实用运筹学 目标规划的Lingo求解
用lingo求解数学规划模型实例PPT课件

.
10
Objective value:
664.0000
V1 V2 V3 V4 V5 V6 V7 V8 W1 0 19 0 0 41 0 0 0 W2 1 0 0 32 0 0 0 0 W3 0 11 0 0 0 0 40 0 W4 0 0 0 0 0 5 0 38 W5 34 7 0 0 0 0 0 0 W6 0 0 22 0 0 27 3 0
销地总销量和:280
为产大于销的模型。
68
目标函数: min
cij xij
i1 j1
6
运往Bj的总运量: xij b j
i1
8
从Aj运出的总量: x ij a i
j1
对变量xij的限制: xij 0
.
9
68
min
cij xij
i1 j1
6
s.t: xij b j
i1
8
x ij a i
.
3
MON 开始上班的人数为 8.0000000 TUE 开始上班的人数为 2.0000000 WED 开始上班的人数为 0.0000000 THU 开始上班的人数为 6.0000000 FRI 开始上班的人数为 3.0000000 SAT 开始上班的人数为 3.0000000 SUN 开始上班的人数为 0.0000000
.
14
EQ1 EQ2 EQ3 EQ4 EQ5 EQ6 EQ7 EQ8 EQ9 AR1 0 0 0 0 0 0 0 0 1 AR2 0 0 0 1 0 0 0 0 0 AR3 0 0 0 0 0 1 0 0 0 AR4 0 0 0 0 1 0 0 0 0 AR5 1 0 0 0 0 0 0 0 0 AR6 0 0 0 0 0 0 1 0 0 AR7 0 0 0 0 0 0 0 1 0 AR8 0 0 1 0 0 0 0 0 0 AR9 0 1 0 0 0 0 0 0 0
运筹学实验报告lingo

二. 实验题目
1、求解线性规划:
max
z x 1 2x
2
2x 1 5x 2 12 s.t. x 1 2x 2 8 x , x 0 2 1
并对价值系数、右端常量进行灵敏度分析。
2、已知某工厂计划生产I,II,III三种产品,各 产品需要在A、B、C设备上加工,有关数据如下:
Allowable Decrease:允许减少量
Current RHS :当前右边常数项
结论1:
该线性规划问题的最优解为:X*=(35,10,0)T 最优值为:z*=215
结论2:
c1=5 c1在(4,8)内原最优解不变,但最优值是要变的 c2=4 c2在(2.7,5)内原最优解不变,但最优值是要变的 c3=3 c3在(-∞ ,7)内原最优解,最优值都是不变的 b1=45 b1在(40, 50)内原最优基不变,但最优解和最优值是要变的 b2=80 b2在(67.5, 90)内原最优基不变,但最优解和最优值是要变的 b3=90 b3在(65, ∞ )内原最优基不变,但最优解和最优值是要变的
Row 1 2 3 4 Slack or Surplus 215.0000 0.000000 0.000000 25.00000 Dual Price 1.000000 3.000000 1.000000 0.000000
激活灵敏度计算功能
法一:打开command window,输入range;
法二:LINGO——options —— General Solver —Dual Computations——Prices & Ranges
LINGO
Outline
一.熟悉LINDO软件的灵敏度分析功能
实验1 利用Lingo求解线性规划

实验一:利用Lingo 软件求解线性规划问题实验一 利用Lingo 软件求解线性规划问题1、 实验目的和任务1.1. 进一步掌握Lingo 编程操作;1.2通过实验进一步掌握运筹学线性规划问题的建模以及求解过程,提高学生分析问题和解决问题能力。
2、 实验仪器、设备及材料计算机、Lingo3、 实验内容料场选址问题P10某公司有6个建筑工地要开工,每个工地的位置(用平面坐标a,b 表示,距离单位:km )及水泥日用量d(单位:t)由下表给出,目前有两个临时料场位于P (5,1),Q (2,7),日储量各有20t.请回答以下问题: 假设从料场到工地之间有直线道路相连,试制定每天的供应计划,即从P,Q 两料场分别向各工地运送多少吨水泥,使总的吨公量数最小。
工地的位置(a,b )及水泥日用量d建模 设工地的位置为(,)i i a b ,水泥日用量为i d ,i=1,2,…,6;料场位置为(,)j j x y ,日储量为j e ,j=1,2; 从料场j 向工地i 的运送量为ij c 。
决策变量:在问题(1)中,决策变量就是料场j 向工地i 的运送量为ij c ;在问题(2)中,决策变量除了料场j 向工地i 的运送量为ij c 外,新建料场位置(,)j j x y 也是决策变量。
目标函数:这个优化问题的目标函数f 是总砘公量数(运量乘以运输距离),所以优化目标可表为2611min j i f c ===∑∑约束条件:各工地的日用量必须满足,所以21,1,2, (6)ij ijc d i ===∑各料场的运送量不能超过日储量,所以61,1,2. ij jic e j =≤=∑求解过程编写模型程序:(介绍集合的定义及应用)model:sets:!确定变量a(1),a(2),a(3),a(4),a(5),a(6);demand/1..6/:a,b,d;supply/1..2/:x,y,e;link(demand,supply):c;endsetsdata:!分割数据的空格与逗号或回车的作用是等价的;a=1.25 8.75 0.5 5.75 3 7.25;b=1.25,0.75,4.75,5,6.5,7.75;d=3,5,4,7,6,11;e=20,20;!a=enddatainit:!lingo对数据是按列赋值的,而不是按行;x,y=5,1,2,7;endinit[OBJ] min=@sum(link(i,j):c(i,j)*((x(j)-a(i))^2+(y(j)-b(i))^2)^(1/2));@for(demand(i):[demand_con] @sum(supply(j):c(i,j))=d(i););@for(supply(i):[supply_con] @sum(demand(j):c(j,i))<=e(i););@for(supply(i):@bnd(0.5,x(i),8.75);@bnd(0.75,y(i),7.75););End计算结果:(如果你使用的是试用版软件,则可能不能用全局求解器求解本例,因为问题规模太大了,激活全局最优求解程序的方法,是用“lingo|Options”菜单命令打开选项对话框,在“Global Solver”选项卡上选择“Use Global Solver”)Local optimal solution found.Objective value: 85.26604Total solver iterations: 61Variable Value Reduced CostA( 1) 1.250000 0.000000A( 2) 8.750000 0.000000A( 3) 0.5000000 0.000000A( 4) 5.750000 0.000000A( 5) 3.000000 0.000000A( 6) 7.250000 0.000000B( 1) 1.250000 0.000000B( 2) 0.7500000 0.000000B( 3) 4.750000 0.000000B( 4) 5.000000 0.000000B( 5) 6.500000 0.000000B( 6) 7.750000 0.000000D( 1) 3.000000 0.000000D( 2) 5.000000 0.000000D( 3) 4.000000 0.000000D( 4) 7.000000 0.000000D( 5) 6.000000 0.000000D( 6) 11.00000 0.000000X( 1) 3.254883 0.000000X( 2) 7.250000 0.6335133E-06 Y( 1) 5.652332 0.000000Y( 2) 7.750000 0.5438639E-06 E( 1) 20.00000 0.000000E( 2) 20.00000 0.000000C( 1, 1) 3.000000 0.000000C( 1, 2) 0.000000 4.008540C( 2, 1) 0.000000 0.2051358C( 2, 2) 5.000000 0.000000C( 3, 1) 4.000000 0.000000C( 3, 2) 0.000000 4.487750C( 4, 1) 7.000000 0.000000C( 4, 2) 0.000000 0.5535090C( 5, 1) 6.000000 0.000000C( 5, 2) 0.000000 3.544853C( 6, 1) 0.000000 4.512336C( 6, 2) 11.00000 0.000000Row Slack or Surplus Dual PriceOBJ 85.26604 -1.000000DEMAND_CON( 1) 0.000000 -4.837363DEMAND_CON( 2) 0.000000 -7.158911DEMAND_CON( 3) 0.000000 -2.898893DEMAND_CON( 4) 0.000000 -2.578982DEMAND_CON( 5) 0.000000 -0.8851584DEMAND_CON( 6) 0.000000 0.000000SUPPLY_CON( 1) 0.000000 0.000000SUPPLY_CON( 2) 4.000000 0.000000如果把料厂P,Q的位置看成是已知并且固定的,这时是LP模型,只需把上面的程序中初始段的语句移到数据段就可以了。
Lingo求解简单规划模型代码

