铁芯制造工艺(新+全)

合集下载

电机制造工艺及装配pdf

电机制造工艺及装配pdf

电机制造工艺及装配pdf一、电机制造工艺概述电机作为电气能源转换的核心设备,在我国经济社会发展中具有举足轻重的地位。

电机制造工艺的发展与创新为电机性能的提升、节能减排目标的实现提供了有力保障。

本文将从电机分类及应用、电机制造工艺发展历程和电机制造工艺流程三个方面进行介绍。

1.电机分类及应用电机根据用途、结构、电压等级等多种方式进行分类。

常见的电机类型包括交流电机、直流电机、同步电机、异步电机等。

这些电机广泛应用于工业生产、家用电器、交通运输等领域,为各类设备提供了可靠的驱动力。

2.电机制造工艺发展历程电机制造工艺经历了从传统制造向现代制造的转变。

传统制造工艺以手工为主,生产效率低、质量不稳定。

随着科技的进步,电机制造工艺逐步实现了自动化、智能化,提高了生产效率和产品质量。

现代电机制造工艺主要包括绕组制造、铁芯制造、整机装配等环节。

3.电机制造工艺流程电机制造工艺流程主要包括以下几个环节:(1)原材料采购:根据电机性能要求,采购合适的钢材、硅钢片、绝缘材料等原材料。

(2)铁芯制造:采用先进的硅钢片切割、焊接等技术,制作符合性能要求的铁芯。

(3)绕组制造:选用优质导线,通过焊接、整形等工艺,制作出高品质的绕组。

(4)电机装配:将铁芯、绕组、轴承、机械密封等零部件组装成电机。

(5)电机试验:对电机进行电气、机械性能试验,确保电机性能达标。

(6)包装与出厂:对试验合格的电机进行包装,按规定程序办理出厂手续。

二、电机装配技术电机装配技术是电机制造的关键环节,直接影响到电机的性能和可靠性。

以下是电机装配基本要求、电机零部件装配和电机总装与调试的详细介绍。

1.电机装配基本要求(1)零部件清洗:清洗轴承、绝缘材料等零部件,确保清洁度。

(2)零部件检查:检查零部件尺寸、磨损情况,确保零部件质量。

(3)装配顺序:按装配顺序进行装配,确保电机结构完整。

2.电机零部件装配(1)轴承装配:将轴承与轴承座配合,调整轴承间隙,确保轴承工作稳定。

分割式铁心的电机制造工艺(Ⅱ)

分割式铁心的电机制造工艺(Ⅱ)

连接状态 , 所以在绕线 时线 圈间的摆 线应 留有余 量 , 同时 对 面向转子的磁极端 部进 行修齿 , 以磁极端 部 也应 留 所 有加工余量 。定子组装好后磁极 的轭 部处于 紧密配合状
态, 再用激光束对焊接固定部分加热焊接。
参 考 图 l 、 l , 圈 的 始 端 和 终 端 缠 在 定 子 的 两 6图 9线
维普资讯
分 割 式 铁 心 的 电 机 制 造 工 艺 (1 1)
中 图 分 类 号 : M3 T 3 文献 标识码 : B
边用激光切断薄肉部 , 将定 子铁心安 装上去 , 摆线 仍保持
文 章 编 号 :0 4— 08(0 2 0 10 7 1 2 0 )5-0 4 0 0 1— 2
3 5铁 心 连 接 部 的增 强 方 法 . 如 图 1a b 定 子 是 由 冲 片 叠 扣 铆 而 成 , 过 几 个 磁 4 、, 通
极块 连接起来 , 连接 作用 的薄 肉部 同磁 极 的磁 力线 方 起 向成直交 ; 为了在绝缘处理时 固定磁 极块 ( 强连 接 ) 采 增 , 用一体成形 树脂 , 树脂件之间通过设 置的插销进行 连接 ;
机 装 入 复 杂 的 基 台上 。
位 , 图2 如 4所 示 。磁 后 轭 部 受 到 压 面 的 限 位 , 定 了 磁 规 极 的径 向位 置 ; 极 端 部 的 两 侧 受 到 支 架 的加 强 筋 的 限 磁 位 , 而 也 规 定 了 磁极 的 圆周 向 位 置 。 定 子 装 入 支 架 时 , 从 薄 肉部 受 到 支 架 上 设 置 的定 位 销 的 定 位 , 子 铁 心 的 两 定
理 后进 行 绕 线 。绕 线 方法 是将 铁 心 两 端 固定 在 绕 线 机 的

铁芯生产工艺

铁芯生产工艺

三、铁芯生产工艺要求
• (八)、浸漆 1、浸漆前,为防止铁芯在退火及脱模过程的轻微变 形,须将铁芯截面作进一步压平处理,并将铁芯内圈片 头固定; 2、将压平和片头固定的铁芯有规则的排列于浸漆蓝 中,将浸漆蓝吊入浸漆罐中,盖好并锁紧罐盖,关闭排 气阀,开启抽气阀,启动真空泵至-0.1MPa,并保持30 分钟以上; 3、真空浸漆时间足够后,关真空泵,开(进气阀) 排气阀解除真空,再充干燥过滤后的压缩空气至 0.4MPa,保持约30分钟; 4、充压保持时间足够后,开启排气阀至罐内压力为 正常大气压,开盖,吊起浸漆蓝,其下部在浸漆罐口下, 让多余的树脂自然流下,保持约20分钟; 5、打扫卫生,作好浸漆记录。



