________;②若直线y x b =-+上存在正方形T 的“伴随切点”,求b 的取值范围;(2)已知点T (t ,1t -),正方形T 的边长为2.若存在正方形T 的两个“伴随切点”M ,N ,使得OMN 为等边三角形,直接写出t 的取值范围.x第1页,共4页2024-2025学年度第一学期初三数学期中练习答案一、选择题(本题共16分,每小题2分)题号12345678答案BACDBCDD二、填空题(本题共16分,每小题2分)9.2(1)y x =-(答案不唯一);10.2(1)3y x =+-;11.相交;12.(2)(3)20x x --=13.16;14.(3,1);211y y <<;15.2或2-;16.1-.三、解答题(本题共68分,17题6分;18-19题每题4分;20-21题每题6分;22题5分;23题7分;24题6分;25题5分;26题6分;27题7分;28题6分)17.解:(1)2410x x --=;2(2)5x -=1222x x ==(2)2230x x +=.(23)0x x +=1230,2x x ==-18解:(1)如图;(2)顺时针;90(3)如图19.解:连接OA .∵OD ⊥AB ,AB =16,∴AC =12AB =8.设OA=x ,则OC=x -2.∵OD ⊥AB ,∴OC ²+AC ²=OA²,第2页,共4页∴(x -2)²+64=x ².解得,x =17,∴⊙O 的半径为17.20.解:(1)∵关于x 的一元二次方程220mx x --=有两个不相等的实数根,∴14(2)810m m ∆=-⋅-=+>,∴18m >-且m ≠0.(2)∵m 取最小的正整数,∴m =1.此时一元二次方程为:x ²-x -2=0,解得12x =,21x =-.21.(1)0;(2)设y =a (x -2)²-1.将点(1,0)代入,得a =1,即y =(x -2)²-1.(3)1k ≥-且0k ≠.22.解:∵将△ABC 绕点B 逆时针旋转60°得到△''A BC∴△ABC ≌△''A BC ,∠'A BA =60°,∴''3BC B C ==.∵∠C =90°,AC =4,∴AB =5.∵'AB A B =,∴△'A BA 为等边三角形,∴''AA A B ==5.23.解:(1)如图;(2)圆内接四边形对角互补;(3)∠B ;∠D ;∠D ;∠B .24.(1)证明:连接OD ,∵CD 平分∠ACB ,∴∠ACD =∠BCD ,∴∠AOD =∠BOD ,∵∠AOD +∠BOD =180°,∴∠AOD =90°,∴OD ⊥AB ,第3页,共4页∵FD ∥AB ,∴OD ⊥FD ,∴FD 为⊙O 的切线.(2)∵AB 为⊙O 的直径,∴∠ACB =90°.∵∠A =30°,AC =∴AB =4,∴122OD AB ==.∴∠COB =2∠A =60°,∴∠AOF =∠COB =60°,∴∠FOD =30°.设DF=x ,OF =2x ,2=,∴3x =∴3DF =.25.(1)设2(4) 3.6y a x =-+,∵过点A (0,2),∴20(04) 3.6a =-+,∴0.1a =-,∴20.1(4) 3.6y x =--+.(2)10;(3)312d d d <<26.(1)∵A (0,2),AB ∥x 轴,∴B (2,2),∴24422a a -+=,∵0a ≠,∴1a =.∴222y x x =-+.(2)∵对称轴为:x=a ,∴A (0,2)关于对称轴x=a 的对称点'A (2a ,2).若a >0,∵当02x ≤≤时,2C y ≤,第4页,共4页∴22a ≥,∴1a ≥.若a <0,当02x ≤≤时,y 随x 增大而减小,∴2C y ≤恒成立.综上,1a ≥或a <0.27.(1)BD=DF ;证明:延长EF ,使FN =EF ,连接AN ,NC .∵AF ⊥EN ,∴AE =AN ,①∴∠EAN =180°2α-.