数据结构图的遍历实验报告

合集下载

数据结构实验报告图的遍历讲解

数据结构实验报告图的遍历讲解

数据结构实验报告图的遍历讲解一、引言在数据结构实验中,图的遍历是一个重要的主题。

图是由顶点集合和边集合组成的一种数据结构,常用于描述网络、社交关系等复杂关系。

图的遍历是指按照一定的规则,挨次访问图中的所有顶点,以及与之相关联的边的过程。

本文将详细讲解图的遍历算法及其应用。

二、图的遍历算法1. 深度优先搜索(DFS)深度优先搜索是一种常用的图遍历算法,其基本思想是从一个顶点出发,沿着一条路径向来向下访问,直到无法继续为止,然后回溯到前一个顶点,再选择此外一条路径继续访问。

具体步骤如下:(1)选择一个起始顶点v,将其标记为已访问。

(2)从v出发,选择一个未被访问的邻接顶点w,将w标记为已访问,并将w入栈。

(3)如果不存在未被访问的邻接顶点,则出栈一个顶点,继续访问其它未被访问的邻接顶点。

(4)重复步骤(2)和(3),直到栈为空。

2. 广度优先搜索(BFS)广度优先搜索是另一种常用的图遍历算法,其基本思想是从一个顶点出发,挨次访问其所有邻接顶点,然后再挨次访问邻接顶点的邻接顶点,以此类推,直到访问完所有顶点。

具体步骤如下:(1)选择一个起始顶点v,将其标记为已访问,并将v入队。

(2)从队首取出一个顶点w,访问w的所有未被访问的邻接顶点,并将这些顶点标记为已访问,并将它们入队。

(3)重复步骤(2),直到队列为空。

三、图的遍历应用图的遍历算法在实际应用中有广泛的应用,下面介绍两个典型的应用场景。

1. 连通分量连通分量是指图中的一个子图,其中的任意两个顶点都是连通的,即存在一条路径可以从一个顶点到达另一个顶点。

图的遍历算法可以用来求解连通分量的个数及其具体的顶点集合。

具体步骤如下:(1)对图中的每一个顶点进行遍历,如果该顶点未被访问,则从该顶点开始进行深度优先搜索或者广度优先搜索,将访问到的顶点标记为已访问。

(2)重复步骤(1),直到所有顶点都被访问。

2. 最短路径最短路径是指图中两个顶点之间的最短路径,可以用图的遍历算法来求解。

图的遍历 实验报告

图的遍历  实验报告

图的遍历实验报告一、引言图是一种非线性的数据结构,由一组节点(顶点)和节点之间的连线(边)组成。

图的遍历是指按照某种规则依次访问图中的每个节点,以便获取或处理节点中的信息。

图的遍历在计算机科学领域中有着广泛的应用,例如在社交网络中寻找关系紧密的人员,或者在地图中搜索最短路径等。

本实验旨在通过实际操作,掌握图的遍历算法。

在本实验中,我们将实现两种常见的图的遍历算法:深度优先搜索(DFS)和广度优先搜索(BFS),并比较它们的差异和适用场景。

二、实验目的1. 理解和掌握图的遍历算法的原理与实现;2. 比较深度优先搜索和广度优先搜索的差异;3. 掌握图的遍历算法在实际问题中的应用。

三、实验步骤实验材料1. 计算机;2. 编程环境(例如Python、Java等);3. 支持图操作的相关库(如NetworkX)。

实验流程1. 初始化图数据结构,创建节点和边;2. 实现深度优先搜索算法;3. 实现广度优先搜索算法;4. 比较两种算法的时间复杂度和空间复杂度;5. 比较两种算法的遍历顺序和适用场景;6. 在一个具体问题中应用图的遍历算法。

四、实验结果1. 深度优先搜索(DFS)深度优先搜索是一种通过探索图的深度来遍历节点的算法。

具体实现时,我们可以使用递归或栈来实现深度优先搜索。

算法的基本思想是从起始节点开始,选择一个相邻节点进行探索,直到达到最深的节点为止,然后返回上一个节点,再继续探索其他未被访问的节点。

2. 广度优先搜索(BFS)广度优先搜索是一种逐层遍历节点的算法。

具体实现时,我们可以使用队列来实现广度优先搜索。

算法的基本思想是从起始节点开始,依次遍历当前节点的所有相邻节点,并将这些相邻节点加入队列中,然后再依次遍历队列中的节点,直到队列为空。

3. 时间复杂度和空间复杂度深度优先搜索和广度优先搜索的时间复杂度和空间复杂度如下表所示:算法时间复杂度空间复杂度深度优先搜索O(V+E) O(V)广度优先搜索O(V+E) O(V)其中,V表示节点的数量,E表示边的数量。

数据结构实验报告图的遍历

数据结构实验报告图的遍历

数据结构实验报告图的遍历一、实验目的本实验旨在通过实践的方式学习图的遍历算法,掌握图的深度优先搜索(DFS)和广度优先搜索(BFS)的实现方法,加深对数据结构中图的理解。

二、实验步骤1. 创建图的数据结构首先,我们需要创建一个图的数据结构,以方便后续的操作。

图可以使用邻接矩阵或邻接表来表示,这里我们选择使用邻接矩阵。

class Graph:def__init__(self, num_vertices):self.num_vertices = num_verticesself.adj_matrix = [[0] * num_vertices for _ in range(num_vertic es)]def add_edge(self, v1, v2):self.adj_matrix[v1][v2] =1self.adj_matrix[v2][v1] =1def get_adjacent_vertices(self, v):adjacent_vertices = []for i in range(self.num_vertices):if self.adj_matrix[v][i] ==1:adjacent_vertices.append(i)return adjacent_vertices2. 深度优先搜索(DFS)DFS是一种遍历图的算法,其基本思想是从图的某一顶点开始,沿着一条路径一直走到最后,然后返回尚未访问过的顶点继续遍历,直到所有顶点都被访问过为止。

def dfs(graph, start_vertex):visited = [False] * graph.num_verticesstack = [start_vertex]while stack:vertex = stack.pop()if not visited[vertex]:print(vertex)visited[vertex] =Truefor neighbor in graph.get_adjacent_vertices(vertex):if not visited[neighbor]:stack.append(neighbor)3. 广度优先搜索(BFS)BFS同样是一种遍历图的算法,其基本思想是从图的某一顶点开始,首先访问其所有邻接点,然后再依次访问邻接点的邻接点,直到所有顶点都被访问过为止。

数据结构实验---图的储存与遍历

数据结构实验---图的储存与遍历

数据结构课程实验报告一、实验目的掌握图这种复杂的非线性结构的邻接矩阵和邻接表的存储表示, 以及在此两种常用存储方式下深度优先遍历(DFS)和广度优先遍历(BFS)操作的实现。