• •
三、铁芯生产工艺要求
• (三)、卷绕 1、开启卷绕机电源,检查卷绕机显示、运转和氩弧焊机是 否正常; 2、戴上作业专用手套,根据生产计划单要求,到仓库领取 相应的芯模和材料,材料装入卷绕机放料架并紧固; 3、装上芯模,牵引硅钢片材片头插入芯模卡口紧靠卷绕盘, 开启气缸将硅钢片材紧压于芯模上,反向旋转放料架,拉紧硅 钢片材,开启张力开关,调整导料滚轮间隙以保证硅钢片材平 稳运行; 4、设定卷绕圈数,调节变频器以调整卷绕速度; 5、启动卷绕开关开始卷绕,达到卷绕圈数停止后,于芯模 卡口对角处点氩弧焊,折断片材,取下卷绕片材的芯模置于相 应塑料盒或铁盒中,接着开始下一次卷绕; 6、卷绕结束后,关电源,将卷绕的铁芯模送往定型打包处; 7、收检工具置于相应位置,打扫卷绕机及周围卫生;作好 卷绕记录。
四、铁芯质量控制过程
(二)、铁芯生产过程的质量控制:
在铁芯的整个生产过程,均应避免原材料和半成品被玷污,所以作 业时须戴专用作业手套,并与原材料和半成品接触的面保持洁净;生产各工 段的质量控制要求如下: 1、备料:检查硅钢带外观,轻拿轻放,避免原材料损伤; 2、分条:硅钢带进入分条前,用羊毛毡擦拭表面;分条后宽度误差 ≤0.03MM,无毛刺、无卷边、无变形; 3、卷绕:调整张力和卷绕速度,铁芯卷绕紧密,表截面平整,焊点牢固; 4、打包:调整油泵压力,避免铁芯损伤和变形; 4、退火:选择适合的退火曲线,退火后无变形,无氧化,应力完全消除; 5、脱模:避免用力过大,用力均匀;脱模后铁芯无损伤,无变形; 6、浸漆:树脂浓度适当,保证真空度要求和充气压力,浸漆时间充分; 7、烘烤:严格控制烘烤温度和时间; 8、切割:砂轮运转平稳,无摆动、跳动,磨损小,切割速度适当; 9、研磨:磨样机运转平稳,无跳动;保持铁芯切割面与砂带面平行,避免 用力过大和不均; 10、整理:严格控制铁芯剥离后的尺寸,不得损伤切割面,并作好防锈处 理; 11、包装:铁芯嵌入冲孔泡绵板,避免挤压和晃动,包装箱外打包带松紧 适当。

定子铁芯技术要求-概述说明以及解释

定子铁芯技术要求-概述说明以及解释

定子铁芯技术要求-概述说明以及解释1.引言1.1 概述概述定子铁芯技术是电机制造中不可或缺的一部分,它直接影响着电机的性能和效率。

定子铁芯作为电机的核心部件,其设计和制造需要符合一定的技术要求。

本文将介绍定子铁芯技术要求的相关内容。

首先,我们将讨论定子铁芯的基本概念和作用。

定子是电机的固定部分,以定子铁芯为骨架,绕制有线圈。

定子铁芯的主要作用是提供一个稳定的磁路,使得电机能够高效地转换输入的电能为机械能。

接下来,我们将探讨定子铁芯的材料选择。

定子铁芯通常采用高导磁性能的硅钢片制成,这种材料具有较低的磁滞损耗和涡流损耗,能够有效地减少电机的能量损耗,提高电机的效率。

然后,我们将详细介绍定子铁芯的结构设计要求。

首先,在设计定子铁芯时需要考虑其形状和尺寸,这将直接关系到电机的外形和功率。

其次,在铁芯的制造过程中需要注意铁芯的缝隙和接头的连接方式,以确保铁芯的稳定性和机械强度。

最后,我们将讨论定子铁芯的加工工艺和质量控制。

定子铁芯的加工过程需要保证高精度和高效率,以确保电机的性能和稳定性。

同时,定子铁芯的质量控制需要进行严格的检测和测试,以确保其符合设计要求。

综上所述,定子铁芯技术要求包括定子铁芯的基本概念和作用、材料选择、结构设计要求以及加工工艺和质量控制等方面。

了解和掌握这些技术要求对于电机制造和应用具有重要的意义。

在下文中,本文将对这些内容进行详细的阐述。

1.2 文章结构文章结构部分的内容可以包括以下内容:文章结构部分的目的是为了向读者介绍整篇文章的组织结构,帮助读者更好地理解和掌握文章内容。

本文将通过以下几个部分来论述定子铁芯技术要求的相关内容。

第一部分是引言部分,主要包括三个方面的内容。

首先是概述,简要介绍了定子铁芯技术在电力工业中的重要性和应用范围。

其次是文章的结构,具体列出了本文的每个部分的主要内容和章节标题,为读者提供了整体的框架。

最后是目的,说明了本文的目标是为读者介绍定子铁芯技术的要求,帮助他们提高对该技术的理解和应用。

铁芯制造工艺

铁芯制造工艺

铁芯制造工艺(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--定子铁心制造控制办法Y2、Y3系列三相异步电动机的定子铁心为外压装结构。