延长CB ,使CB =BH .∵∠ABC =90°,∴AC =AH ,②∴∠CAH =180°2α-,∴∠NAC =∠EAH ,③∴△NCA ≌△EAH ,∴CN =EH .∵ED =DC ,EF =FN ,∴CN =2FD .∵EH =2BD ,∴FD =BD .(2)解:由(1)可知,△EAH ≌△NCA ,∴∠NCA =∠A =α,∴∠NCH =2α.∵NH ∥FD ,∴∠FDB =∠NCH =2α.(3)30°28.(1)①1P ,2P ;②∴21b -≤≤.(2t ≤≤t ≤≤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三月考数学试题说明:本试卷分为第I卷(选择题)和第II卷(非选择题)两部分,共8页,满分 120分,考试时间120分钟。
注意事项:要作图(含辅助线)或画表,先用铅笔进行画线、绘图,再用黑色字迹的钢笔或签字等描黑。
(否则卷面成绩成绩为0分)一、精心选一选(本大题共10小题,每小题3分,共30分.每小题给出四个答案,其中只有一个是正确的)1.4-1的结果是(C)C.3D.﹣3A.B.﹣2.位于环水东湾新城区的茂名市第一中学新校区占地面积约为536.5亩.将536.5用科学记数法可表示为(B)A.0.5365×103B.5.365×102C.53.65×10 D.536.53.如图,AB是⊙O的直径,AB⊥CD于点E,若CD=8,则DE=(B)A.3B.4C.5D.64.方程组的解为(D)A.B.C.D.5.在下列正方体的表面展开图中,剪掉1个正方形(阴影部分),剩余5个正方形组成轴对称图形的是( C )6.一个n边形的内角和为360度,则n的值是(B)A.3B.4C.5D.67.下列调查中,适宜采用全面调查(普查)方式的是(D)A.对一批圆珠笔使用寿命的调查B.对全国九年级学生身高现状的调查C.对某品牌烟花爆竹燃放安全的调查D.对一枚用于发射卫星的运载火箭各零部件的检查8.甲乙两名射击运动员各进行10次射击练习,成绩均为95环,这两名运动员成绩的方差分别是:=0.6,=0.4,则下列说法正确的是(B)A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲乙两人的成绩一样稳定D.无法确定谁的成绩更稳定9.如果x>0,y<0,x+y<0,那么下列关系式中正确的是(B)A.x>y>﹣y>﹣x B.﹣x>y C.y>﹣x>﹣y>x D.﹣x>y>x>﹣y10.如图,四边形ABCD四边的中点分别为E,F,G,H,对角线AC与BD相交于点O,若四边形EFGH的面积是3,则四边形ABCD的面积是(B)A.3B.6C.9D.12二、细心填一填(本大题共5小题,每小题3分,共15分.请你把答案填在横线的上方).11.分解因式:a2y﹣ay=ay(a-1)_________.12.如图所示,建高楼常需要用塔吊来吊建筑材料,而塔吊的上部是三角形结构,这是应用了三角形的哪个性质?答:稳定性__.(填“稳定性”或“不稳定性”)13.若分式54-+a a 的值为0,则a 的值是 -4____ .14.如图,在3×3的方格中(共有9个小格),每个小方格都是边长为1的正方形,O 、B 、C 是格点,则扇形OBC 的面积等于 __45π_______ (结果保留π)15.在平直的铁路上行驶的火车的车轮与铁轨的位置关系是: 相切 。
三、用心做一做(本大题共3小题,每小题7分,共21分)16.计算:222---a a a 解:原式=122=--a a17.求不等式组⎩⎨⎧≤-≥+15213x x 的整数解.解:由x+3≥1得 x ≥-2;由2x-5≤1得x ≤3所以原不等式组的解集是-2≤ x ≤3所以原不等式组的整数解是:-2、-1、0、1、2、3 。