一、Lingo 能做什么——Lingo 的简单模型1、简单线性规划求解(目标函数)2134maxx x z += s.t.(约束条件)⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0,781022122121x x x x x x x(决策变量) x 1,x 2手工计算的方法注:Lingo 中“<”代表“<=”,“>”代表“>=”,Lingo 中默认的变量都是大于等于0的,不用显式给出。
求解结果:z=26,x1=2,x2=62、整数规划求解219040Max x x z += ⎪⎩⎪⎨⎧≥≤+≤+0,702075679212121x x x x x xLingo 程序求解3、0-1规划求解Max 432215.18.04.0x x x x f +++=10106234321≤+++x x x x10,,,4321或=x x x x12344、非线性规划求解||4||3||2||min 4321x x x x z +−−=s.t. ⎪⎪⎩⎪⎪⎨⎧−=+−−=−+−=+−−2132130432143214321x x x x x x x x x x x x12345、背包问题一个旅行者的背包最多只能装 6kg 物品,现有4 件物品的重量和价值分别为 2 kg ,3 kg ,3 kg ,4 kg ;1 元,1.2元,0.9元,1.1元。
问应怎样携带那些物品使得携带物品的价值最大?建模:记j x 为旅行者携带第j 件物品的件数, 取值只能为 0 或 1。
求目标函数43211.19.02.1x x x x f +++=在约束条件643324321≤+++x x x x 下的最大值.用Lingo 软件求解0-1规划计算结果6、指派问题有四个工人,要指派他们分别完成4项工作,每人做各项工作所消耗的时间如下表: 问指派哪个人去完成哪项工作,可使总的消耗时间为最小? 设:第i 个工人做第j 项工作用时ij t ,标志变量ij f 定义如下:变量名 取值⎩⎨⎧=其他件工作个工人去做第指派第01j i f ijmin∑∑==×4141i j ij ijt fs.t. 141=∑=i ijf()4,3,2,1=j 每份工作都有一人做∑==411j ijf()4,3,2,1=i 每人都只做一项工作(1) 集合定义部分(从“SETS :”到“ENDSET ”):定义集合及其属性,语句“work/A,B,C,D/”其结果正是定义了4个集合元素,没有定义变量名。
用LINGO软件求解目标规划问题

10 x1 + 15 x2 + d1 d1+ = 40 + x1 + x2 + d 2 d 2 = 10 s.t. d1+ = 0 x1 , x2 , d , d + ≥ 0, j = 1,2 j j
用LINGO求解,得最优解 d = d 具体LINGO程序及输出信息如下:LINGO程序为(参见图 4.4.4):
+ 1
=0, 1
d2 = 6 ,最优值为6.
精品课程《运筹学》
图4.4.4
精品课程《运筹学》
LINGO运算后输出为(参见图4.4.5):
图4.4.5 精品课程《运筹学》
d 对应于第三优先等级,将d1+ =0, 2 = 6 作为约束条件, 建立线性规划问题:
min z = d 3 10 x1 + 15 x2 + d1 d1+ = 40 + x1 + x2 + d 2 d 2 = 10 x2 + d 3 d 3+ = 7 s.t. d1+ = 0, d 2 = 6 + x1 , x2 , d j , d j ≥ 0, j = 1,2,3
10 x1 + 15 x 2 + d 1 d 1+ = 40 + x1 + x 2 + d 2 d 2 = 10 s.t. x 2 + d 3 d 3+ = 7 x1 , x 2 , d , d + ≥ 0, j = 1,2,3 j j
精品课程《运筹学》
解:首先对应于第一优先等级,建立线性规 划问题:
x1 = 4, x2 = 0, d1+ = d1 = 0 , 用LINGO求解,得最优解是
运筹学课程设计(lingo和excel规划求解)