一定数量的定子冲片和两端的定子压圈经装压后用扣片扣紧成一个整体。

冲制定子、转子冲片用电工硅钢片,一般采用厚度为的热轧或冷轧硅钢板或卷料,冷轧硅钢片以其优良的电磁性能和机械性能将逐渐取代热轧硅钢板。

在装有自动进料装置的高速冲床上加工冲片时,都采用卷料,其余则采用板料或由板料剪裁成一定尺寸的条料。

条料用龙门剪床或滚动剪床进行裁剪。

冲制冲片时,要合理地排样和选择适当的冲制余量,以提高材料的利用率。

定子、转子铁心是由定、转子冲片压装而成的,因此,冲片质量主要根据铁心的技术要求确定,有以下几点:(1)定子冲片内、外圆和转子冲片的轴孔尺寸为8级精度,定子冲片外圆对内圆的同轴度为8级。

(精度等级越高,尺寸公差范围就越小,具体见冲片图纸要求)。

(2)定子冲片槽形尺寸为10级精度,槽形沿圆周应均匀分布。

(3)冲片断面上的毛刺应小于,复式冲槽的冲片个别部位毛刺允许为。

定子、转子冲片的冲制方法有单式槽、复式冲槽和多工位级进冲制等。

此三种冲制方法的特点和适用范围见表3-6.定子、转子冲片制造方法很多,但都要保证冲片内、外圆同轴度得精度。

采用单式冲槽、复式冲槽时,冲片内外圆要一次冲成。

多工位级进冲时,则由冲模的高精度来保证。

定子冲片在压装前,需对表面进行绝缘处理,其目的主要是为了减少铁心涡流损耗,而且可增强其腐蚀、耐油和防锈性能。

冲片表面进行绝缘处理,主要技术要求是绝缘层应具有良好的介电性能、耐油性、防潮性、附着力强和足够的机械强度和硬度,表3-6 各种类型冲制方法的特点和适用范围而且绝缘层要薄,以提高铁心的叠压系数,增加铁心的有效长度。

部分系列H180及以上的电机定子冲片表面需经绝缘处理,常用方法涂1611油性硅钢片漆。

漆膜的单面厚度为~,双面厚度不大于。

电机制造工艺学

电机制造工艺学
本章教学重点
1.铁心材料的选择; 2.铁心加工工艺方案的制定、设备和模具的选择; 3.冲片绝缘处理; 4.铁心的优化压装; 5.铁心的质量检测。
铁芯是电机磁路的重要组成部分,它和转子铁芯、定子和转 子之间的气隙一起组成电机的磁路。在异步电机中,定子铁芯中 的磁通是交变的,因而产生铁芯损耗。铁芯损耗包括两部分:磁 滞损耗和涡流损耗。
现在稀土永磁材料已成为电子技术通讯中的重要材料,用在 人造卫星,雷达等方面的行波管、环行器中以及微型电机、微型 录音机、航空仪器、电子手表、地震仪和其它一些电子仪器上。 目前稀土永磁应用已渗透到汽车、家用电器、电子仪表、核磁共 振成像仪、音响设备、微特电机、移动电话等方面。在医疗方面, 运用稀土永磁材料进行“磁穴疗法”,使得疗效大为提高,从而 促进了“磁穴疗法”的迅速推广。在应用稀土的各个领域中,稀 土永磁材料是发展速度最快的一个。它不仅给稀土产业的发展带 来巨大的推动力,也对许多相关产业产生相当深远的影响。
(2)冷轧无取向电工钢片DW
冷轧无取向电工钢片按含硅量分为低硅(低碳)电工钢片和含 硅电工钢片。 • 低硅(低碳)电工钢片,含硅量低于0.5%,也叫低硅或无硅电
工钢片,实际上是一种低硅低碳电工铁板。由于含硅量低, 饱和磁感应强度高,铁损较大、较软,含碳、氮量(均指质量 分数)都小于0.003%,生产工艺简单,周期短、成本低,故多 适用于家用电机电器的铁芯。
此外,我国还生产晶粒取向度小的冷轧硅钢片,这种硅钢片 的电磁性能虽比晶粒取向度大的冷轧硅钢片差,但比热轧硅钢片 优良。由于晶粒取向度小,顺轧制方向和垂直轧制方向交变磁化, 电磁性能差别不是很大,故成为制造交流电机定子铁芯的良好材 料。
电工纯铁是一种含铁量在99.5%以上的优质钢,是一种低 碳低硫低磷铁,包括原料纯铁和电磁纯铁两类。供料状态有 直径不大于250mm的热轧、热锻及冷拉棒料和冷轧、热轧薄板。 主要用于电器,电讯,仪表和国际尖端工业制做电磁元件, 电磁铁芯等。

铁粉芯材料简介(FerriteMaterial)