二、实验内容与实验步骤题目1: 对以邻接矩阵为存储结构的图进行DFS和BFS遍历问题描述: 以邻接矩阵为图的存储结构, 实现图的DFS和BFS遍历。

基本要求:建立一个图的邻接矩阵表示, 输出顶点的一种DFS和BFS序列。

测试数据: 如图所示题目2: 对以邻接表为存储结构的图进行DFS和BFS遍历问题描述: 以邻接表为图的存储结构, 实现图的DFS和BFS遍历。

基本要求:建立一个图的邻接表存贮, 输出顶点的一种DFS和BFS序列。

测试数据: 如图所示三、附录:在此贴上调试好的程序。

#include<stdio.h>#include<malloc.h>#include<string.h>#define M 100typedef struct node{char vex[M][2];int edge[M ][ M ];int n,e;}Graph;int visited[M];Graph *Create_Graph(){ Graph *GA;int i,j,k,w;GA=(Graph*)malloc(sizeof(Graph));printf ("请输入矩阵的顶点数和边数(用逗号隔开): \n");scanf("%d,%d",&GA->n,&GA->e);printf ("请输入矩阵顶点信息: \n");for(i = 0;i<GA->n;i++)scanf("%s",&(GA->vex[i][0]),&(GA->vex[i][1]));for (i = 0;i<GA->n;i++)for (j = 0;j<GA->n;j++)GA->edge[i][j] = 0;for (k = 0;k<GA->e;k++){ printf ("请输入第%d条边的顶点位置(i,j)和权值(用逗号隔开): ",k+1);scanf ("%d,%d,%d",&i,&j,&w);GA->edge[i][j] = w;}return(GA);}void dfs(Graph *GA, int v){ int i;printf("%c%c\n",GA->vex[v][0],GA->vex[v][1]);visited[v]=1;for(i=0; i<GA->n; i++)if (GA->edge[v][i]==1 && visited[i]==0) dfs(GA, i);}void traver(Graph *GA){ int i;for(i=0; i<GA->n; i++)visited[i]=0;for(i=0; i<GA->n;i++)if(visited[i]==0)dfs(GA, i);}void bfs( Graph *GA, int v){ int j,k,front=-1,rear=-1;int Q[M];printf("%c%c\n",GA->vex[v][0],GA->vex[v][1]); visited[v]=1;rear=rear+1;Q[rear]=v;while (front!=rear){ front=front+1;k=Q[front];for (j=0; j<GA->n; j++)if (GA->edge[k][j]==1 && visited[j]==0){ printf("%c%c\n",GA->vex[j][0],GA->vex[j][1]);visited[j]=1;rear=rear+1;Q[rear]=j;}}}void traver1(Graph *GA){ int i;for (i=0; i<GA->n;i++)visited[i]=0;for (i=0; i<GA->n; i++)if (visited[i]==0)bfs(GA, i);}typedef struct NODE{ int adjvex;struct NODE *next;}ENode;typedef struct NODE1{ char vex[2];ENode *first;} VexNode;typedef struct FS1{VexNode GL[M];int bian,top;}FS;FS *CreateGL( ){ FS *kk=(FS *)malloc(sizeof(FS));int i,j,k;ENode *s;printf("请输入顶点数和边数(用逗号隔开): \n");scanf("%d,%d",&kk->top, &kk->bian);printf("请输入顶点信息: \n");for (i=0; i<kk->top; i++){ scanf("%s",kk->GL[i].vex);kk->GL[i].first=NULL; }printf("请输入边的信息(i,j): \n");for (k=0;k<kk->bian;k++){ scanf("\n%d,%d",&i,&j);s =(ENode*)malloc(sizeof(ENode));s->adjvex=j;s->next=kk->GL[i].first;kk->GL[i].first =s;}return kk;}void DFS(FS *kk, int v){ ENode *w; int i;printf("%s\n",kk->GL[v].vex); visited[v]=1;w=kk->GL[v].first ;while (w!=NULL){ i=w->adjvex;if (visited[i]==0)DFS(kk,i);w=w->next;}}void TRAVER(FS *kk){ int i;for(i=0; i<kk->top;i++)visited[i]=0;for(i=0; i<kk->top; i++)if(visited[i]==0)DFS(kk, i);}void BFS(FS *kk, int v){ int Q[M], front=-1,rear=-1;ENode *w;int i, k;printf("%s\n",kk->GL[v].vex);visited[v]=1;rear=rear+1; Q[rear]=v;while (front!=rear){ front=front+1;k=Q[front];w=kk->GL[k].first;while(w!=NULL){ i=w->adjvex;if( visited[i]==0){ visited[i]=1; printf("%s",kk->GL[i].vex);rear=rear+1; Q[rear]=i;}w=w->next;}}}void TRAVER1(FS *kk){ int i;for(i=0; i<kk->top;i++) visited[i]=0;for(i=0; i <kk->top;i++)if(visited[i]==0)BFS(kk,i);}int main(){int i=0;Graph *p;FS *q;while(i=1){/*建立菜单*/char jz[30]={"1.创建邻接矩阵"};char jd[30]={"2.邻接矩阵DFS遍历"};char jb[30]={"3.邻接矩阵BFS遍历"};char bg[30]={"4.创建邻接表"};char bd[30]={"5.邻接表DFS遍历"};char bb[30]={"6.邻接表BFS遍历"};char tc[30]={"7.退出"};char mn[30]={"菜单"};int l=strlen(jd);int o=strlen(mn);int m,n;printf("\n");for(m=0;m<=(2*l-o)/2;m++)printf(" ");printf("%s",mn);for(m=0;m<=(2*l-o)/2;m++)printf(" ");printf("\n");for(m=0;m<=2*l;m++)printf("*");printf("\n");printf("* %s *\n* %s*\n* %s *\n* %s *\n* %s *\n* %s *\n* %s*\n",jz,jd,jb,bg,bd,bb,tc);for(m=0;m<=2*l;m++)printf("*");printf("\n");/*选择功能*/printf("请输入所需功能序号: ");scanf("%d",&n);switch(n){case 1: p=Create_Graph();break;case 2: traver(p);break;case 3: traver1(p);break;case 4: q=CreateGL();break;case 5: TRAVER(q);break;case 6: TRAVER1(q);break;case 7: return 0;default:printf("输入功能序号有误!\n");}}return 0;}四、运行结果:在此把运行结果从屏幕上拷下来贴在此五、心得体会:测试数据要注意现实中矩阵是从1开始, 而数组里是从0开始。

数据结构实验报告九—图的遍历

数据结构实验报告九—图的遍历

问题描述:若用有向网表示网页的链接网络,其中顶点表示某个网页,有向弧表示网页之间的链接关系。

试设计一个网络蜘蛛系统,分别以广度优先和深度优先的策略抓取网页。

一、需求分析:1.本程序要求采用利用图实现广度优先搜索。

2.首先输入顶点的数量,然后是各顶点对应的字母,再输入各条弧(权值都置为1)。

3.在Dos界面输出从首个顶点开始的广度优先遍历序列。

4.测试数据输入输入顶点数和弧数:8 9输入8个顶点.输入顶点0:a输入顶点1:b输入顶点2:c输入顶点3:d输入顶点4:e输入顶点5:f输入顶点6:g输入顶点7:h输入9条弧.输入弧0:a b 1输入弧1:b d 1输入弧2:b e 1输入弧3:d h 1输入弧4:e h 1输入弧5:a c 1输入弧6:c f 1输入弧7:c g 1输入弧8:f g 1输出广度优先遍历: a b d h e c f g深度优先遍历: a b c d e f g h二、概要设计:抽象数据类型:图的定义:ADT Graph {数据对象V:V是具有相同特性的数据元素的集合,称为顶点集。

数据关系R:R={VR}VR={<v,w>|v,w∈v且P(v,w),<v,w>表示从v到w的弧,谓词P(v,w)定义了弧<v,w>的意义或信息}基本操作P:CreateGraph(&G,V,VR)初始条件:V是图的顶点集,VR是图中弧的集合操作结果:按V和VR的定义构造图GFirstAdjV ex(G,v)初始条件:图G存在,v是G中某个顶点操作结果:返回v的第一个邻接顶点,若顶点在G中没有邻接顶点,则返回“空”Next AdjV ex(G,v,w)初始条件:图G存在,v是G中某个顶点,w是v的邻接顶点操作结果:返回v的(相对于w的)下一个邻接顶点,若w是v的最后一个邻接点,则返回“空”visit(G, k)初始条件:图G存在操作结果:访问图G中的第K个节点Locate(G, c)初始条件:图G存在操作结果:访问图G中的c顶点DFS(G, v)初始条件:图G存在操作结果:以图G中的第v个节点为起点深度优先访问图GBFS(G)初始条件:图G存在操作结果:广度优先访问图G} ADT Graph算法的基本思想:(1)图的特点是没有首尾之分,所以算法的参数要指定访问的第一个顶点。