一、课程设计题目 《运筹学课程设计》 二、课程设计的目的 1.培养学生理论联系实际的工作作风,严肃认真、实事求是的科学态度和勇于探索的 创新精神。 2.培养学生综合运用所学运筹学知识与运用软件分析和解决工程技术问题的能力。 3.通过课程设计实践,训练并提高学生在运筹学模型建立、综合运用EXCEL和LINGO求 解模型和使用办公软件编写技术文档等方面的能力。 三、课程设计的主要内容和要求(包括原始数据、技术参数、设计要求、工作量要求 等) 1. 自选题目:从教师所给练习册和教材中各选两题,每题10分。 2. 提高题目: 在教师给定的五道题中选择三道题,建立数学模型并求解,每题20分。 1) 智能手机的生产计划 某 IT 制造商生产三种型号的智能手机,每季度的合同需求量如下表所示:
五、主要参考文献 [1] 谢金星, 薛毅. 优化建模与LINDO/LINGO软件. 北京: 清华大学出版社, 2005年7 月第1版. [2] 袁新生, 邵大宏, 郁时炼.LINGO和Excel在数学建模中的应用. 北京: 科学出版 社, 2007年1月第1版.
交通运输学院课程设计
[3] 马建华. 运筹学. 北京: 清华大学出版社, 2014年7月第1版. [4] 林健良. 运筹学及实验. 广州:华南理工大学出版社, 2005年9月第1版. [5] 邢光军, 孙建敏等. 实用运筹学:案例、方法及应用. 北京: 人民邮电出版社, 2015年6月第1版. [6] 李引珍. 管理运筹学. 北京:科学出版社, 2012年9月第1版. [7] 陈士成. 实用管理运筹学——基于Excel. 北京: 清华大学出版社, 2011年4月第1 版. [8] 叶向. 实用运筹学——运用Excel 2010 建模和求解. 北京: 中国人民大学出版社, 2013年5月第2版. [9] 王泽文. 数学实验与数学建模案例.北京:高等教育出版社, 2012年9月第1版. [10] 张杰, 郭丽杰等. 运筹学模型及其应用. 北京: 清华大学出版社, 2012年8月第1 版. [11] Excel Home 编著. Excel应用大全. 人民邮电出版社,2008年3月第1版 [12] 王文平,侯来银,来向红主编. 运筹学. 北京:科学出版社,2007 年.
运筹学实例分析及lingo求解