铁粉芯材料简介(FerriteMaterial)
和控制。
烧结后的铁粉芯应具有高密度、 高导磁率和高机械强度等特点。
后处理
01
后处理是对烧结后的铁 粉芯进行表面处理、热 处理和机械加工等处理 的过程。
02
表面处理可以提高铁粉 芯的耐腐蚀性和绝缘性。
03
热处理可以改善铁粉芯 的磁性能和机械性能。
04
机械加工可以对铁粉芯 进行切割、钻孔和研磨 等加工,以满足不同应 用的需求。
铁粉芯材料简介
目录
• 铁粉芯材料的定义与特性 • 铁粉芯材料的制造工艺 • 铁粉芯材料的性能优化 • 铁粉芯材料的市场与发展趋势 • 铁粉芯材料的环境影响与可持续发展
01
铁粉芯材料的定义与特 性
定义
01
铁粉芯材料是一种由铁粉和有机 物粘结剂混合烧结而成的磁性材 料,也称为铁芯或磁芯。
02
铁粉芯材料通常采用粉末冶金技 术制备,通过将铁粉和粘结剂混 合、压制、烧结等工艺过程,制 得具有特定形状和性能的磁芯。
特性
高磁导率
铁粉芯材料具有较高的磁导率 ,可以有效地传递磁场,减小
磁阻。
低磁损耗
铁粉芯材料的磁滞损耗和涡流 损耗较低,有利于降低磁场能 量损失。
可加工性
铁粉芯材料可以通过切割、钻 孔、弯折等加工方式,制成不 同形状和尺寸的磁芯,满足不 同应用需求。
成本低廉
铁粉芯材料的制备工艺相对简 单,成本较低,适合大规模生
铁粉芯材料在生产过程中需 要消耗大量的能源和原材料, 对资源的需求较大,对环境
造成一定的压力。
铁粉芯材料在使用过程中可能 会产生噪声和电磁辐射等污染, 对周围环境造成一定的影响。
可持续发展策略
推广绿色生产技术
采用环保型的生产技术和设备,减少生产过程中 的废弃物排放,降低能耗和资源消耗。