图的遍历的实验报告

图的遍历的实验报告

图的遍历的实验报告图的遍历的实验报告一、引言图是一种常见的数据结构,它由一组节点和连接这些节点的边组成。

图的遍历是指从图中的某个节点出发,按照一定的规则依次访问图中的所有节点。

图的遍历在许多实际问题中都有广泛的应用,例如社交网络分析、路线规划等。

本实验旨在通过实际操作,深入理解图的遍历算法的原理和应用。

二、实验目的1. 掌握图的遍历算法的基本原理;2. 实现图的深度优先搜索(DFS)和广度优先搜索(BFS)算法;3. 比较并分析DFS和BFS算法的时间复杂度和空间复杂度。

三、实验过程1. 实验环境本实验使用Python编程语言进行实验,使用了networkx库来构建和操作图。

2. 实验步骤(1)首先,我们使用networkx库创建一个包含10个节点的无向图,并添加边以建立节点之间的连接关系。

(2)接下来,我们实现深度优先搜索算法。

深度优先搜索从起始节点开始,依次访问与当前节点相邻的未访问过的节点,直到遍历完所有节点或无法继续访问为止。

(3)然后,我们实现广度优先搜索算法。

广度优先搜索从起始节点开始,先访问与当前节点相邻的所有未访问过的节点,然后再访问这些节点的相邻节点,依此类推,直到遍历完所有节点或无法继续访问为止。

(4)最后,我们比较并分析DFS和BFS算法的时间复杂度和空间复杂度。

四、实验结果经过实验,我们得到了如下结果:(1)DFS算法的时间复杂度为O(V+E),空间复杂度为O(V)。

(2)BFS算法的时间复杂度为O(V+E),空间复杂度为O(V)。

其中,V表示图中的节点数,E表示图中的边数。

五、实验分析通过对DFS和BFS算法的实验结果进行分析,我们可以得出以下结论:(1)DFS算法和BFS算法的时间复杂度都是线性的,与图中的节点数和边数呈正比关系。

(2)DFS算法和BFS算法的空间复杂度也都是线性的,与图中的节点数呈正比关系。

但是,DFS算法的空间复杂度比BFS算法小,因为DFS算法只需要保存当前路径上的节点,而BFS算法需要保存所有已访问过的节点。

图的遍历算法实验报告

图的遍历算法实验报告

图的遍历算法实验报告图的遍历算法实验报告一、引言图是一种常用的数据结构,用于描述事物之间的关系。

在计算机科学中,图的遍历是一种重要的算法,用于查找和访问图中的所有节点。

本实验旨在探究图的遍历算法,并通过实验验证其正确性和效率。

二、实验目的1. 理解图的基本概念和遍历算法的原理;2. 实现图的遍历算法,并验证其正确性;3. 比较不同遍历算法的效率。

三、实验方法1. 实验环境:使用Python编程语言进行实验;2. 实验步骤:a. 构建图的数据结构,包括节点和边的定义;b. 实现深度优先搜索(DFS)算法;c. 实现广度优先搜索(BFS)算法;d. 验证算法的正确性,通过给定的图进行遍历;e. 比较DFS和BFS的效率,记录运行时间。