运筹学实例分析及lingo 求解一、线性规划某公司有6个仓库,库存货物总数分别为60、55、51、43、41、52,现有8个客户各要一批货,数量分别为35,37,22,32,41,32,43,38。
各供货仓库到8个客户处的单位货物运输价见表试确定各仓库到各客户处的货物调运数量,使总的运输费用最小。
解:设ijx 表示从第i 个仓库到第j 个客户的货物运量。
ij c表示从第i 个仓库到第j 个客户的单位货物运价,i a 表示第i 个仓库的最大供货量,j d 表示第j 个客户的订货量。
目标函数是使总运输费用最少,约束条件有三个:1、各仓库运出的货物总量不超过其库存数2、各客户收到的货物总量等于其订货数量3、非负约束数学模型为:∑∑===6181)(min i j ijij x c x f⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥===≤∑∑==08,,2,1,6,2,1,,..6181ij j i ij i j ij x j d x i a x t s 编程如下:model : Sets :Wh/w1..w6/:ai;Vd/v1..v8/:dj;links(wh,vd):c,x;endsetsData:ai=60,55,51,43,41,52;dj=35,37,22,32,41,32,43,38;c=6,2,6,7,4,2,5,94,9,5,3,8,5,8,25,2,1,9,7,4,3,37,6,7,3,9,2,7,12,3,9,5,7,2,6,55,5,2,2,8,1,4,3;EnddataMin=@sum(links(i,j):c(i,j)*x(i,j));@for(wh(i):@sum(vd(j):x(i,j))<=ai(i));@for(vd(j):@sum(wh(i):x(i,j))=dj(j));endGlobal optimal solution found.Objective value: 664.0000Total solver iterations: 0Variable Value Reduced Cost AI( W1) 60.00000 0.000000 AI( W2) 55.00000 0.000000 AI( W3) 51.00000 0.000000 AI( W4) 43.00000 0.000000 AI( W5) 41.00000 0.000000 AI( W6) 52.00000 0.000000 DJ( V1) 35.00000 0.000000 DJ( V2) 37.00000 0.000000 DJ( V3) 22.00000 0.000000 DJ( V4) 32.00000 0.000000 DJ( V5) 41.00000 0.000000 DJ( V6) 32.00000 0.000000 DJ( V7) 43.00000 0.000000 DJ( V8) 38.00000 0.000000 C( W1, V1) 6.000000 0.000000 C( W1, V2) 2.000000 0.000000 C( W1, V3) 6.000000 0.000000 C( W1, V4) 7.000000 0.000000 C( W1, V5) 4.000000 0.000000 C( W1, V6) 2.000000 0.000000C( W1, V8) 9.000000 0.000000 C( W2, V1) 4.000000 0.000000 C( W2, V2) 9.000000 0.000000 C( W2, V3) 5.000000 0.000000 C( W2, V4) 3.000000 0.000000 C( W2, V5) 8.000000 0.000000 C( W2, V6) 5.000000 0.000000 C( W2, V7) 8.000000 0.000000 C( W2, V8) 2.000000 0.000000 C( W3, V1) 5.000000 0.000000 C( W3, V2) 2.000000 0.000000 C( W3, V3) 1.000000 0.000000 C( W3, V4) 9.000000 0.000000 C( W3, V5) 7.000000 0.000000 C( W3, V6) 4.000000 0.000000 C( W3, V7) 3.000000 0.000000 C( W3, V8) 3.000000 0.000000 C( W4, V1) 7.000000 0.000000 C( W4, V2) 6.000000 0.000000 C( W4, V3) 7.000000 0.000000 C( W4, V4) 3.000000 0.000000 C( W4, V5) 9.000000 0.000000 C( W4, V6) 2.000000 0.000000 C( W4, V7) 7.000000 0.000000 C( W4, V8) 1.000000 0.000000 C( W5, V1) 2.000000 0.000000 C( W5, V2) 3.000000 0.000000 C( W5, V3) 9.000000 0.000000 C( W5, V4) 5.000000 0.000000 C( W5, V5) 7.000000 0.000000 C( W5, V6) 2.000000 0.000000 C( W5, V7) 6.000000 0.000000 C( W5, V8) 5.000000 0.000000 C( W6, V1) 5.000000 0.000000 C( W6, V2) 5.000000 0.000000 C( W6, V3) 2.000000 0.000000 C( W6, V4) 2.000000 0.000000 C( W6, V5) 8.000000 0.000000 C( W6, V6) 1.000000 0.000000 C( W6, V7) 4.000000 0.000000 C( W6, V8) 3.000000 0.000000 X( W1, V1) 0.000000 5.000000 X( W1, V2) 19.00000 0.000000X( W1, V4) 0.000000 7.000000 X( W1, V5) 41.00000 0.000000 X( W1, V6) 0.000000 2.000000 X( W1, V7) 0.000000 2.000000 X( W1, V8) 0.000000 10.00000 X( W2, V1) 1.000000 0.000000 X( W2, V2) 0.000000 4.000000 X( W2, V3) 0.000000 1.000000 X( W2, V4) 32.00000 0.000000 X( W2, V5) 0.000000 1.000000 X( W2, V6) 0.000000 2.000000 X( W2, V7) 0.000000 2.000000 X( W2, V8) 0.000000 0.000000 X( W3, V1) 0.000000 4.000000 X( W3, V2) 11.00000 0.000000 X( W3, V3) 0.000000 0.000000 X( W3, V4) 0.000000 9.000000 X( W3, V5) 0.000000 3.000000 X( W3, V6) 0.000000 4.000000 X( W3, V7) 40.00000 0.000000 X( W3, V8) 0.000000 4.000000 X( W4, V1) 0.000000 4.000000 X( W4, V2) 0.000000 2.000000 X( W4, V3) 0.000000 4.000000 X( W4, V4) 0.000000 1.000000 X( W4, V5) 0.000000 3.000000 X( W4, V6) 5.000000 0.000000 X( W4, V7) 0.000000 2.000000 X( W4, V8) 38.00000 0.000000 X( W5, V1) 34.00000 0.000000 X( W5, V2) 7.000000 0.000000 X( W5, V3) 0.000000 7.000000 X( W5, V4) 0.000000 4.000000 X( W5, V5) 0.000000 2.000000 X( W5, V6) 0.000000 1.000000 X( W5, V7) 0.000000 2.000000 X( W5, V8) 0.000000 5.000000 X( W6, V1) 0.000000 3.000000 X( W6, V2) 0.000000 2.000000 X( W6, V3) 22.00000 0.000000 X( W6, V4) 0.000000 1.000000 X( W6, V5) 0.000000 3.000000 X( W6, V6) 27.00000 0.000000X( W6, V8) 0.000000 3.000000 Row Slack or Surplus Dual Price 1 664.0000 -1.000000 2 0.000000 3.000000 3 22.00000 0.000000 4 0.000000 3.000000 5 0.000000 1.000000 6 0.000000 2.000000 7 0.000000 2.000000 8 0.000000 -4.000000 9 0.000000 -5.000000 10 0.000000 -4.000000 11 0.000000 -3.000000 12 0.000000 -7.000000 13 0.000000 -3.000000 14 0.000000 -6.000000 15 0.000000 -2.000000由以上结果可以清楚的看到由各仓库到各客户处的货物调运数量,由此得出的符合条件的最佳运货方案,而使运费最低,最低为664。
运筹学lingo实验报告(一)

运筹学lingo实验报告(一)运筹学lingo实验报告介绍•运筹学是一门研究在给定资源约束下优化决策的学科,广泛应用于管理、工程、金融等领域。
•LINGO是一种常用的运筹学建模和求解软件,具有丰富的功能和高效的求解算法。
实验目的•了解运筹学的基本原理和应用。
•掌握LINGO软件的使用方法。
•运用LINGO进行优化建模和求解实际问题。
实验内容1.使用LINGO进行线性规划的建模和求解。
2.使用LINGO进行整数规划的建模和求解。
3.使用LINGO进行非线性规划的建模和求解。
4.使用LINGO进行多目标规划的建模和求解。
实验步骤1. 线性规划•确定决策变量、目标函数和约束条件。
•使用LINGO进行建模,设定目标函数和约束条件。
•运行LINGO求解线性规划问题。
2. 整数规划•在线性规划的基础上,将决策变量的取值限制为整数。
•使用LINGO进行整数规划的建模和求解。
3. 非线性规划•确定决策变量、目标函数和约束条件。
•使用LINGO进行非线性规划的建模和求解。
4. 多目标规划•确定多个目标函数和相应的权重。
•使用LINGO进行多目标规划的建模和求解。
实验结果•列举各个实验的结果,包括最优解、最优目标函数值等。
结论•运筹学lingo实验是一种有效的学习运筹学和应用LINGO的方法。
•通过本实验能够提高对运筹学概念和方法的理解,并掌握运用LINGO进行优化建模和求解的技能。
讨论与建议•实验过程中是否遇到困难或问题,可以进行讨论和解决。
•提出对于实验内容或方法的建议和改进方案。
参考资料•提供参考书目、文献、教材、网站等资料,以便学生深入学习和研究。
致谢•对与实验指导、帮助或支持的人员表示感谢,如老师、助教或同学等。
以上为运筹学lingo实验报告的基本框架,根据实际情况进行适当调整和补充。
实验报告应简洁明了,清晰表达实验目的、内容、步骤、结果和结论,同时可以加入必要的讨论和建议,以及参考资料和致谢等信息。
目标规划实验报告lingo