电机硅钢片堆叠工艺

电机硅钢片堆叠工艺

电机硅钢片堆叠工艺电机硅钢片堆叠工艺是一种制造电机铁芯的方法,铁芯是电机的核心结构,支撑着电机的运转。

硅钢片是用于制造电机铁芯的常见材料,因为它具有低磁导率和高电阻率,可以减少铁芯的损耗和热量。

在电机硅钢片堆叠工艺中,用硅钢片按一定顺序和方式组成铁芯,使其具有良好的磁通路径和机械强度,以确保电机的高效运转和长寿命。

电机硅钢片堆叠工艺的过程包括选材、裁剪、磨边、堆叠和焊接等多个环节。

首先是选材,选择质量良好的硅钢片是保证电机铁芯质量的关键。

硅钢片应具有低的磁导率和高的电阻率,同时表面光滑,无毛刺和油污等缺陷。

常见的硅钢厂家有宝钢、武钢、包钢等,可以根据需要选择合适的品牌和规格。

裁剪是铁芯制造的第二步。

一般情况下,电机铁芯的大小和形状根据电机的功率和转速来确定,可以通过计算和实验得出。

硅钢片需要根据铁芯的尺寸和形状进行裁剪,通常采用机械剪切的方式,也可以使用数控开料机进行裁剪。

裁剪后的硅钢片应该保证高度一致,并且不应该有损伤和变形。

磨边是为了保证硅钢片的表面光滑,以便堆叠时更为精确。

硅钢片的边缘需要经过磨削处理,通常使用磨角机或者磨边机来完成。

磨边时需要保证削铁量和磨削压力的均匀性,以避免硅钢片表面产生变形或者划痕。

接着是堆叠。

堆叠工艺是决定铁芯质量的关键步骤之一。

在堆叠时,硅钢片需按照一定的次序和方式进行排列和叠放,以达到最佳的磁通路径和机械强度。

通常,硅钢片需要经过多次堆叠,每次堆叠后要进行检查和测量,以确保铁芯的几何尺寸和磁学性能的正确性。

最后是焊接。

焊接是将硅钢片牢固地连接在一起,形成整个电机铁芯的关键步骤。

常见的焊接方法有点焊和缝焊。

点焊通常用于连接单层硅钢片,缝焊则用于连接多层硅钢片。

在焊接时,需要严格遵循焊接参数和工艺规范,以确保焊接接头的质量和机械强度。

总之,电机硅钢片堆叠工艺是一项技术含量较高、要求严格的制造过程。

采用正确的工艺和工具,选择合适的材料和品牌,严格遵循制造流程和规范,可以保证电机铁芯的优质和可靠,同时提高电机的效率和寿命。

变压器工艺流程及要求

变压器工艺流程及要求

03
变压器的主要参数
额定电压
定义:变压器能够长期、安全、可靠运行的最大输入或输出电压 单位:伏特(V) 分类:单相、三相 影响因素:变压器绕组的绝缘强度、变压器的冷却方式等
额定电流
定义:变压器在额定电压下,按照额定功率运行时的电流 计算公式:I=P/U 单位:安培(A) 意义:反映变压器承载负荷的能力,是变压器选择和使用的重要依据
油箱
作用:变压器 油箱是变压器 的重要组成部 分,用于容纳 变压器油和绕
组等部件
材质:变压器 油箱一般采用 钢板焊接而成, 具有较高的强 度和耐腐蚀性
结构:变压器 油箱内部一般 分为上、下两 部分,上部为 储油室,下部 为绕组和铁芯
等部件
密封性:变压 器油箱必须具 有良好的密封 性,以防止变 压器油泄漏和 外部空气进入
变压器异响:检查内部结构是否 松动、接触不良,及时调整
添加标题Βιβλιοθήκη 添加标题添加标题添加标题
变压器漏油:检查密封件是否老 化、损坏,及时更换
变压器跳闸:检查保护装置是否 正常工作,排除故障后重新启动
安全注意事项
遵守操作规程:按照规定程序进行操作,确保设备正常运行 定期检查:对变压器进行定期检查,及时发现并处理潜在问题 保持设备清洁:定期清理变压器表面灰尘和杂物,防止短路或漏电 避免超负荷运行:避免变压器长时间超负荷运行,以免损坏设备
单击添加项标题
组装:将各个部分组装在一起
单击添加项标题
清洗和涂装:对油箱进行清洗和涂装
单击添加项标题
成品入库:将成品入库,等待发货
冷却装置制造工艺流程
散热器制造工艺流程:包括 材料准备、切割、冲压、焊 接等步骤
冷却装置的组成:包括散热 器、风扇、油泵等部件

硅钢片-叠片-铁芯

硅钢片-叠片-铁芯

退火的目的是:冷轧带通过再结晶消除冷轧产生的应变和促使晶粒长大, 将钢中的碳脱到0.005%以下(最好在0.003%以下),以保证磁性,硬度和磁实效符合 要求条件。退火时小张力以保证钢带更平整。
二.叠片的材料
5、日本牌号表示方法:
(1)冷轧无取向硅钢带 由公称厚度(扩大100倍的值)+代号A+铁损保证值(将频率50HZ,最大 磁通密度为1.5T时的铁损值扩大100倍后的值)。 如50A470表示厚度为0.5mm,铁损保证值为≤4.7的冷轧无取向硅钢带。
MK70 localization :B 50 A1300 MK70 :JIS 50 A1000 (2)冷轧取向硅钢带 由公称厚度(扩大100倍的值)+代号G:表示普通材料,P:表示高取向 性材料+铁损保证值(将频率50HZ,最大磁通密度为1.7T时的铁损值扩 大100倍后的值)。 如30G130表示厚度为0.3mm,铁损保证值为≤1.3的冷轧取向硅钢带。
• 冷轧:把钢材加热后控制在再结晶温度以下进行轧制加工的工艺称为热轧 (a)晶粒无取向:电机或焊接变压器等 (b)晶粒取向:电源变压器、脉冲变压器和磁放大器等的铁芯,若用冷轧取向带,
性能更佳,用它代替热轧带或低档次冷轧带,可减少变压器电能消耗量45%-50%
冷轧钢
热轧钢
二.叠片的材料
冷轧电工钢带具有表面平整、厚度均匀、叠装系数高、冲片性好等特点, 且比热轧电工钢带磁感高、铁损低。
Lamination
一、Lamination的作用 二、材料 三、 lamination 设计相关 四、制作流程 五、 测试实验
1
一.叠片的作用
1.支撑段绝缘 2.和轴配合为电机提供扭矩 3.引导磁通量通过

铁芯制造工艺(新 全)

铁芯制造工艺(新 全)

For personal use only in study and research; not forcommercial use第二章铁芯制造工艺第一节裁剪一、剪切剪切是指用剪床和剪刀加工工件的工作。

按照剪刀的安装方法,分为平口剪和斜口剪两种。

平口剪的上下剪刃平行,一般用于剪切窄而厚的材料。

斜口剪的上刀刃相对下刀刃有一个斜角。

用于剪切宽而薄的板料。

由于斜口剪上剪刃只有一点与板材接触,随着上刀刃下降,逐渐将板材剪成两部分;而平口剪剪刀全部与板材接触,在全宽范围内一下剪成两部分,因而斜口剪比平口剪省力,所以现在几乎全部采用斜口剪。

由于斜口剪上剪刃与下剪刃有斜角φ,因而在侧向产生一个推力,所以角第一不宜过大,一般在10°~15°;第二在剪切时,在剪刃开口的一边加一挡料板,其用途有两点;一是档料和抵消推力,二是用作剪切定位,如图1-1a所示。

图1-1 斜口剪切示意图a)斜口剪切示意图b)剪刃形状及有关角度图1-1b所示为剪刃形状的有关角度,其中δ角称为剪刃角,它是直接影响刀刃的强度、锐利程度、剪切力大小和剪切质量好坏的重要因素。

剪切硅钢片时,根据剪刀材质的不同,可在75°~85°之间选择。

为了减少剪刃上部与材料之间的摩擦,在上下剪刃靠近材料一侧,磨出一个1.5°~3°的后角α。

为了减少剪刃与剪切后的材料见的摩擦起见,在垂直材料的方向上,对上下刀刃各磨出一个1°~1.5°的前角γ。

刃角δ为β角和前角γ之差。

由于卷料硅钢片的问世,原有的一般剪床已无法加工,因而产生了用圆盘滚刀来进行剪切,这就是滚剪。

滚剪刀具理论上后角α=0°,前角γ=0°。

实际在刃磨时,后角α=0°,前角γ=1°,上下刃重合度为板厚的50%~70%,间隙为板厚的2.5%~5%。

剪切可按剪切刃与冷轧钢带的轧制方向的相对位置来分。

电机制造工艺(3篇)