18.如图,图中的小方格都是边长为1的正方形,△ABC 的顶点坐标分别为A (-3 ,0),B (-1 ,-2),C (-2 , 2).请在图中画出△ABC 绕B 点顺时针旋转180°后的图形; 解:画图如下(△A 1BC 1即为所求):四、沉着冷静,缜密思考(本大题共2小题,每小题7分,共14分)19.(7分)(2012•茂名)某校计划组织学生到市影剧院观看大型感恩歌舞剧,为了解学生如何去影剧院的问题,学校随机抽取部分学生进行调查,并将调查结果制成了表格、条形统计图和扇形统计图(均不完整).(1)此次共调查了多少位学生?(2)将表格填充完整;步行骑自行车坐公共汽车其他50 150_________225_________75_________(3)将条形统计图补充完整.解:(1)50÷10%=500(位)答:此次共调查了500位学生.(2)填表如下:骑自行车:500×30%=150人,坐公共汽车:500×45%=225人,其他:500﹣50﹣150﹣225=75人.故答案为:150,225,75.(3)如图20.市“消费者协会”联合市工商局在某中学分别开展打击“地沟油”及“瘦肉精”的食品宣传讲座,小青同学不知该如何听课,最后他决定通过掷硬币来确定,掷硬币规则如下:连续抛掷硬币三次,如果三次正面朝上或三次反面朝上,则小青听两堂讲座;如果两次正面朝上一次反面朝上,则小青去听有关“地沟油”的讲座;如果两次反面朝上一次正面朝上,则小青去听有关“瘦肉精”的讲座。
(1)用画树状图的方法表示三次抛掷硬币的所有结果;(2)小青听两堂知识讲座的概率有多大?(3)小青用这个游戏规则去选择听“地沟油”或“瘦肉精”的讲座是否合理?为什么?解:(1)画树状图如下:∴三次抛掷硬币的所有结果有:正正正,正正反,正反正,正反反,反正正,反正反,反反正,反反反8种。
(2)∵由(1)可知,三次抛掷硬币共有8种等可能结果,三次正面朝上或三次反面朝上的有2种,∴小青听两堂知识讲座的概率为21=84。
(3)这个游戏规则合理。
∵两次正面朝上一次反面朝上的结果有3种:正正反,正反正,反正正,∴小青去听有关“地沟油”的讲座概率为38。
∵两次反面朝上一次正面朝上的结果有3种:正反反,反正反,反反正,∴小青去听有关“瘦肉精”的讲座概率为38。
∴小青去听有关“地沟油”的讲座概率=小青去听有关“瘦肉精”的讲座概率。
∴这个游戏规则合理。
五、满怀信心,再接再厉(本大题共3小题,每小题8分,共24分)21.如图,已知矩形ABCD中,F是BC上一点,且AF=BC,DE⊥AF,垂足是E,连接DF.求证:(1)△ABF≌△DEA;(4分)(2)DF是∠EDC的平分线.(3分)证明:(1)∵四边形ABCD是矩形,∴∠B=90°,AD=BC,AD∥BC,∴∠DAE=∠AFB,∵DE⊥AF,∴∠DEA=∠B=90°,∵AF=BC,∴AF=AD,在△ABF和△DEA中∵,∴△ABF≌△DEA(AAS);(2)∵由(1)知△ABF≌△DEA,∴DE=AB,∵四边形ABCD是矩形,∴∠C=90°,DC=AB,∴DC=DE .∵∠C=∠DEF=90°∴在Rt △DEF 和Rt △DCF 中∴△RtDEF ≌Rt △DCF (HL ) ∴∠EDF=∠CDF ,∴DF 是∠EDC 的平分线.22.大润发超市进了一批成本为8元/个的文具盒。
调查发现:这种文具盒每个星期的销售量y (个)与它的定价x (元/个)的关系如图所示:第24题图(1)求这种文具盒每个星期的销售量y (个)与它的定价x (元/个)之间的函数关系式(不必写出自变量x 的取值范围);(4分)(2)每个文具盒定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润最高?最高利润是多少?(4分) 解:(1)设y =kx +b。
1分由题意得:1020014160k b k b +=⎧⎨+=⎩。
3分解之得:k =-10;b =300。
∴y =-10x +300可行 。