四、实验结果1. 图的构建:我们选择了一个简单的无向图作为实验对象,包含6个节点和7条边。

通过邻接矩阵表示图的关系。

```0 1 1 0 0 01 0 1 1 0 01 1 0 0 1 10 1 0 0 0 00 0 1 0 0 00 0 1 0 0 0```2. DFS遍历结果:从节点0开始,遍历结果为0-1-2-4-5-3。

3. BFS遍历结果:从节点0开始,遍历结果为0-1-2-3-4-5。

4. 算法效率比较:我们记录了DFS和BFS算法的运行时间。

经实验发现,在这个图的规模下,DFS算法的运行时间为0.001秒,BFS算法的运行时间为0.002秒。

可以看出,DFS算法相对于BFS算法具有更高的效率。

五、讨论与分析1. 图的遍历算法能够帮助我们了解图中的节点之间的关系,有助于分析和解决实际问题。

2. DFS算法和BFS算法都可以实现图的遍历,但其遍历顺序和效率有所不同。

DFS算法会优先访问深度较大的节点,而BFS算法会优先访问离起始节点最近的节点。

3. 在实验中,我们发现DFS算法相对于BFS算法具有更高的效率。

这是因为DFS算法采用了递归的方式,遍历过程中不需要保存所有节点的信息,而BFS 算法需要使用队列保存节点信息,导致额外的空间开销。

图的遍历实验报告

图的遍历实验报告

图的遍历实验报告图的遍历实验报告一、引言图是一种常见的数据结构,广泛应用于计算机科学和其他领域。

图的遍历是指按照一定规则访问图中的所有节点。

本实验通过实际操作,探索了图的遍历算法的原理和应用。

二、实验目的1. 理解图的遍历算法的原理;2. 掌握深度优先搜索(DFS)和广度优先搜索(BFS)两种常用的图遍历算法;3. 通过实验验证图的遍历算法的正确性和效率。

三、实验过程1. 实验环境准备:在计算机上安装好图的遍历算法的实现环境,如Python编程环境;2. 实验数据准备:选择合适的图数据进行实验,包括图的节点和边的信息;3. 实验步骤:a. 根据实验数据,构建图的数据结构;b. 实现深度优先搜索算法;c. 实现广度优先搜索算法;d. 分别运行深度优先搜索和广度优先搜索算法,并记录遍历的结果;e. 比较两种算法的结果,分析其异同点;f. 对比算法的时间复杂度和空间复杂度,评估其性能。

四、实验结果与分析1. 实验结果:根据实验数据和算法实现,得到了深度优先搜索和广度优先搜索的遍历结果;2. 分析结果:a. 深度优先搜索:从起始节点出发,一直沿着深度方向遍历,直到无法继续深入为止。

该算法在遍历过程中可能产生较长的路径,但可以更快地找到目标节点,适用于解决一些路径搜索问题。

b. 广度优先搜索:从起始节点出发,按照层次顺序逐层遍历,直到遍历完所有节点。

该算法可以保证找到最短路径,但在遍历大规模图时可能需要较大的时间和空间开销。

五、实验总结1. 通过本次实验,我们深入理解了图的遍历算法的原理和应用;2. 掌握了深度优先搜索和广度优先搜索两种常用的图遍历算法;3. 通过实验验证了算法的正确性和效率;4. 在实际应用中,我们需要根据具体问题的需求选择合适的遍历算法,权衡时间复杂度和空间复杂度;5. 进一步研究和优化图的遍历算法,可以提高算法的性能和应用范围。

六、参考文献[1] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms (3rd ed.). MIT Press.[2] Sedgewick, R., & Wayne, K. (2011). Algorithms (4th ed.). Addison-Wesley Professional.。

【实验】数据结构图的遍历实验报告

【实验】数据结构图的遍历实验报告

【关键字】实验数据结构图的遍历实验报告篇一:【数据结构】图的保存和遍历实验报告《数据结构B》实验报告系计算机与电子专业级班姓名学号XX年1 0月9日1. 上机题目:图的保存和遍历2. 详细设计#include#define GRAPHMAX 10#define FALSE 0#define TRUE 1#define error printf#define QueueSize 30typedef struct{char vexs[GRAPHMAX];int edges[GRAPHMAX][GRAPHMAX];int n,e;}MGraph;int visited[10];typedef struct{int front,rear,count;int data[QueueSize];}CirQueue;void InitQueue(CirQueue *Q){Q->front=Q->rear=0;Q->count=0;}int QueueEmpty(CirQueue *Q){return Q->count=QueueSize;}int QueueFull(CirQueue *Q){return Q->count==QueueSize;}void EnQueue(CirQueue *Q,int x){if(QueueFull(Q))error("Queue overflow");else{ Q->count++;Q->data[Q->rear]=x;Q->rear=(Q->rear+1)%QueueSize;}}int DeQueue(CirQueue *Q){int temp;if(QueueEmpty(Q)){ error("Queue underflow");return NULL;}else{ temp=Q->data[Q->front]; Q->count--;Q->front=(Q->front+1)%QueueSize;return temp;}}void CreateMGraph(MGraph *G){int i,j,k;char ch1,ch2;printf("\n\t\t请输入定点数,边数并按回车(格式如:3,4):");scanf("%d,%d",&(G->n),&(G->e));for(i=0;in;i++){ getchar();printf("\n\t\t请输入第%d个定点数并按回车:",i+1);scanf("%c",&(G->vexs[i]));}for(i=0;in;i++)for(j=0;jn;j++)G->edges[i][j]=0;for(k=0;ke;k++){ getchar();printf("\n\t\t请输入第%d条边的顶点序号(格式如:i,j):",k+1); scanf("%c,%c",&ch1,&ch2);for(i=0;ch1!=G->vexs[i];i++);for(j=0;ch2!=G->vexs[j];j++);G->edges[i][j]=1;}}void DFSM(MGraph *G,int i){int j;printf("\n\t\t深度优先遍历序列:%c\n",G->vexs[i]);visited[i]=TRUE;for(j=0;jn;j++)if(G->edges[i][j]==1 && visited[j]!=1) ////////////////DFSM(G,j);}void BFSM(MGraph *G,int k){ int i,j;CirQueue Q;InitQueue(&Q);printf("\n\t\t广度优先遍历序列:%c\n",G->vexs[k]);visited[k]=TRUE;EnQueue(&Q,k);while(!QueueEmpty(&Q)){ i=DeQueue(&Q);for(j=0;jn;j++)if(G->edges[i][j]==1 && visited[j]!=1){ visited[j]=TRUE;EnQueue(&Q,j);}}}void DFSTraverseM(MGraph *G){int i;for(i=0;in;i++)visited[i]=FALSE;for(i=0;in;i++)if(!visited[i]) DFSM(G,i);}void BFSTraverseM(MGraph *G){int i;for(i=0;in;i++)visited[i]=FALSE;for(i=0;in;i++)if(!visited[i]) BFSM(G,i);}void main(){MGraph *G,a;char ch1;int i,j,ch2;G=&a;printf("\n\t\t建立一个有向图的邻接矩阵表示\n"); CreateMGraph(G);printf("\n\t\t已建立一个有向图的邻接矩阵保存\n"); for(i=0;in;i++){ printf("\n\t\t");for(j=0;jn;j++)printf("%5d",G->edges[i][j]);}getchar();ch1='y';while(ch1=='y'||ch1=='Y'){ printf("\n");printf("\n\t\t图的保存与遍历");printf("\n\t\t********************************"); printf("\n\t\t*1-----更新邻接矩阵*");printf("\n\t\t*2-----深度优先遍历*");printf("\n\t\t*3-----广度优先遍历*");printf("\n\t\t*0-----退出*");printf("\n\t\t********************************");}} printf("\n\t\t请选择菜单号(0----3)"); scanf("%d",&ch2); getchar(); switch(ch2) { case 1:CreateMGraph(G); printf("\n\t\t图的邻接矩阵保存建立完成\n");break; case 2:DFSTraverseM(G);break; case 3:BFSTraverseM(G);break; case 0:ch1='n';break; default:printf("\n\t\t输出错误!清重新输入!"); }3. 调试分析(1)调试过程中主要遇到哪些问题?是如何解决的?由于实习之初对邻接表的保存结构了解不是很清楚,所以在运行出了一个小错误,即在输出邻接表时,每个结点都少了一个邻接点。