电机制造工艺(3篇)

第1篇一、引言电机作为一种重要的机械设备,广泛应用于工业、农业、国防、科研等领域。

电机的制造工艺对于电机的性能、可靠性、使用寿命等具有决定性影响。

本文将从电机的结构、材料、工艺流程等方面,对电机制造工艺进行详细介绍。

二、电机结构电机主要由定子、转子、端盖、轴承、冷却系统等部分组成。

1. 定子:定子是电机的外壳,通常由硅钢片叠压而成,内部嵌入线圈。

定子的作用是产生磁场,从而实现能量转换。

2. 转子:转子是电机的核心部分,通常由硅钢片叠压而成,外部缠绕线圈。

转子的作用是产生电磁力,从而实现机械能的输出。

3. 端盖:端盖是电机的连接部分,起到固定、支撑和密封的作用。

4. 轴承:轴承是电机的支撑部分,起到减少摩擦、降低噪音和延长使用寿命的作用。

5. 冷却系统:冷却系统包括风扇、油冷却器等,用于降低电机运行过程中的温度,保证电机正常运行。

三、电机材料1. 硅钢片:硅钢片是电机定子和转子的主要材料,具有良好的磁导率和耐腐蚀性。

2. 线圈:线圈通常采用高强度、耐腐蚀的漆包线,根据电机的额定电压和电流进行绕制。

3. 端盖、轴承等部件:端盖、轴承等部件通常采用铸铁、铝合金等材料,具有良好的机械性能和耐腐蚀性。

四、电机制造工艺流程1. 钢铁材料准备:根据电机的尺寸和性能要求,选择合适的硅钢片,并进行剪切、叠压等处理。

2. 定子、转子制造:将硅钢片叠压成定子和转子,并进行机械加工,确保其尺寸精度和表面质量。

3. 线圈绕制:根据电机的额定电压和电流,选择合适的漆包线,进行线圈绕制,并保证线圈的均匀性和绝缘性能。

4. 定子、转子组装:将定子和转子组装在一起,确保组装精度和稳定性。

5. 端盖、轴承等部件加工:对端盖、轴承等部件进行机械加工,确保其尺寸精度和表面质量。

6. 端盖、轴承等部件组装:将端盖、轴承等部件组装到定子和转子之间,确保组装精度和稳定性。

7. 涂装:对电机进行涂装,提高其耐腐蚀性和美观性。

8. 性能测试:对电机进行性能测试,包括绝缘电阻、空载电流、负载电流、温升等,确保电机性能符合要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章铁芯制造工艺第一节裁剪一、剪切剪切是指用剪床和剪刀加工工件的工作。

按照剪刀的安装方法,分为平口剪和斜口剪两种。

平口剪的上下剪刃平行,一般用于剪切窄而厚的材料。

斜口剪的上刀刃相对下刀刃有一个斜角。

用于剪切宽而薄的板料。

由于斜口剪上剪刃只有一点与板材接触,随着上刀刃下降,逐渐将板材剪成两部分;而平口剪剪刀全部与板材接触,在全宽范围内一下剪成两部分,因而斜口剪比平口剪省力,所以现在几乎全部采用斜口剪。

由于斜口剪上剪刃与下剪刃有斜角φ,因而在侧向产生一个推力,所以角第一不宜过大,一般在10°~15°;第二在剪切时,在剪刃开口的一边加一挡料板,其用途有两点;一是档料和抵消推力,二是用作剪切定位,如图1-1a所示。

图1-1 斜口剪切示意图a)斜口剪切示意图b)剪刃形状及有关角度图1-1b所示为剪刃形状的有关角度,其中δ角称为剪刃角,它是直接影响刀刃的强度、锐利程度、剪切力大小和剪切质量好坏的重要因素。