目标规划实验报告lingo实验目的本次实验运用目标规划(Goal Programming)方法解决一个复杂的决策问题。
通过实践应用目标规划模型,可以深入了解该方法的原理和应用场景,并掌握运用LINGO软件求解目标规划模型的技巧。
实验背景目标规划是一种多目标优化方法,通过为每个目标设置上下界限来考虑多个目标之间的权衡和优先级。
该方法在实际决策问题中被广泛应用,如生产调度、资源分配等。
在本次实验中,我们将尝试运用目标规划方法解决一个供应链优化问题。
实验步骤1. 定义决策变量与目标函数首先,我们定义了一组决策变量,包括供应商的订单量、转运中心的运输量以及销售网点的销售量。
然后,我们针对不同的供应链环节和目标,建立了几个目标函数,如最小化总成本、最大化客户满意度等。
2. 设置目标上下界限根据供应链管理的实际情况,我们为每个目标函数设置了上下界限。
例如,总成本的上界可以是一个预算限制,客户满意度的下界可以是一个最低满意度指标。
3. 构建目标规划模型根据定义的决策变量和目标函数,我们构建了一个目标规划模型。
该模型包括了决策变量的约束条件、目标函数的上下界限制等。
4. 利用LINGO软件求解模型使用LINGO软件,我们输入了目标规划模型,并设置了初始数值。
然后运行LINGO软件,对目标规划模型进行求解。
5. 分析与调整模型根据LINGO软件的求解结果,我们对模型的结果进行了分析。
如果目标无法完全实现或者有其他问题,我们需要调整模型的上下界限、决策变量的限制条件等。
6. 进行灵敏度分析为了进一步了解目标规划模型的稳定性和可靠性,我们进行了灵敏度分析。
通过逐步调整目标函数的上下界限,我们观察模型结果的变化,并判断模型的鲁棒性和可操作性。
实验结果与讨论通过LINGO软件的求解,我们得到了供应链优化问题的最优解。
根据模型的目标函数和约束条件,我们可以评估供应链在不同目标下的表现,从而为决策者提供多个可选方案。
在实验的过程中,我们发现目标规划方法对于多目标问题的处理非常有效。
用Lingo软件编程求解规划问题

x2桶牛奶生产A2 获利 16×4 x2
Max z 72 x1 64 x2
x1 x2 50
12 x1 8x2 480 3x1 100
x1, x2 0
线性规 划模型 (LP)
例1——加工奶制品的生产计划
x1 x2 50
12
x1 8x2 480 3x1 100
Lingo软件——基本集合元素的列举
一个原始集是由一些最基本的对象组成的。 setname [/member_list/] [: attribute_list];
sets: students/John Jill, Rose Mike/: sex, age;
endsets
集、集成员和集属性
• 集成员无论用何种字符标记,它的索引都是 从1开始连续计数。
ij
8
j 1
N Nij
V
i
i 1, ,6,j 1, ,8, i 1, ,6,
N 6
i1 ij
d
j
j 1, ,8.
结果
Lingo软件
Lingo 是一个可以简洁地阐述、解决和分析复杂问题的简便工具。
其特点是程序执行速度很快,易于输入、修改、求解和分析一个数 学规划问题。
N 6
i1 ij
d
j
j 1, ,8.
corps
需求量 35 37 22 32 41 32 43 38
拥有量
60 55 51 depot 43 41 52
B1 B2 B3 B4 B5 B6 B7 B8
A1
62674259
A2
49538582
LINGO 线性规划问题的求解

实验报告课程名称:运筹学项目名称:线性规划问题的求解姓名:专业:班级:1班学号:同组成员:一、实验准备:1.线性规划(Linear programming,简称LP)是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。
研究线性约束条件下线性目标函数的极值问题的数学理论和方法。
英文缩写LP。
它是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。
为合理地利用有限的人力、物力、财力等资源作出的最优决策,提供科学的依据。
从实际问题中建立数学模型一般有以下三个步骤;(1)根据影响所要达到目的的因素找到决策变量;(2)由决策变量和所在达到目的之间的函数关系确定目标函数;(3)由决策变量所受的限制条件确定决策变量所要满足的约束条件。
2.所建立的数学模型具有以下特点:(1)每个模型都有若干个决策变量(x1,x2,x3……,xn),其中n为决策变量个数。
决策变量的一组值表示一种方案,同时决策变量一般是非负的。
(2)目标函数是决策变量的线性函数,根据具体问题可以是最大化(max)或实际中,为保证完成100套工架,所使用原材料最省,可以混合使用各种下料方案。
设按方案A,B,C,D,E下料的原材料数分别为x1,x2,x3,x4,x5根据表可以得到下面的线性规划模型:解:虽然连续投资问题属于动态优化问题,但可以用静态优化的方法解决,用决策变量xi1,xi2,xi3,xi4(i=12…,5)分别表示第i年年初为项目A,B,C,D,的投资额,根据问题的要求各变量的对应关系如表,表中空白处表示当年不能为该项目投资,也可认为投资额为0.实验报告成绩(百分制)__________ 实验指导教师签字:__________。
用lingo求解规划问题实例