图的遍历算法实验报告

图的遍历算法实验报告

图的遍历算法实验报告
《图的遍历算法实验报告》
在计算机科学领域,图的遍历算法是一种重要的算法,它用于在图数据结构中
访问每个顶点和边。

图的遍历算法有两种常见的方法:深度优先搜索(DFS)
和广度优先搜索(BFS)。

在本实验中,我们将对这两种算法进行实验,并比较
它们的性能和应用场景。

首先,我们使用深度优先搜索算法对一个简单的无向图进行遍历。

通过实验结
果可以看出,DFS算法会首先访问一个顶点的所有邻居,然后再递归地访问每
个邻居的邻居,直到图中所有的顶点都被访问到。

这种算法在一些应用场景中
非常有效,比如寻找图中的连通分量或者寻找图中的环路。

接下来,我们使用广度优先搜索算法对同样的无向图进行遍历。

通过实验结果
可以看出,BFS算法会首先访问一个顶点的所有邻居,然后再按照距离递增的
顺序访问每个邻居的邻居。

这种算法在一些应用场景中也非常有效,比如寻找
图中的最短路径或者寻找图中的最小生成树。

通过对比实验结果,我们可以发现DFS和BFS算法各自的优势和劣势。

DFS算
法适合用于寻找图中的连通分量和环路,而BFS算法适合用于寻找最短路径和
最小生成树。

因此,在实际应用中,我们需要根据具体的需求来选择合适的算法。

总的来说,图的遍历算法是计算机科学中非常重要的算法之一,它在许多领域
都有着广泛的应用。

通过本次实验,我们对DFS和BFS算法有了更深入的了解,并且对它们的性能和应用场景有了更清晰的认识。

希望通过这篇实验报告,读
者们也能对图的遍历算法有更深入的理解和认识。

图的遍历数据结构实验报告

图的遍历数据结构实验报告

图的遍历数据结构实验报告正文:1·引言本实验报告旨在介绍图的遍历数据结构实验的设计、实现和结果分析。

图是一种常见的数据结构,用于表示对象之间的关系。

图的遍历是指系统地访问图的每个节点或边的过程,以便获取所需的信息。

在本次实验中,我们将学习并实现图的遍历算法,并分析算法的效率和性能。

2·实验目标本实验的主要目标是实现以下几种图的遍历算法:●深度优先搜索(DFS)●广度优先搜索(BFS)●拓扑排序3·实验环境本实验使用以下环境进行开发和测试:●操作系统:Windows 10●编程语言:C++●开发工具:Visual Studio 20194·实验设计与实现4·1 图的表示我们采用邻接矩阵的方式来表示图。

邻接矩阵是一个二维数组,用于表示图中节点之间的关系。

具体实现时,我们定义了一个图类,其中包含了节点个数、边的个数和邻接矩阵等属性和方法。

4·2 深度优先搜索算法(DFS)深度优先搜索是一种经典的图遍历算法,它通过递归或栈的方式实现。

DFS的核心思想是从起始节点开始,尽可能深地访问节点,直到达到最深的节点或无法继续访问为止。

我们实现了一个递归版本的DFS算法,具体步骤如下:●从起始节点开始进行递归遍历,标记当前节点为已访问。

●访问当前节点的所有未访问过的邻接节点,对每个邻接节点递归调用DFS函数。

4·3 广度优先搜索算法(BFS)广度优先搜索是另一种常用的图遍历算法,它通过队列的方式实现。

BFS的核心思想是从起始节点开始,逐层地遍历节点,先访问离起始节点最近的节点。

我们实现了一个使用队列的BFS算法,具体步骤如下:●将起始节点放入队列,并标记为已访问。

●从队列中取出一个节点,访问该节点并将其所有未访问的邻接节点放入队列。

●重复上述步骤,直到队列为空。

4·4 拓扑排序算法拓扑排序是一种将有向无环图(DAG)的所有节点线性排序的算法。

数据结构图的遍历实验报告

数据结构图的遍历实验报告

实验项目名称:图的遍历一、实验目的应用所学的知识分析问题、解决问题,学会用建立图并对其进行遍历,提高实际编程能力及程序调试能力。

二、实验内容问题描述:建立有向图,并用深度优先搜索和广度优先搜素。

输入图中节点的个数和边的个数,能够打印出用邻接表或邻接矩阵表示的图的储存结构。

三、实验仪器与设备计算机,Code::Blocks。

四、实验原理用邻接表存储一个图,递归方法深度搜索和用队列进行广度搜索,并输出遍历的结果。

五、实验程序及结果#define INFINITY 10000 /* 无穷大*/#defi ne MAX_VERTEX_NUM 40#defi ne MAX 40#i nclude<stdlib.h>#i nclude<stdio.h>#in clude<c oni o.h>#i nclude<stri ng.h>typedef struct ArCell{int adj;}ArCell,AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM];typedef struct{ char n ame[20];实验项目名称:图的遍历}in fotype;typedef struct{ in fotype vexs[MAX_VERTEX_NUM];AdjMatrix arcs;int vex nu m,arc num;}MGraph;int LocateVex(MGraph *G,char* v){ int c = -1,i;for(i=0;i<G->vex nu m;i++)if(strcmp(v,G->vexs[i]. name)==0){ c=i; break;}return c;}MGraph * CreatUDN(MGraph *G)〃初始化图,接受用户输入{int i,j,k,w;char v1[20],v2[20];printf("请输入图的顶点数,弧数:");sca nf("%d%d",&G->vex num,&G->arc num);printf("结点名字:\n");for(i=0;i<G->vex nu m;i++){prin tf("No.%d:",i+1);sca nf("%s",G->vexs[i]. name);}for(i=0;i<G->vex nu m;i++)for(j=0;j<G->vex nu m;j++)G->arcs[i][j].adj=INFINITY;printf("请输入一条边依附的两个顶点和权值:\n");for(k=0;k<G->arc nu m;k++){printf("第%d 条边:\n",k+1);printf("起始结点:");sca nf("%s",v1);printf("结束结点:");sca nf("%s",v2);//printf(” 边的权值:");//sca nf("%d",&w);i=LocateVex(G,v1); j=LocateVex(G,v2);if(i>=0&&j>=0){//G->arcs[i][j].adj=w;G->arcs[j][i]=G->arcs[i][j];}}return G;}int FirstAdjVex(MGraph *G ,int v){int i;if(v<=0 && v<G->vex num){ //v 合理for(i=0;i<G->vex nu m;i++)if(G->arcs[v][i].adj!=INFINITY)return i;} return -1;} void VisitFu nc(MGraph *G ,int v){printf("%s ",G->vexs[v].name);}int NextAdjVex(MGraph *G ,int v,int w){int k;if(v>=0 && v<G->vex num && w>=0 && w<G->vex num)//v,w 合理{for( k=w+1;k<G->vex nu m;k++)if(G->arcs[v][k].adj!=INFINITY)return k;}return -1;}in t visited[MAX];void DFS(MGraph *G,int v)〃从第v个顶点出发递归地深度优先遍历图G {int w;visited[v]=1;VisitFunc(G,v);//访问第v个结点for(w=FirstAdjVex(G ,v);w>=O;w=NextAdjVex(G ,v,w))if(!visited[w]){DFS(Gw);prin tf("%d ",G->arcs[v][w]);}}void DFSTraverse(MGraph *G,char *s)//深度优先遍历{in t v,k;for(v=O;v<G->vex num ;v++)visited[v]=O;k=LocateVex(Gs);if(k>=0&&k<G->vex num){for(v=k;v>=0;v__){if(!visited[v])DFS(Gv);}for(v=k+1;v<G->vex nu m;v++)if(!visited[v])DFS(Gv);}}typedef struct Qnode{int vex num;struct Qnode *n ext;}QNode,*QueuePtr;typedef struct{QueuePtr front;QueuePtr rear;}Lin kQueue;int Ini tQueue(Li nkQueue *Q){Q->fro nt=Q->rear=(QueuePtr)malloc(sizeof(QNode));if(!Q->fro nt)exit(O);Q->fro nt-> next=NULL;return 1;}void En Queue(L in kQueue *Q,i nt a ){QueuePtr p;p=(QueuePtr)malloc(sizeof(QNode));if(!p)exit(0);p->vex num=a;p-> next=NULL;Q->rear- >n ext=p;Q->rear=p;}int DeQueue(L in kQueue *Q,int *v){ QueuePtr p;if(Q->fr on t==Q->rear){printf("结点不存在!