剪切硅钢片时,根据剪刀材质的不同,可在75°~85°之间选择。

为了减少剪刃上部与材料之间的摩擦,在上下剪刃靠近材料一侧,磨出一个1.5°~3°的后角α。

为了减少剪刃与剪切后的材料见的摩擦起见,在垂直材料的方向上,对上下刀刃各磨出一个1°~1.5°的前角γ。

刃角δ为β角和前角γ之差。

由于卷料硅钢片的问世,原有的一般剪床已无法加工,因而产生了用圆盘滚刀来进行剪切,这就是滚剪。

滚剪刀具理论上后角α=0°,前角γ=0°。

实际在刃磨时,后角α=0°,前角γ=1°,上下刃重合度为板厚的50%~70%,间隙为板厚的2.5%~5%。

剪切可按剪切刃与冷轧钢带的轧制方向的相对位置来分。

在硅钢带剪切中,一般可分为纵剪、90°横剪和45°剪三种。

纵剪,就是采用上述的圆盘滚剪刀,在纵滚生产线上。

沿冷轧硅钢带的轧制方向,倒成所需的各种宽度的条料。

横剪,就是在普通剪床上或在横切生产线上,采用斜口剪相对冷轧钢带的轧制方向垂直或呈某一角度,将上述滚剪的条料剪成变压器铁芯所需的各种尺寸的片形。

二、冲制冲制是指在冲床上利用模具进行冲载,冲孔,冲槽等工作,其过程和原理与剪切相似,只不过是用凸凹摸代替了上下剪刃而已。

冲模也有平口和斜口两种,如图1-2所示,图a为平口冲模;图b为斜口冲模,斜度φ约为1°~6°,一般取φ=4°。

冲制时,凸凹模之间也有一个间隙和重合度问题,它们同样是影响冲制力、冲制质量和模具使用寿命的重要因素。

一般间隙取板厚的7%~10%。

对于0.35mm厚的硅钢板,单向间隙一般取0.015~0.02mm。

至于上下刀具重合度,理论上与剪切一样,只要板厚的50%~70%即可。

但是实际上由于冲制是还要考虑落料排出及凹模刃磨寿命等原因,重合度往往大于片厚好几陪。

冲制模具由于加工的性质不同,可分为;落料模、冲孔模、剪切模和修边模等。

其结构可分为敞开式和导柱式两种。

在变压器铁芯片冲制过程中,由于零件尺寸大,只能用敞开式;但是对于较小零件,冲制精度要求高,毛刺要求特别小时,由于冲床精度难以保证上述要求,应采用有导向的导柱式冲模。

第二节硅钢片的压毛、涂漆和烘干一、硅钢片压毛1.压毛目的由于铁芯片毛刺直接影响变压器性能,因此规定毛刺高度大于0.03mm的铁芯片,在涂漆之前必须压毛。

2.压毛工艺方法压毛是采用双锟压毛机进行。

将双锟压毛机的下压锟位置固定。

上压锟采用压缩弹簧加压,其压力大小由弹簧压紧装置上的顶丝调节。

上下锟必须平行且沿压锟表面均匀接触。

试车时,可先用塞尺检查上下锟于接触是否均匀,然后用毛刺高度超过0.03mm的硅钢片试压,并对毛刺高度进行测定。

如果毛刺高度经压毛后小于0.02mm,片子又无瓢曲、过碾等现象,则视为试车完毕。

然后试压一部分片子,经检验合格后即可投入生产,生产过程中应按规定进行检验。

3.压毛抽检方法抽取有孔且毛刺较大的片子三片,用千分尺测量刃口处厚度,每片测五点。

每点均不得超过近旁边厚0.02mm。

如果孔处毛刺大,可以从孔处切开测量孔处毛刺,二、硅钢片涂漆1.涂漆目的铁芯片涂漆,是在铁芯片表面涂盖一层坚实的,具有一定绝缘电阻的,耐热耐抽的薄漆膜。

铁芯片涂漆不仅可以减少铁芯涡流和边缘泄漏电流引起的附加损耗,而且可使铁芯片表面与空气中的氧气及腐蚀粒子隔绝,可避免金属表面氧化或腐蚀而影响铁芯的电磁性能。

2.涂漆的工艺方法铁芯片涂漆有喷涂法和滚涂法两种。

前者通常用于喷涂硅钢片刃口,以防生锈;后者用于整张片子的表面涂漆(包括刃口涂漆)。

三、硅钢片涂漆后的烘干1.烘干目的硅钢片上所涂的漆需要在一定温度下进行烘干,才能固化成坚硬、牢固、绝缘强度大和表面光滑平整的漆膜。

然后转入下道工序供铁芯叠装。

2.烘干工艺烘干一般分为前、中、后三区加热,这样可以使漆膜中气体排出和充分固化,从而获得内表一样坚固的漆膜。

对于1611漆来说前区加热温度一般为150°~250°中区加热温度一般为350°~550°后区加热温度一般为200°~350°上述温度是由烘干炉上的三个热电偶和毫伏表或电位差计进行监视和控制。

对于不同的漆种和不同的进料速度,其温度高低及分布方法可适当改变。

可用白手套在热状态下擦拭漆膜,如漆膜上不出现印痕,不粘手,则视为干透。

也可通过观察漆膜颜色来判断,例如1611漆一次涂漆为棕色或深棕色二次涂漆为褐色或深褐色三次涂漆为更深的褐色根据上诉方法判断后,操作工人可适当降低或提高某区温度,或进行全线调整速度和温度,边试边调,直至调到满意为止。

第三节铁芯片的叠片形式和叠片图一、铁芯的叠片形式1.对接和搭接铁芯的叠片形式是按心柱和铁轭的接缝是否在一个平面内而分类,各个接合处的接缝在同一垂直平面内的称为对接;接缝在两个或多个垂直平面内的称为搭接。

由图5-1可见,对接式的心柱片与铁轭片间可能短路,需要垫绝缘垫,且在机械上没有联系,夹紧结构的可靠性要求高。

搭接式的心柱与铁轭的铁芯片的一部分交替地搭接在一起,使接缝交替遮盖从而避免了对接式的缺点。

2.搭接的接缝结构铁芯在厚度方向是由铁芯片叠积而成。

接缝形式决定了铁芯的电磁性能、材料利用率和加工的难易程度。

当接缝与硅钢片的轧制方向平行或垂直时称为直接缝。

否则称为斜接缝。

3.阶梯接缝为了减少接缝处铁损过分集中而造成局部过热,国外已在铁芯上采用阶梯接缝,又称为步进接缝即把各层之间的叠片接缝向纵向或横向错开,避免铁芯某一个剖面上接缝集中。