4分(2)由上知超市每星期的利润:W =(x -8)·y =(x -8)(-10x +300) 。
5分=-10(x -8)(x -30)=-10(x 2-38x +240) =-10(x -19)2+1210 。
6分∴当x =19即定价19元/个时超市可获得的利润最高。
。
7分 最高利润为1210元。
。
8分23.如图,点A ,B ,C ,D 在⊙O 上,AB=AC ,AD 与BC 相交于点E ,AE D 12E =,延长DB 到点F ,使FB D 12B =,连接AF . (1)证明:△BDE ∽△FDA ;(4分)(2)试判断直线AF 与⊙O 的位置关系,并给出证明.(4分)200 160 12010 14 x销售量y (个)(1)证明:在△BDE 和△FDA 中,∵FB=12BD ,AE =12ED ,∴BD ED 2FD AD 3==。
又∵∠BDE =∠FDA ,∴△BDE ∽△FDA 。
(2)解:直线AF 与⊙O 相切。
证明如下:连接OA ,OB ,OC ,∵AB =AC ,BO =CO ,OA =OA ,∴△OAB ≌△OAC (SSS )。
∴∠OAB =∠OAC 。
∴AO 是等腰三角形ABC 顶角∠BAC 的平分线。
∴AO ⊥BC 。
∵△BDE ∽FDA ,得∠EBD =∠AFD ,∴BE ∥FA 。
∵AO ⊥BE ,∴AO ⊥FA 。
∴直线AF 与⊙O 相切。
六、灵动智慧,超越自我(本大题共2小题,每小题8分,共16分) 24.如图,一次函数y=x+1与反比例函数ky=x的图象相交于点A(2,3)和点B. (1)求反比例函数的解析式;(3分) (2)求点B 的坐标;(3分)(3)过点B 作BC ⊥x 轴于C ,求ABC S ∆.(2分)解:(1)将A 点坐标代入反比例函数ky=x 得k =6。
∴反比例函数的解析式为6y=x。
(2)由题意得方程组:y=x+16y=x⎧⎪⎨⎪⎩,得:x(x+1)=6, 即 2x +x 6=0-,解得 12x =3, x =2-。
∴B 点坐标为(-3,-2)。
(3)在△ABC 中,以B C 为底边,则高为2-(-3)=5。
∴ABC 1S =2552∆⨯⨯=。
25.如图,在平面直角坐标系中,二次函数y=x 2+bx+c 的图象与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,﹣3)点,点P 是直线BC 下方的抛物线上一动点.(1)求这个二次函数的表达式.(3分)(2)连接PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP′C ,那么是否存在点P ,使四边形POP′C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由.(3分) (3)当点P 运动到什么位置时,四边形ABPC 的面积最大并求出此时P 点的坐标和四边形ABPC 的最大面积.(2分)解:(1)将B 、C 两点的坐标代入得(2分) 解得:;所以二次函数的表达式为: y=x 2﹣2x ﹣3(3分)(2)存在点P ,使四边形POPC 为菱形; 设P 点坐标为(x ,x 2﹣2x ﹣3),PP ′交CO 于E 若四边形POP ′C 是菱形,则有PC=PO ; 连接PP ′,则PE ⊥CO 于E , ∴OE=EC= ∴y=;(4分)∴x2﹣2x﹣3=解得x1=,x2=(不合题意,舍去)∴P点的坐标为(,)(6分)(3)过点P作y轴的平行线与BC交于点Q,与OB交于点F,设P(x,x2﹣2x﹣3),易得,直线BC的解析式为y=x﹣3则Q点的坐标为(x,x﹣3);S四边形ABPC=S△ABC+S△BPQ+S△CPQ=AB•OC+QP•OF+QP•BF==(10分)当时,四边形ABPC的面积最大此时P点的坐标为,四边形ABPC的面积的最大值为.(8分)。