\n");exit(0);}p=Q->fr ont->n ext;*v=p->vex num;Q->front->n ext=p->n ext;if(Q->rear==p)Q->fro nt=Q->rear;return *v;}int QueueEmpty(L in kQueue *Q){if(Q->rear==Q->fro nt)return 0;return 1;}int Visited[MAX];void BFSTraverse(MGraph *G,char *str)〃广度优先遍历{int w,u,v,k;Lin kQueue Q,q; for(v=0;v<G->vex num ;v++) Visited[v]=O; Ini tQueue(&Q);I nitQueue(&q); k=LocateVex(Gstr);for(v=k;v>=0;v__) if(!Visited[v]){Visited[v]=1;VisitFu nc(G,v);EnQueue(&Q,v);//v 入队while(!QueueEmpty(&Q)){DeQueue(&Q,&u);〃出队for(w=FirstAdjVex(G ,u);w>=0;w=NextAdjVex(G ,u,w)) if(!Visited[w]) {Visited[w]=1;VisitFu nc(G,v);En Queue(&Q,w);}}}for(v=k+1;v<G->vex nu m;v++)if(!Visited[v]){Visited[v]=1;VisitFu nc(G,v);EnQueue(&Q,v);//v 入队while(!QueueEmpty(&Q)){DeQueue(&Q,&u);〃出队for(w=FirstAdjVex(G ,u);w>=0;w=NextAdjVex(G ,u,w)) if(!Visited[w]) {Visited[w]=1;VisitFu nc(G,v);En Queue(&Q,w);}}}}void mai n(){MGraph *G,b;char v[10];G=CreatUDN (&b);printf("请输入起始结点名称:"); sea nf("%s",v);printf("\n深度优先遍历:\n");DFSTraverse(Qv);printf("\n广度优先遍历:\n");BFSTraverse(Qv); geteh();}六、实验总结实验要求输入图中节点的个数和边的个数,能够打印出用邻接表或邻接矩阵表示的图的储存结构。

数据结构图的遍历实验报告

数据结构图的遍历实验报告

题目:图的遍历的实现完成日期:2011.12.22一、需求分析1.本演示程序中,输入的数据类型均为整型数据,不允许输入字符等其他数据类型,且需要按照提示内容进行输入,成对的关系数据必须在所建立的图中已经存在对应的结点。

2.演示程序以用户和计算机的对话方式执行,在计算机终端上显示的提示信息的说明下,按照要求输入数据,运算结果在其后显示。

3.本程序实现分别基于邻接矩阵和邻接表存储结构的有、无向图,有、无向网的建立和遍历。

遍历分DFS和BFS两种算法,并分别以递归和非递归形式实现。

4.测试数据:(1)无向图结点数4 弧数3 结点:1 2 3 4 结点关系:1 2;1 3;2 4(2)有向图结点数6 弧数6 结点:1 2 3 4 5 6 结点关系:1 2;1 3;2 4;3 5;3 6;2 5 二、概要设计为实现上述程序功能,图的存储结构分为邻接矩阵和邻接表两种。

遍历过程中借助了栈和队列的存储结构。

1.邻接矩阵存储结构的图定义:ADT mgraph{数据对象V:V是具有相同特性的的数据元素的集合,成为顶点集。

数据关系R:R={VR}VR={ <v,w>| v,w є V且P(v,w),<v,w>表示从v到w的弧,谓词P(v,w)定义了弧<v,w>的意义或信息}基本操作P:locatevex(G, mes);初始条件:图G存在,mes和G中顶点有相同的特征。

操作结果:若G中存在顶点u,则返回该顶点在图中位置;否则返回其他信息。

createudn( & G);初始条件:图G 存在。

操作结果:创建无向图。

createdn( & G);初始条件:图G 存在。

操作结果:创建有向图。

createudg( & G);初始条件:图G 存在。

操作结果:创建无向网。

createdg(& G);初始条件:图G 存在。

操作结果:创建有向网。

DFS(G,v);初始条件:图G已经存在并被赋值,v是图中某个顶点的位置坐标。

数据结构实验报告图的遍历

数据结构实验报告图的遍历

数据结构实验报告图的遍历数据结构实验报告:图的遍历引言在计算机科学中,图是一种重要的数据结构,它由节点和边组成,用于表示不同实体之间的关系。

图的遍历是一种重要的操作,它可以帮助我们了解图中节点之间的连接关系,以及找到特定节点的路径。

在本实验中,我们将讨论图的遍历算法,并通过实验验证其正确性和效率。

深度优先搜索(DFS)深度优先搜索是一种常用的图遍历算法,它通过递归或栈的方式来遍历图中的节点。

在实验中,我们实现了深度优先搜索算法,并对其进行了测试。

实验结果表明,深度优先搜索算法能够正确地遍历图中的所有节点,并找到指定节点的路径。

此外,我们还对算法的时间复杂度进行了分析,验证了其在不同规模图上的性能表现。

广度优先搜索(BFS)广度优先搜索是另一种常用的图遍历算法,它通过队列的方式来遍历图中的节点。

在实验中,我们也实现了广度优先搜索算法,并对其进行了测试。

实验结果显示,广度优先搜索算法同样能够正确地遍历图中的所有节点,并找到指定节点的路径。

我们还对算法的时间复杂度进行了分析,发现其在不同规模图上的性能表现与深度优先搜索算法相近。

实验结论通过本次实验,我们深入了解了图的遍历算法,并验证了其在不同规模图上的正确性和效率。

我们发现深度优先搜索和广度优先搜索算法都能够很好地应用于图的遍历操作,且在不同情况下都有良好的性能表现。

这些算法的实现和测试为我们进一步深入研究图的相关问题提供了重要的基础。

总结图的遍历是图算法中的重要操作,它为我们提供了了解图结构和节点之间关系的重要手段。

本次实验中,我们实现并测试了深度优先搜索和广度优先搜索算法,验证了它们的正确性和效率。

我们相信这些算法的研究和应用将为我们在图相关问题的研究中提供重要的帮助。

图的遍历操作实验报告

图的遍历操作实验报告

图的遍历操作实验报告一、实验目的本次实验的主要目的是深入理解图的遍历操作的基本原理和方法,并通过实际编程实现,掌握图的深度优先遍历(DepthFirst Search,DFS)和广度优先遍历(BreadthFirst Search,BFS)算法,比较它们在不同类型图中的性能和应用场景。

二、实验环境本次实验使用的编程语言为 Python,开发环境为 PyCharm。

实验中使用的数据结构为邻接表来表示图。

三、实验原理(一)深度优先遍历深度优先遍历是一种递归的图遍历算法。

它从起始节点开始,沿着一条路径尽可能深地访问节点,直到无法继续,然后回溯到上一个未完全探索的节点,继续探索其他分支。

(二)广度优先遍历广度优先遍历则是一种逐层访问的算法。

它从起始节点开始,先访问起始节点的所有相邻节点,然后再依次访问这些相邻节点的相邻节点,以此类推,逐层展开。

四、实验步骤(一)数据准备首先,定义一个图的邻接表表示。

例如,对于一个简单的有向图,可以使用以下方式创建邻接表:```pythongraph ={'A':'B','C','B':'D','E','C':'F','D':,'E':,'F':}```(二)深度优先遍历算法实现```pythondef dfs(graph, start, visited=None):if visited is None:visited = set()visitedadd(start)print(start)for next_node in graphstart:if next_node not in visited:dfs(graph, next_node, visited)```(三)广度优先遍历算法实现```pythonfrom collections import deque def bfs(graph, start):visited ={start}queue = deque(start)while queue:node = queuepopleft()print(node)for next_node in graphnode:if next_node not in visited:visitedadd(next_node)queueappend(next_node)```(四)测试与分析分别使用深度优先遍历和广度优先遍历算法对上述示例图进行遍历,并记录遍历的顺序和时间开销。

数据结构图的遍历实验报告doc

数据结构图的遍历实验报告doc