4.每层叠片的数量铁芯叠装时,每层叠片的数量一般为1~3片。

数量越多,接缝处气隙的截面越大,接缝处引起的磁通密度畸变也越大,如图5-2所示。

由于磁通密度畸变,使接缝处部分硅钢片磁通密度增大引起铁芯损耗增加,从图5-3可以看出每层的数量对铁损的影响。

从理论上讲,采用一张片一叠最好,对于小容量的铁芯有可能做到。

但对于大容量的铁芯,考虑到插装上轭铁的工艺要求有可能插装不到位,反而使空载电流和损耗增加,故一般采用两张片一叠。

混合叠片是近年来在国外对中等容量配电变压器铁芯采用一种新方法。

即对铁芯总厚度约1/3的中心部分(主级)一张片一叠,接下来的1/3是两张片一叠,最靠外的1/3采用三张片一叠,总的叠装工作量并不增加多少,但可取得显著降低铁损和空载电流的效果,表5-3是模型试验的结果。

磁通密度B/T 每层叠不同片数的铁损/W -每层叠不同片数的I。

A-1片2片混合%1片2片混合%1.40 83.0 86.0 84.02.3 2.3 2.55 2.82 2.62 7.1 1.50 100.5 104.5 102.0 2.53.604.00 3.65 8.5 1.60 123.5 129.0 125.5 2.7 5.19 5.61 5.15 7.2 1.67 143.4 150.0 145.6 2.96.707.35 6.86 6.7 1.70 153.5 160.9 156.1 3.0 7.858.60 8.07 6.2实践证明,铁芯中心的磁通密度分布并不是均匀的中心部分的磁通密度低于额定值,中间和边缘的磁通密度要高于额定值,越靠外侧磁通密度越高。

降低铁损的方法之一就是使铁芯各部分的磁通密度分布均匀。

采用=变更每叠片数的方法,可调节磁路的磁阻,从而调节磁通密度的分布。

中间部分磁通密度偏低,采用一张一叠后磁阻降低,使磁通密度增加:外侧磁通密度偏高,采用三张片一叠磁阻增加,使磁通密度减小。

如前所述,如果全部采用一张片一叠节约效果当然会大,这样却增加了铁芯叠装的工作量。

二、铁心叠片图反映铁芯中每层叠片的分布和排列方式的图称为铁心叠片图。

在叠片图中,规定了叠片的接缝结构、叠片的形状、尺寸和数量。

下面是几种常见的铁芯叠片图:单相二柱式铁心叠片图如图5-4所示。

三相三柱式铁心叠片图如图5-5~图5-8所示。

三相五柱式铁心叠片图如图5-9所示。

对于小型铁芯,为了增加机械强度采用不断轭铁芯片;为了剪切方便,可采用标准斜接缝的(出尖角)结构为了减少废料,可采用5/7接缝形式(属半直半斜接缝结构)。

大型铁芯,均采用断轭的全斜接缝的结构形式,如图5-7~图5-9所示。

第四节铁芯片的预叠一铁芯选片铁芯选片,是按铁芯柱及铁轭柱截面形状,将各级铁片按顺序准备好,以供叠装使用,对于中小型变压器,可将铁心柱或铁轭的各级叠片,按截面形状在料板上叠成一个“圆柱”,分别供铁心柱或铁轭叠装时使用。

对于大型变压器,由于一个完整的“圆柱”叠片重量太大,超出料板的承受能力,不便于吊运,因此常叠片成两个半“圆柱”分别放在两个料板上,如图5-23所示,为了保证吊运时的稳定性,料板(图b)最下一、二级叠片因宽度较小,可以并列平放,以增加底层料的面积。

叠装时先用图a料板中的片,待叠装完后再用图b板中的片,对于容量更大的变压器,有时可以将以个“圆柱”叠片分成三部分,即第一板放置按圆柱总厚度的上部的1/3,第二板中间的1/3(即最宽的主级),第三板放置下部的1/3。

叠装时,从第一板开始,依次取料。

选片工作,主要靠人工操作,对于硅钢片的搬运可借助于电磁铁及简单的吊运设施,操作时应轻拿轻放,避免摔打碰撞,否则会使叠片受到不应有的应力影响,从而使铁损增加,为保证叠装时取料方便,各级叠片应堆放整齐。

二厚度保证预叠是铁芯加工过程中承上启下的一个工序,是铁芯片加工和叠装的中间环节,通过预叠保证铁芯叠装时每级厚度和总厚度。

纵剪工作是按材料长度来控制的,横剪工作是按剪切的片数来控制的,叠片时要保证图样所要求的每级厚度和总厚度,所以预叠的另一项工作就是把铁芯片的片数和叠装的厚度联系起来。

一般要求每一台铁芯预叠时,先根据每级厚度和片厚度计算每级所需片数,选叠一个心柱,按叠装的顺序逐级叠好,用卡尺测量每级的厚度是否符合工艺要求。

相关文档
最新文档