用lingo求解规划问题实例用Lingo求解规划问题实例问题一:某公司打算向它的3个营业区增设6个销售店,每个营业区至少增设一个。
从各区赚取的利润与增设的销售店个数有关,其数据如下表所示。
试求各区应分配几个增设的销售店,才能使总利润最大。
销售点增加数 0 1 2 3 4A区利润/万元 100 200 280 330 340B区利润/万元 200 210 220 225 230C区利润/万元 150 160 170 180 200分析:要设置集合zone/A,B,C/,表示三个地区。
因为获得的利润与地区和各地的销售点增加数均相关,所以可以仿照运输模型,用number/1..4/表示每个地区可选的销售点增加数,1,在i地区新增j个销售点,然后用一个派生集links(zone,number):c,profit,定义 c,,ij0,其他,profit(i,j)为在i地区新增j个销售点能获得的利润。
可写出约束条件为:4, c,1i,1,2,3,ijj,1c,0或1 ij34cj,6 ,,ijij,,11所求函数为max=@sum(links:c*profit);Lingo程序如下:model:sets:zone/A,B,C/; !A,B,C三个地区;number/1..4/; !各地区可选择新建的销售点数目,可选1~4中的一个数,通过links把zone和number联系起来;links(zone,number):c,profit; !若在i地区新建j个销售点,则c(i,j)=1,否则c(i,j)=0.profit(i,j)表示在i地区新建j个销售点的利润; endsets data:profit=200 280 330 340210 220 225 230160 170 180 200;enddatamax=@sum(links:c*profit);@for(zone(I):@sum(number(J):c(I,J))=1); !对于每一个地区,新建销售点的数目是一定的,c的和为1;@sum(zone(I):@sum(number(J):c(I,J)*J))=6; !三个地区新建的销售点总数为6;@for(links(i,j):@bin(c(i,j))); !每一个c(i,j)只能取0或1;end用Lingo求解,结果如下:Global optimal solution found.Objective value: 710.0000Extended solver steps: 0Total solver iterations: 0Variable Value Reduced CostC( A, 1) 0.000000 -200.0000C( A, 2) 0.000000 -280.0000C( A, 3) 1.000000 -330.0000C( A, 4) 0.000000 -340.0000C( B, 1) 1.000000 -210.0000C( B, 2) 0.000000 -220.0000C( B, 3) 0.000000 -225.0000C( B, 4) 0.000000 -230.0000C( C, 1) 0.000000 -160.0000C( C, 2) 1.000000 -170.0000C( C, 3) 0.000000 -180.0000C( C, 4) 0.000000 -200.0000 则在A,B,C区域应分别新增3,1,2个销售点,可获得的最大利润为710万元。
lingo求解多目标规划--例题

实验二:目标规划一、实验目得目标规划就是由线性规划发展演变而来得,线性规划考虑得就是只有一个目标函数得问题,而实际问题中往往需要考虑多个目标函数,这些目标不仅有主次关系,而且有得还相互矛盾。
这些问题用线性规划求解就比较困难,因而提出了目标规划。
熟悉目标规划模型得建立,求解过程及结果分析。
二、目标规划得一般模型设)...2,1(n j x j =就是目标规划得决策变量,共有m 个约束就是国内刚性约束,可能就是等式约束,也可能就是不等式约束。
设有l 个柔性目标约束,其目标规划约束得偏差就是),...,2,1(,l i d d i i =-+。
设有q 个优先级别,分别为q p p p ,...,21。
在同一个优先级k p 中,有不同得权重,分别记为),...,2,1(,l j w w kj kj =-+。
因此目标规划模型得一般数学表达式为: min ∑∑=++--=+=l j j kj j kj q k kd w d w p z 11);(s 、t 、,,...2,1,),(1m i b x a n j i j ij =≥=≤∑= .,...2,1,0,,,...,2,1,,,...2,1,1l i d d n x o x l i g d d x ci i j i n j i i j ij =≥=≥==-++-=+-∑ 三、实验设备及分组实验在计算机中心机房进行,使用微型电子计算机,每人一机(一组)。
四、实验内容及步骤1、打开LINGO ,并利用系统菜单与向导在E 盘创建一个项目。
目录与项目名推荐使用学生自己得学号。
2、以此题为例,建立数学模型,并用说明语句进行说明,增强程序得可读性。
例2、1:某工厂生产Ⅰ、Ⅱ两种产品,需要用到A ,B ,C 三种设备,已知有关数据见下表。
企业得经营目标不仅仅就是利润,还需要考虑多个方面:(1) 力求使利润不低于1500元;(2) 考虑到市场需求,Ⅰ、Ⅱ两种产品得产量比应尽量保持1:2;(3) 设备A 为贵重设备,严格禁止超时使用;(4) 设备C 可以适当加班,但要控制;设备B 即要求充分利用,又尽可能不加班。
LINDO及LINGO解运筹学问题(数学规划方面)

LINDO、LINGO入门教程要学好用这两个软件最好的办法就是学习他们自带的HELP文件。
下面拟举数例以说明这两个软件的最基本用法(例子均选自张莹《运筹学基础》)。
例1.(选自《运筹学基础》P54.汽油混合问题,线性规划问题)一种汽油的特性可用两个指标描述:其点火性用“辛烷数”描述,其挥发性用“蒸汽压力”描述。
某炼油厂有四种标准汽油,设其标号分别为1,2,3,4,其特性及库存量列于下表1中,将上述标准汽油适量混合,可得两种飞机汽油,某标号为1,2,这两种飞机汽油的性能指标及产量需求列于表2中。
问应如何根据库存情况适量混合各种标准汽油,使既满足飞机汽油的性能指标,而产量又为最高。
表11107.57.11*10^(-2) 380000293.011.38*10^(-2) 262200387.0 5.69*10^(-2) 4081004108.028.45*10^(-2) 130100(1 g/cm^2=98Pa)表21>=91<=9.96*10^(-2) 越多越好2>=100<=9.96*10^(-2) >=250000建模过程略(详见《运筹学基础》P54—55)目标函数:max z=x1+x2+x3+x4约束条件:x5+x6+x7+x8>=250000x1+x5<=380000x2+x6<=265200x3+x7<=408100x4+x8<=1301002.85x1-1.42x2+4.27x3-18.49x4>=02.85x5-1.42x6+4.27x7-18.49x8>=016.5x1+2.0x2-4.0x3+17x4>=07.5x5-7.0x6-13.0x7+8.0x8>=0xj>=0(j=1,2 (8)下面我们就用LINDO来解这一优化问题。
输入语句:max(不区分大小写) x1+x2+x3+x4ST(大写或写subject to)x5+x6+x7+x8>=250000x1+x5<=380000x2+x6<=265200x3+x7<=408100x4+x8<=1301002.85x1-1.42x2+4.27x3-18.49x4>=02.85x5-1.42x6+4.27x7-18.49x8>=016.5x1+2.0x2-4.0x3+17x4>=07.5x5-7.0x6-13.0x7+8.0x8>=0end然后再按运算符键即可得结果。
实用运筹学4.2 目标规划的Lingo求解