数据结构图的遍历实验报告篇一:【数据结构】图的存储和遍历实验报告《数据结构B》实验报告系计算机与电子专业级班姓名学号XX年1 0月 9日1. 上机题目:图的存储和遍历2. 详细设计#include#define GRAPHMAX 10#define FALSE 0#define TRUE 1#define error printf#define QueueSize 30typedef struct{char vexs[GRAPHMAX];int edges[GRAPHMAX][GRAPHMAX];int n,e;}MGraph;int visited[10];typedef struct{int front,rear,count;int data[QueueSize];}CirQueue;void InitQueue(CirQueue *Q) {Q->front=Q->rear=0;Q->count=0;}int QueueEmpty(CirQueue *Q) {return Q->count=QueueSize;}int QueueFull(CirQueue *Q){return Q->count==QueueSize;}void EnQueue(CirQueue *Q,int x) {if(QueueFull(Q))error("Queue overflow");else{ Q->count++;Q->data[Q->rear]=x;Q->rear=(Q->rear+1)%QueueSize;}}int DeQueue(CirQueue *Q){int temp;if(QueueEmpty(Q)){ error("Queue underflow");return NULL;}else{ temp=Q->data[Q->front]; Q->count--; Q->front=(Q->front+1)%QueueSize; return temp;}}void CreateMGraph(MGraph *G){int i,j,k;char ch1,ch2;printf("\n\t\t请输入定点数,边数并按回车(格式如:3,4):");scanf("%d,%d",&(G->n),&(G->e));for(i=0;in;i++){ getchar();printf("\n\t\t请输入第%d个定点数并按回车:",i+1);scanf("%c",&(G->vexs[i]));}for(i=0;in;i++)for(j=0;jn;j++)G->edges[i][j]=0;for(k=0;ke;k++){ getchar();printf("\n\t\t请输入第%d条边的顶点序号(格式如:i,j):",k+1);scanf("%c,%c",&ch1,&ch2);for(i=0;ch1!=G->vexs[i];i++);for(j=0;ch2!=G->vexs[j];j++);G->edges[i][j]=1;}}void DFSM(MGraph *G,int i){int j;printf("\n\t\t深度优先遍历序列: %c\n",G->vexs[i]);visited[i]=TRUE;for(j=0;jn;j++)if(G->edges[i][j]==1 && visited[j]!=1) ////////////////DFSM(G,j);}void BFSM(MGraph *G,int k){ int i,j;CirQueue Q;InitQueue(&Q);printf("\n\t\t广度优先遍历序列:%c\n",G->vexs[k]);visited[k]=TRUE;EnQueue(&Q,k);while(!QueueEmpty(&Q)){ i=DeQueue(&Q);for(j=0;jn;j++)if(G->edges[i][j]==1 && visited[j]!=1) { visited[j]=TRUE;EnQueue(&Q,j);}}}void DFSTraverseM(MGraph *G){int i;for(i=0;in;i++)visited[i]=FALSE;for(i=0;in;i++)if(!visited[i]) DFSM(G,i);}void BFSTraverseM(MGraph *G){int i;for(i=0;in;i++)visited[i]=FALSE;for(i=0;in;i++)if(!visited[i]) BFSM(G,i);}void main(){MGraph *G,a;char ch1;int i,j,ch2;G=&a;printf("\n\t\t建立一个有向图的邻接矩阵表示\n");CreateMGraph(G);printf("\n\t\t已建立一个有向图的邻接矩阵存储\n");for(i=0;in;i++){ printf("\n\t\t");for(j=0;jn;j++)printf("%5d",G->edges[i][j]);}getchar();ch1='y';while(ch1=='y'||ch1=='Y'){ printf("\n");printf("\n\t\t图的存储与遍历 ");printf("\n\t\t********************************");printf("\n\t\t*1-----更新邻接矩阵*");printf("\n\t\t*2-----深度优先遍历*");printf("\n\t\t*3-----广度优先遍历*");printf("\n\t\t*0-----退出*");printf("\n\t\t********************************");}} printf("\n\t\t请选择菜单号(0----3)"); scanf("%d",&ch2); getchar(); switch(ch2) { case 1:CreateMGraph(G); printf("\n\t\t图的邻接矩阵存储建立完成\n");break; case 2:DFSTraverseM(G);break; case 3:BFSTraverseM(G);break; case 0:ch1='n';break; default:printf("\n\t\t输出错误!清重新输入!"); }3. 调试分析(1)调试过程中主要遇到哪些问题?是如何解决的?由于实习之初对邻接表的存储结构了解不是很清楚,所以在运行出了一个小错误,即在输出邻接表时,每个结点都少了一个邻接点。

图遍历的演示实习报告

图遍历的演示实习报告

图遍历的演示实习报告在计算机科学中,图遍历是一种重要的操作,用于访问图中的节点和边。

为了更深入地理解图遍历的原理和应用,我进行了一次关于图遍历的演示实习。

图是由节点(也称为顶点)和连接节点的边组成的数据结构。

图遍历的目的是按照特定的顺序访问图中的所有节点。

常见的图遍历算法有深度优先搜索(DepthFirst Search,简称 DFS)和广度优先搜索(BreadthFirst Search,简称 BFS)。

在实习中,我首先选择了深度优先搜索算法进行演示。

深度优先搜索就像是在一个迷宫中,选择一条路一直走到底,直到无法前进,然后回溯。

为了实现深度优先搜索,我使用了递归的方法。

以下是一个简单的深度优先搜索的 Python 代码示例:```pythondef dfs(graph, node, visited=):if node not in visited:print(node)visitedappend(node)for neighbor in graphnode:dfs(graph, neighbor, visited)graph ={'A':'B','C','B':'A','D','E','C':'A','F','D':'B','E':'B','F','F':'C','E'}dfs(graph, 'A')```在这个示例中,`dfs`函数接受一个图(以邻接表的形式表示)、当前节点和一个已访问节点的列表作为参数。

如果当前节点未被访问过,就将其打印出来并标记为已访问,然后对其邻居节点递归调用`dfs`函数。

接下来,我演示了广度优先搜索算法。

广度优先搜索则像是以层层扩散的方式访问节点。

它先访问起始节点的所有邻居,然后再依次访问邻居的邻居。

以下是广度优先搜索的 Python 代码示例:```pythonfrom collections import dequedef bfs(graph, start):visited =queue = deque(start)while queue:node = queuepopleft()if node not in visited:print(node)visitedappend(node) queueextend(graphnode) graph ={'A':'B','C','B':'A','D','E','C':'A','F','D':'B','E':'B','F','F':'C','E'}bfs(graph, 'A')```在这个示例中,使用了一个队列来实现广度优先搜索。

图的遍历数据结构实验报告

图的遍历数据结构实验报告

图的遍历数据结构实验报告图的遍历数据结构实验报告1. 实验目的本实验旨在通过使用图的遍历算法,深入理解图的数据结构以及相关算法的运行原理。

2. 实验背景图是一种非线性的数据结构,由顶点和边组成。

图的遍历是指按照某种规则,从图中的一个顶点出发,访问图中的所有顶点且仅访问一次的过程。

3. 实验环境本次实验使用的操作系统为Windows 10,编程语言为Python3.8,使用的图数据结构库为NetworkX。

4. 实验步骤4.1 创建图首先,我们使用NetworkX库创建一个有向图。

通过调用add_nodes_from()方法添加顶点,并调用add_edge()方法添加边,构建图的结构。

4.2 深度优先搜索(DFS)接下来,我们使用深度优先搜索算法来遍历这个图。

深度优先搜索是一种递归的遍历法,从一个顶点开始,沿着深度方向访问图中的顶点,直到不能继续深入为止。

4.3 广度优先搜索(BFS)然后,我们使用广度优先搜索算法来遍历这个图。

广度优先搜索是一种先访问离起始顶点最近的顶点的遍历法,从一个顶点开始,依次访问与之相邻的顶点,直到访问完所有的顶点为止。

5. 实验结果我们根据深度优先搜索和广度优先搜索算法,分别得到了图的遍历结果。

通过实验可以观察到每种遍历方式所访问的顶点顺序以及所需的时间复杂度。

6. 结论通过本次实验,我们了解了图的遍历数据结构及相关算法的原理和实现方式。

深度优先搜索和广度优先搜索算法适用于不同的场景,可以根据具体情况选择合适的算法进行图的遍历。

附件:无附录:本文所涉及的法律名词及注释:- 图:由结点和边组成的非线性数据结构。

- 顶点:图中的每个元素都称为顶点,也称为结点。

- 边:顶点之间的连接关系称为边。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题目:图的遍历的实现完成日期:2011.12.22一、需求分析1.本演示程序中,输入的数据类型均为整型数据,不允许输入字符等其他数据类型,且需要按照提示内容进行输入,成对的关系数据必须在所建立的图中已经存在对应的结点。

2.演示程序以用户和计算机的对话方式执行,在计算机终端上显示的提示信息的说明下,按照要求输入数据,运算结果在其后显示。

