决策支持系统的应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于决策支持系统的应用的读书报告

一、摘要:现今,用PowerPoint制作的课件已在教学中得到广泛的应用,

但PowerPoint制作的课件交互能力差,功能简单且不易于扩展。而本文主要介绍《决策支持系统》课件的制作。在该系统的设计过程中,本文主要作了如下工作:首先,说明了教学和多媒体结合的可行性,及各种创作工具的比较和选用;其次简要概括了系统设计的一般流程,并在分析了课件界面设计的原则和风格之后对该课件的大体程序进行分析,最后提出了制作过程中总结出的一些经验技巧,并对多媒体课件技术提出展望之处。

二、引言:

决策支持系统(DSS)的概念提出20多年来,随着决策理论、信息技术、数据库技术、办公自动化、专家系统等相关技术的发展,DSS取得了长足的进展,在许多领域得到应用。DSS已成为许多行业经营管理中一个不可缺少的现代化支持工具。本期专题介绍了银行、房地产、企业等应用DSS的情况,包括如下文章:

1.决策支持系统建立中的关键问题

——兼论云南玉溪卷烟厂信息管理与决策支持系统

本文以建立云南玉溪卷烟厂信息管理与决策支持系统为例,介绍了决策支持系统建立中的关键问题,包括决策支持与数据管理系统,模型、方法和知识管理系统及用户交互环境。

2.银行智能决策支持系统

面对激烈竞争和瞬息万变的金融市场,传统的银行决策方法已不能适应现代化银行发展的需要。本文探讨如何将计算机决策支持技术应用到银行高层决策,建立银行智能决策支持系统。

3.地震预报智能决策支持系统的研制与应用

地震是众多自然灾害中对人类生存造成危害最为严重的一种灾害。为了科学、准确预报地震,减轻地震的影响,建立地震预报智能决策支持系统具有非常重要的价值。

4.智能房地产决策支持系统eid

柔性综合集成能够使系统按照当前运行状况,动态配置所需的计算机部件,以解决传统专家系统表示和推理单一、难以融合异质计算部件等缺点。本文介绍在构建智能房地产决策支持系统中,采用基于任务归约和子任务联想的知识汤建模方法,对柔性综合集成作了初步的尝试。

5.低成本cims成本管理决策支持系统

本文以特钢企业为背景,阐述了建立网络环境下低成本cims成本管理决策支持系统的基本思想,并提出cims环境下管理与决策的模型库、数据库、方法

库和知识库的分析与设计,进而达到控制钢铁企业成本的目的。

决策支持系统是以日常业务处理系统的数据为基础,利用数学的或智能的方法,对业务数据进行综合、分析,预测未来业务的变化趋势,在企业发展、市场经营战略等重大问题上为领导层提供决策帮助的计算机系统。近年来企业(包括商业)部门业务处理以及信息管理系统的广泛使用,既为决策支持系统的建立提供了基础,也为它的应用产生了强大的推动力。

与此同时,计算机在理论与技术上的新进展也使决策支持系统的研究与应用水平不断提高,使它从早期的批处理方式演变成今天的联机分析处理方式,也带动了数据仓库、多维数据库、数据挖掘等新技术的研究。

决策支持系统大体上由以下三个部分组成:

对决策用的数据进行管理的决策数据管理子系统。

决策知识、模型管理子系统。

与用户进行对话、接收命令,提供决策结果的交互环境。

三、内容概要:

在建立决策支持系统中,以下几个问题显得尤为关键:

一、决策支持与数据管理系统

数据管理系统必须为决策支持的分析处理提供以下服务:

(1)根据主题需要,从oltp数据库中抽取分析用的数据。为此在抽取过程中要对原始数据进行分类、求和、统计等处理,抽取的过程实际上是数据的再组织。

(2)在抽取过程中,完成数据净化,即去掉不合格的原始数据,必要时还必须对缺损的数据加以补充。

(3)在改变分析、决策的主题时,可以按主题进行数据查询与访问。

(4)采用脱机大容量存储、联机磁盘存储、内存存储的多级存储模式,解决数据量巨大及按照主题、粒度划分的数据组织问题。

今天,人们常把满足上述功能需求的数据管理系统称为数据仓库系统。数据抽取与净化、存储组织等,都是建立数据仓库的关键技术。除此之外,在设计数据仓库时,还应特别重视数据的粒度与划分问题。

与传统数据库设计类似,好的数据仓库设计也采用概念模型、逻辑模型与物理模型的方法。所不同的是,数据仓库的数据模型是紧紧围绕前面所述的决策分析用的主题等范围进行的。

数据仓库系统可以在关键数据库的基础上建立。采用这一方法,开发人员把关系数据库当作一种存储结构,自己设计、实现数据仓库必备的功能。当然也可以利用关系数据库软件厂家提供的某些工具。目前这类工具还比较缺乏。

实现决策用的数据管理系统的另一种途径是采用多维数据库。多维数据库中的维是指在进行分析预测时可以变化的角度。例如,一个企业在全国各地的产品销售,可以按时间逐年统计,也可以按地区或者产品分类统计,这里的时间、地区、产品就是不同的维。多维数据库为面向主题的分析决策提供了更大的灵活性。它支持对按总体统计的详略级别组织的数据进行特殊查询,从宏观的结果逐步向下跟踪产生这些结果的微观数据,或者反过来由底层微观数据逐步向上得到高层的宏观结果。

对于较为简单的分析、决策应用而言,决策数据管理系统可以采用多维电子表格实现。

这是在普通二维电子表格上的扩充,通过增加维数,可以满足面向主题的分析、决策的需求。

二、模型、方法和知识管理系统

采用数据仓库和多维数据库技术的数据管理子系统将数据进行整理(预处理)和净化之后,形成可靠的易于进行决策的"数据源"(即数据仓库或多维数据库),这个"数据源"的结构与形式和决策支持系统所采用的模型与知识有关。决策粗略地分为结构化决策支持、非结构化决策支持、半结构化决策支持。一个较好的决策支持系统必须完成这三方面的决策支持。

1.模型、方法和知识管理系统

在决策支持系统中,模型、方法和知识的管理是核心,它对依问题建立的模型库、方法库和知识库进行管理。

模型、方法和知识管理系统的主要任务是:

(1)对模型库、方法库和知识库进行维护。模型、方法和知识管理系统必须有对三库的维护界面;可根据问题的需要对模型、方法和知识库进行增加、删除和修改,并保证三库的一致性:一是系统运行过程调用每个库时不发生矛盾,特别是对知识库的维护更为复杂;二是每种模型、方法和知识都能调用到。

(2)模型、方法和知识管理系统根据用户的要求和数据仓库提供的数据,能有效地选择模型、方法和知识,经系统运行得到相应的结果,并将结果送给交互环境进行输出。

2.智能决策支持系统

智能决策支持系统一般是在模型、方法和知识管理系统的基础上增加专家系统和数据采掘与知识发现技术。目前虽然一般的决策支持系统得到了广泛使用,但随着数据量的增大,不确定因素的增多,专家系统技术和各种推理技术对提高决策支持的准确度十分必要,在人也无法描述出数据间的关系时,就提出数据采掘与知识发现技术。近年来数据采掘与知识发现技术发展很快,已达到初步应用的程度。智能决策支持系统将会迅速发展。

分页

三、用户交互环境

用户交互环境是决策者或决策部门与决策支持系统打交道的界面,它负责接收用户发出的各种命令,根据这些命令调用不同的子系统,并获得处理结果,最后再将这些结果输出给用户。

用户输入的命令包括:对确定的主题进行分析、对比、预测等决策处理;对决策用的数据进行各种查询;其它特殊命令,如控制输出形式,要求对输出的结论进行解释等。

从内容上讲决策的输出主要是围绕决策主题产生的各种分析、综合与预测的结果。以市场分析、预测的主题为例,其内部就可以包括行情变化趋势,各种商品销售按时间、地区对比、排序,厂家竞争策略,未来销售预测等。

交互环境的好坏直接影响着用户对系统的使用。一个好的交互环境,其输入应当简单、易学、易用。其输出应当做到内容丰富、形式活泼。

在输入方法上可以采用先进的手写输入和语音输入,以及广为使用的多窗口图形化界面技术。

在输出形式上可以包括文字报告、图表、可视化图形、语音合成,这些方式

相关文档
最新文档