(2) 当任务重时,可以采用加班的方法扩大生产,但每周加 班最好不超过10小时;
(3) 尽量达到销售指标;
(4) 尽可能减少加班时间.
试建立该问题的目标规划模型,并为该厂给出一个满意的生 产方案.
从计算结果可以看出,问题的最优解(满意解 )为甲机械生产10辆,乙机械和丙机械均生产8辆 ,获得利润78万元,有28个设备工时未利用.
练习: 假设某洗衣机厂生产全自动和半自动两种洗衣机,每 生产一台这两种洗衣机都需要工时为1(h/台). 工厂的正常 生产能力是每日两班、每周工作80小时. 根据市场需求,每 周的最大销售量为全自动70台,半自动35台.已知每售出一 台全自动和半自动洗衣机的利润分别为250元和150元,为了 制定合理的生产计划,负责人提出: (1) 尽量避免开工不足;
应用Lingo软件求解可得如下结果: Variable Value Reduced Cost D1_ 0.000000 9669.667 D2 0.000000 0.000000 D3 0.000000 100.0000 D4_ 28.00000 0.000000 D4 0.000000 2.000000 X1 10.00000 0.000000 X2 8.000000 0.000000 X3 8.000000 0.000000 D1 0.000000 330.3333 D2_ 0.000000 1000.000 D3_ 0.000000 0.000000
例4.2.1 某机床厂拟生产甲、乙、丙三种型号的机 床,每生产一台甲、乙、丙型号的机床需要的工时 分别为6小时、9小时、10小时,根据历史销售经验 ,甲、乙、丙型号的机床每月市场需求分别为10台 、12台、8台,每销售一台的利润分别为2.2万元、 3万元、4万元.生产线每天的工作时间为8小时. 企业负责人在制定生产计划时,首先要保证利润不 低于计划利润78万元;其次,根据市场调查,乙型 机床销量有下降的趋势,丙型机床销量有上升的趋 势,因而,乙型机床的产量不应多于丙型机床的产 量;此外,由于市场变化,甲型机床的原材料成本 增加,使得利润下降,应适当降低其产量;最后, 要充分利用原有的设备台时,尽量不要加班生产. 试为该企业制定合理的生产计划.
运筹学课程设计(lingo和excel规划求解)

使用整数规划或线性规 划模型,将任务的选择 和员工的分配表示为决 策变量,以最小化任务 完成时间和成本为目标 函数,同时考虑员工的 能力、任务的要求等约 束条件。
使用Lingo或Excel的规 划求解功能对模型进行 求解,得到最优的任务 分配方案。
通过对求解结果的分析 ,可以了解最优任务分 配的各项参数,如各任 务的完成时间、成本以 及员工的任务分配情况 等,为公司制定实际的 任务分配计划提供参考 。
选择求解方法
根据问题的特点和要求,选择合 适的求解方法,如逆序解法、顺 序解法等。
05 Lingo在运筹学中的应用
线性规划问题求解
构建Lingo模型
使用Lingo语言编写模型文件,包括目标函 数、约束条件和变量定义。
描述线性规划问题
确定决策变量、目标函数和约束条件。
求解线性规划问题
运行Lingo程序,得到最优解及目标函数值 。
求解动态规划问题
运行Lingo程序,得到最优决策序列及目标函数值。
06 Excel在运筹学中的应用
数据处理与可视化分析
数据清洗和整理
利用Excel的数据筛选、排序、查找和替换等功能,对原始 数据进行清洗和整理,为后续分析提供准确的数据基础。
数据可视化
通过Excel的图表功能,如柱状图、折线图、散点图等,将 数据以直观的方式展现出来,便于发现数据间的关系和趋 势。
案例三
非线性规划问题,如投资决策、最优控制等 。
04 运筹学模型建立与求解
线性规划模型建立
确定决策变量
根据问题背景,选择合适的决策变量,并确定其取值 范围。
构建目标函数
根据问题的优化目标,构建线性目标函数,通常是最 小化或最大化某个表达式。
lingo求解多目标规划--例题

实验二:目标规划一、实验目的目标规划是由线性规划发展演变而来的,线性规划考虑的是只有一个目标函数的问题,而实际问题中往往需要考虑多个目标函数,这些目标不仅有主次关系,而且有的还相互矛盾。
这些问题用线性规划求解就比较困难,因而提出了目标规划。
熟悉目标规划模型的建立,求解过程及结果分析。
二、目标规划的一般模型设)...2,1(n j x j =是目标规划的决策变量,共有m 个约束是国内刚性约束,可能是等式约束,也可能是不等式约束。
设有l 个柔性目标约束,其目标规划约束的偏差是),...,2,1(,l i d d i i =-+。
设有q 个优先级别,分别为q p p p ,...,21。
在同一个优先级k p 中,有不同的权重,分别记为),...,2,1(,l j w w kj kj =-+。
因此目标规划模型的一般数学表达式为:min ∑∑=++--=+=lj j kj j kj q k kd w d wp z 11);(.,,...2,1,),(1m i b x anj i j ij=≥=≤∑= .,...2,1,0,,,...,2,1,,,...2,1,1l i d d n x o x l i g d d x ci i j i nj i i j ij=≥=≥==-++-=+-∑三、实验设备及分组实验在计算机中心机房进行,使用微型电子计算机,每人一机(一组)。
四、实验内容及步骤1、打开LINGO ,并利用系统菜单和向导在E 盘创建一个项目。
目录和项目名推荐使用学生自己的学号。
2、以此题为例,建立数学模型,并用说明语句进行说明,增强程序的可读性。
例:某工厂生产Ⅰ、Ⅱ两种产品,需要用到A ,B ,C 三种设备,已知有关数据见下表。
企业的经营目标不仅仅是利润,还需要考虑多个方面:(1) 力求使利润不低于1500元;(2) 考虑到市场需求,Ⅰ、Ⅱ两种产品的产量比应尽量保持1:2; (3) 设备A 为贵重设备,严格禁止超时使用;(4) 设备C 可以适当加班,但要控制;设备B 即要求充分利用,又尽可能不加班。
(2024年)用Lingo软件编程求解规划问题解决方案