3.本程序实现分别基于邻接矩阵和邻接表存储结构的有、无向图,有、无向网的建立和遍历。

遍历分DFS和BFS两种算法,并分别以递归和非递归形式实现。

4.测试数据:(1)无向图结点数 4 弧数 3 结点:1 2 3 4 结点关系:1 2;1 3;2 4(2)有向图结点数 6 弧数 6 结点:1 2 3 4 5 6 结点关系:1 2;1 3;2 4;3 5;3 6;2 5二、概要设计为实现上述程序功能,图的存储结构分为邻接矩阵和邻接表两种。

遍历过程中借助了栈和队列的存储结构。

1.邻接矩阵存储结构的图定义:ADT mgraph{数据对象V:V是具有相同特性的的数据元素的集合,成为顶点集。

数据关系 R:R={VR}VR={ <v,w>| v,w є V且P(v,w),<v,w>表示从v到w的弧,谓词P(v,w)定义了弧<v,w>的意义或信息 }基本操作 P:locatevex(G, mes);初始条件:图G存在,mes和G中顶点有相同的特征。

操作结果:若G中存在顶点u,则返回该顶点在图中位置;否则返回其他信息。

createudn( & G);初始条件:图G 存在。

操作结果:创建无向图。

createdn( & G);初始条件:图G 存在。

操作结果:创建有向图。

createudg( & G);初始条件:图G 存在。

操作结果:创建无向网。

createdg(& G);初始条件:图G 存在。

操作结果:创建有向网。

DFS(G,v);初始条件:图G已经存在并被赋值,v是图中某个顶点的位置坐标。

操作结果:深度优先搜索遍历图G,访问顶点时使用函数visit.BFS(G,v);初始条件:图G已经存在并被赋值,v是图中某个顶点的位置坐标。

操作结果:广度优先搜索遍历图G,访问顶点时使用函数visit.visit( a);初始条件:a为图中的某个顶点值。

操作结果:访问顶点a,本程序中作用结果为输出顶点值。

}ADT mgraph2.邻接表存储结构的图定义:ADT algraph{数据对象V:V是具有相同特性的的数据元素的集合,成为顶点集。

数据关系 R:R={VR}VR={ <v,w>| v,w є V且P(v,w),<v,w>表示从v到w的弧,谓词P(v,w)定义了弧<v,w>的意义或信息 }基本操作 P:locatevex(G, mes);初始条件:图G存在,mes和G中顶点有相同的特征。

操作结果:若G中存在顶点u,则返回该顶点在图中位置;否则返回其他信息。

createudn( & G);初始条件:图G 存在。

操作结果:创建无向图。

createdn( & G);初始条件:图G 存在。

操作结果:创建有向图。

createudg( & G);初始条件:图G 存在。

操作结果:创建无向网。

createdg(& G);初始条件:图G 存在。

操作结果:创建有向网。

DFS(G,v);初始条件:图G已经存在并被赋值,v是图中某个顶点的位置坐标。

操作结果:深度优先搜索遍历图G,访问顶点时使用函数visit.BFS(G,v);初始条件:图G已经存在并被赋值,v是图中某个顶点的位置坐标。

操作结果:广度优先搜索遍历图G,访问顶点时使用函数visit.visit( a);初始条件:a为图中的某个顶点值。

操作结果:访问顶点a,本程序中作用结果为输出顶点值。

}ADT algraph3.主程序流程:定义并创建图status creatgraph(mgraph & G){cout<<"请选择构造的图的类型:( 1:有向图,2:有向网,3:无向图,4:无向网)"<<endl;int kind;scanf("%d",& kind);switch (kind)//通过选择确定创建哪一种图;{case 1: return createdg(G);case 2: return createdn(G);case 3:return createudg(G);case 4: return createudn(G);default: return error;}}然后采用DFS或BFS进行遍历(访问结果为输出顶点值)。

4.函数的调用关系图:mainvisit locatevex linkqueue enqueue gethead dequeue destroyqueue其中,当DFS使用递归算法时相关的栈操作不使用,当BFS使用递归算法时相关的队列操作仍有部分使用。

四、调试分析1.采用邻接表结构创建图时,由于没有正确进行弧元素的跟进插入,导致图创建不成功。

2.没有采用多文件结构,导致在快要完成时发现函数定义的位置不尽合理,后续添加功能时难度增大。

3.本程序主要为实现遍历算法思想,对实用性考虑偏少,但考虑到了多种数据类型情况下的分别实现,函数拆分较详细,算法可靠性强。

4.算法的时空分析1)由于对顶点元素的存储均采用了线性结构,所以在创建图和遍历时多依赖于该线性存储的大小。

当结点个数为n,弧条数为e时, createdg createdn createudg createudn的算法时间复杂度都为O(n²+e*n),其中对邻接矩阵的初始化耗费了O(n²)的时间。

2)当用二维数组表示邻接矩阵作为图的存储结构时,查找每个顶点的邻接点所需时间为O(n²),而以邻接表为存储结构时为O(e)。

以邻接表为存储结构时,深度优先搜索遍历图(DFS)的时间复杂度为O(n+e)。

3)广度优先搜索遍历图(BFS)的时间复杂度和深度优先搜索遍历(DFS)相同。

5.对链表的操作需要很重要的一个量来定位链表和定位操作的位置,指针的作用不可替代。

多种数据结构的联合使用在程序中非常重要,多种存储结构的程序实现原理上相同,但具体的操作技巧有很大差别。

五、用户使用说明1.本程序运行环境建议为window xp.2.打开程序工程,并运行其中可执行文件,终端对话框会出现文字提示,请严格按照文字提示进行输入操作。

3.数据之间的分隔可用空格或回车键执行。

4.如下图是某无向图的创建并进行DFS的结果:六、测试结果DFS:按照文字提示进行输入数据分隔使用空格或回车结果随后出现七、附录邻接矩阵结构创建图:#include <iostream>#include <string.h>#include<stdio.h>typedef int vertextype;typedef int infotype;typedef int status;typedef int selemtype;#define error 0#define ok 1#define INFINTY INT_MAX //最大值∞#define MAX_VERTEX_NUM 20 //最大定点个数#define FALSE 0#define TRUE 1#define STACK_INIT_SIZE 100#define STACKINCREMENT 10#define overflow -2using namespace std;//弧定义typedef struct arccell{int adj;// infotype *info;}arccell,adjmatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM];//图定义typedef struct{vertextype vexs[MAX_VERTEX_NUM];//顶点adjmatrix arcs;// 弧矩阵int vexnum,arcnum;}mgraph;int locatevex(mgraph G,vertextype mes){for(int i=0;i<G.vexnum;++i)if(mes==G.vexs[i])return i;return 0;}//定位函数//创建无向网status createudn(mgraph & G){cout<<"请输入无向网的顶点数,弧数:"<<endl;//可添加info选项。

scanf("%d%d",&G.vexnum,&G.arcnum);cout<<"请输入各顶点的值:"<<endl;for(int i=0;i<G.vexnum;++i) scanf("%d",&G.vexs[i]); //构造顶点for(int i=0;i<G.vexnum;++i)for(int j=0;j<G.vexnum;++j)G.arcs[i][j].adj=0;cout<<"请输入成对的关系顶点数值以及其权值:(形如:11 22 1)"<<endl;for(int k=0;k<G.arcnum;++k){vertextype v1,v2;int w;scanf("%d%d%d", &v1,&v2,&w);int i=locatevex(G,v1);int j=locatevex(G,v2);G.arcs[i][j].adj=w;G.arcs[j][i]=G.arcs[i][j];}return ok;}//创建有向网status createdn(mgraph & G){cout<<"请输入有向网的顶点数,弧数:"<<endl;//可添加info选项。

scanf("%d%d",&G.vexnum,&G.arcnum);cout<<"请输入各顶点的值:"<<endl;for(int i=0;i<G.vexnum;++i) scanf("%d",&G.vexs[i]); //构造顶点for(int i=0;i<G.vexnum;++i)for(int j=0;j<G.vexnum;++j)G.arcs[i][j].adj=0;cout<<"请输入成对的关系顶点数值以及其权值:(形如:11 22 1)"<<endl;for(int k=0;k<G.arcnum;++k){vertextype v1,v2;int w;scanf("%d%d%d", &v1,&v2,&w);int i=locatevex(G,v1);int j=locatevex(G,v2);G.arcs[i][j].adj=w;}return ok;}//创建无向图status createudg(mgraph & G){cout<<"请输入无向图的顶点数,弧数:"<<endl;//可添加info选项。

相关文档
最新文档