2024/3/26
1
目录
2024/3/26
• 引言 • 规划问题建模 • Lingo软件编程实现 • 规划问题求解与分析 • 案例研究:用Lingo解决实际规划问题 • 总结与展望
2
01
引言
2024/3/26
3
规划问题概述
规划问题定义
规划问题是一类优化问题,旨在 寻找满足一系列约束条件的决策 变量最优解,使得目标函数达到 最优(最大或最小)。
要点三
推动软件升级和普及
Lingo软件作为一款优秀的数学规划 求解工具,未来可以进一步推动其升 级和普及工作。例如,可以增加更多 实用的功能、提高软件的易用性和稳 定性等,以吸引更多的用户使用该软 件解决规划问题。
2024/3/26
29
THANKS
感谢观看
2024/3/26
30
。同时,需要注意Lingo语言的语法和规则,确保模型的正确性和可解
性。
10
03
Lingo软件编程实现
2024/3/26
11
Lingo编程环境介绍
Lingo是一款专门用于求解线性、非线性和整数规划问题的软件,它提供了一个直观易用的编程环境。
Lingo支持多种类型的数学模型,如线性规划、目标规划、整数规划等,并内置了大量的函数和算法, 方便用户快速构建和求解模型。
束条件。
8
数学模型建立
1 2
选择合适的数学模型
根据问题的特点和目标,选择合适的数学模型, 如线性规划、整数规划、非线性规划等。
构建目标函数
根据优化目标,构建目标函数,即问题的优化标 准。
3
构建约束条件方程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X3
8.000000
0.000000
D1
0.000000
330.3333
D2_
0.000000
1000.000
D3_
0.000000
0.000000
大家好
7
从计算结果可以看出,问题的最优解(满意解
)为甲机械生产10辆,乙机械和丙机械均生产8辆 ,获得利润78万元,有28个设备工时未利用.
大家好
8
练习: 假设某洗衣机厂生产全自动和半自动两种洗衣机,每 生产一台这两种洗衣机都需要工时为1(h/台). 工厂的正常 生产能力是每日两班、每周工作80小时. 根据市场需求,每 周的最大销售量为全自动70台,半自动35台.已知每售出一 台全自动和半自动洗衣机的利润分别为250元和150元,为了 制定合理的生产计划,负责人提出:
(1) 尽量避免开工不足; (2) 当任务重时,可以采用加班的方法扩大生产,但每周加
班最好不超过10小时; (3) 尽量达到销售指标; (4) 尽可能减少加班时间.
试建立该问题的目标规划模型,并为该厂给出一个满意的生 产方案.
大家好
9
结束
大家好
10
大家好
2
例4.2.1 某机床厂拟生产甲、乙、丙三种型号的机 床,每生产一台甲、乙、丙型号的机床需要的工时 分别为6小时、9小时、10小时,根据历史销售经验 ,甲、乙、丙型号的机床每月市场需求分别为10台 、12台、8台,每销售一台的利润分别为2.2万元、 3万元、4万元.生产线每天的工作时间为8小时. 企业负责人在制定生产计划时,首先要保证利润不 低于计划利润78万元;其次,根据市场调查,乙型 机床销量有下降的趋势,丙型机床销量有上升的趋 势,因而,乙型机床的产量不应多于丙型机床的产 量;此外,由于市场变化,甲型机床的原材料成本 增加,使得利润下降,应适当降低其产量;最后, 要充分利用原有的设备台时,尽量不要加班生产. 试为该企业制定合理的生产计划.
第四个目标,应充分利用原有的设备台时,尽量不要加班生产 ,赋予优先因子 p 4 .
大家好
4
解 设x1, x2 , x3 分别表示甲型,乙型,丙型机床的数量,则 可建立该问题的数学模型如下:
m in z p 1 d 1 p 2 d 2 p 3 d 3 p 4 ( d 4 d 4 )
x1 1 0
x212x38s
.t
.
2 x
.
2
2x
1
x
3
3
x2
d
2
4 x3
d
2
d
1
0
d
1
78
x1
d
3
d
3
10
6 x1
9 x2
10 x3
d
4
d
4
240
x1
,
x
2
,
x3
,
d
i
,
d
i
0 (i
1, 2 , 3, 4 )
大家好
5
取p1=1000,p2=100,p3=10,p4=1.
4.2 目标规划的Lingo求解
大家好
1
序贯算法是求解目标规划问题一类算法.基本思想:根据 优先级的先后次序,将目标规划问题分解成一系列的单目标规 划问题,然后再依次求解,最后求得问题的最优解(满意解) .
然而,序贯算法的求解过程比较繁琐.本节介绍求解目标 规划问题的另外一种方法,该方法的实质为单纯形法.应用这 种方法处理目标规划问题时,可以针对不同的优先级赋予不同 的数值,优先级越高,赋予的数值越大,对于某些特殊问题, 可适当加大各优先级级差.
大家好
3
解:企业负责人确定下面4项作为企业的主要目标,并按其重要 程度排列如下:
第p 1 一;个目标,达到或超过计划利润指标78万元,赋予优先因子
第二个目标,乙型机床产量不应多于丙型机床产量,赋予优先 因子p 2 ;
第三个目标,甲型机床的原材料成本增加,使得利润下降,应 适当降低其产量,赋予优先因子 p 3 ;
Variable
Value
Reduced Cost
D1_
0.000000
9669.667
D2
0.000000
0.000000
D3
0.000000
100.0000
D4_
28.00000
0.000000
D4
0.000000
2.000000
X1
10.00000
0.000000
X2
8.000000
0.000000
min=10000*d1_+1000*d2+100*d3+d4_+d4; x1<=10; x2<=12; x3<=8; 2.2*x1+3*x2+4*x3+d1_-d1=78; x2-x3+d2_-d2=0; x1+d3_-d3=10; 6*x1+9*x2+10*x3+d4_-d4=240;
大家好
6
应用Lingo软件求解可得如下结果: