纳米材料介绍

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

序号:69
纳米材料的介绍
学院:材料科学与工程学院
专业:高分子材料与工程
15级高分子四班
王颖超
纳米材料的介绍
纳米级结构材料简称为纳米材料,是指其结构单元的尺寸介于1纳米~100纳米范围之间。

由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。

并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。

自20世纪70年代纳米颗粒材料问世以来,从研究内涵和特点大致可划分为三个阶段:
第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。

第二阶段(1990~1994年):人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料,复合材料的合成和物性探索一度成为纳米材料研究的主导方向。

第三阶段(1994年至今):纳米组装体系、人工组装合成的纳米结构材料体系正在成为纳米材料研究的新热点。

国际上把这类材料称为纳米组装材料体系或者纳米尺度的图案材料。

它的基本内涵是以纳米颗粒以及它们组成的纳米丝、管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系。

陶瓷材料作为材料的三大支柱之一,在日常生活及工业生产中起着举足轻重的作用。

利用纳米技术开发的纳米陶瓷材料是利用纳米粉体对现有陶瓷进行改性,通过往陶瓷中加入或生成纳米级颗粒、晶须、晶片纤维等,使晶粒、晶界以及他们之间的结合都达到纳米水平,使材料的强度、韧性和超塑性大幅度提高。

它克服了工程陶瓷的许多不足,并对材料的力学、电学、热学、磁光学等性能产生重要影响
纳米陶瓷的特性主要在于力学性能方面,包括纳米陶瓷材料的硬度,断裂韧度和低温延展性等。

纳米级陶瓷复合材料的力学性能,特别是在高温下使硬度、强度得以较大的提高。

有关研究表明,纳米陶瓷具有在较低温度下烧结就能达到致密化的优越性,而且纳米陶瓷出现将有助于解决陶瓷的强化和增韧问题。

在室温压缩时,纳米颗粒已有很好的结合,高于500℃很快致密化,而晶粒大小只有稍许的增加,所得的硬度和断裂韧度值更好,而烧结温度却要比工程陶瓷低400~600℃,且烧结不需要任何的添加剂。

其硬度和断裂韧度随烧结温度的增加(即孔隙度的降低)而增加,故低温烧结能获得好的力学性能。

通常,硬化处理使材料变脆,造成断裂韧度的降低,而就纳米晶而言,硬化和韧化由孔隙的消除来形成,这样就增加了材料的整体强度。

因此,如果陶瓷材料以纳米晶的形式出现,可观察到通常为脆性的陶瓷可变成延展性的,在室温下就允许有大的弹性形变。

由于纳米陶瓷具有的独特性能,如做外墙用的建筑陶瓷材料则具有自清洁和防雾功能。

随着高技术的不断出现,人们对纳米陶瓷寄予很大希望,世界各国的科研工作者正在不断研究开发纳米陶瓷粉体并以此为原料合成高技术纳米陶瓷。

在高新技术中,纳米技术、生物技术和信息技术对化学工业发展有着深远的影响,对于材料科学而言,当首推纳米技术。

近年来, 纳米技术的发展已广泛地渗透到催化研究领域, 其中最典型的实例就是纳米催化剂( nanocatalysts —NCs) 的出现及与其相关研究的蓬勃发展。

NCs 具有比表面积大、表面活性高等特点, 显示出许多传统催化剂无法比拟的优异特性;此外, NCs 还表现出优良的电催化、磁催化等性能, 已被广泛地应用于石油、化工、能源、涂料、生物以及环境保护等许多领域。

纳米技术的发展,使微电子和光电子的结合更加紧密,在光电信息传输、存贮、处理、运算和显示等方面,使光电器件的性能大大提高。

将纳米技术用于现有雷达信息处理上,可使其能力提高十倍至几百倍,甚至可以将超高分辨率纳米孔径雷达放到卫星上进行高精度的对地侦察。

但是要获取高分辨率图像,就必需先进的数字信息处理技术。

科学家们发现,将光调制器和光探测器结合在一起的量子阱自电光效应器件,将为实现光学高速数学运算提供可能。

美国桑迪亚国家实验室的Paul等发现,纳米激光器的微小尺寸可以使光子被限制在少数几个状态上,而低音廊效应则使光子受到约束,直到所产生的光波累积起足够多的能量后透过此结构。

其结果是激光器达到极高的工作效率,而能量阈则很低。

纳米激光器实际上是一根弯曲成极薄面包圈的形状的光子导线,实验发现,纳米激光器的大小和形状能够有效控制它发射出的光子的量子行为,从而影响激光器的工作。

研究还发现,纳米激光器工作时只需约100微安的电流。

最近科学家们把光子导线缩小到只有五分之一立方微米体积内。

在这一尺度上,此结构的光子
状态数少于10个,接近了无能量运行所要求的条件,但是光子的数目还没有减少到这样的极限上。

最近,麻省理工学院的研究人员把被激发的钡原子一个一个地送入激光器中,每个原子发射一个有用的光子,其效率之高,令人惊讶。

除了能提高效率以外,无能量阈纳米激光器的运行还可以得出速度极快的激光器。


于只需要极少的能量就可以发射激光,这类装置可以实现瞬时开关。

已经有一些激光器能够以快于每秒钟200亿次的速度开关,适合用于光纤通信。

由于纳米技术的迅速发展,这种无能量阈纳米激光器的实现将指日可待。

纳米材料的用途很广,主要用途有:
1.医药使用纳米技术能使药品生产过程越来越精细,并在纳米材料的尺度上直接利用原子、分子的排布制造具有特定功能的药品。

纳米材料粒子将使药物在人体内的传输更为方便,用数层纳米粒子包裹的智能药物进入人体后可主动搜索并攻击癌细胞或修补损伤组织。

使用纳米技术的新型诊断仪器只需检测少量血液,就能通过其中的蛋白质和DNA诊断出各种疾病。

2.家电用纳米材料制成的纳米材料多功能塑料,具有抗菌、除味、防腐、抗老化、抗紫外线等作用,可用处作电冰霜、空调外壳里的抗菌除味塑料。

3.电子计算机和电子工业可以从阅读硬盘上读卡机以及存储容量为目前芯片上千倍的纳米材料级存储器芯片都已投入生产。

计算机在普遍采用纳米材料后,可以缩小成为“掌上电脑”。

4.环境保护环境科学领域将出现功能独特的纳米膜。

这种膜能够探测到由化学和生物制剂造成的污染,并能够对这些制剂进行过滤,从而消除污染。

5.纺织工业在合成纤维树脂中添加纳米SiO2、纳米ZnO、纳米SiO2复配粉体材料,经抽丝、织布,可制成杀菌、防霉、除臭和抗紫外线辐射的内衣和服装,可用于制造抗菌内衣、用品,可制得满足国防工业要求的抗紫外线辐射的功能纤维。

6.机械工业采用纳米材料技术对机械关键零部件进行金属表面纳米粉涂层处理,可以提高机械设备的耐磨性、硬度和使用寿命。

经过几十年对纳米技术的研究探索,现在科学家已经能够在实验室操纵单个原子,纳米技术有了飞跃式的发展。

纳米技术的应用研究正在半导体芯片、癌症诊断、光学新材料和生物分子追踪4大领域高速发展。

可以预测:不久的将来纳米金属氧化物半导体场效应管、平面显示用发光纳米粒子与纳米复合物、纳米光子晶体将应运而生;用于集成电路的单电子晶体管、记忆及逻辑元件、分子化学组装计算机将投入应用;分子、原子簇的控制和自组装、量子逻辑器件、分子电子
器件、纳米机器人、集成生物化学传感器等将被研究制造出来。

纳米技术目前从整体上看虽然仍然处于实验研究和小规模生产阶段,但从历史的角度看:上世纪70年代重视微米科技的国家如今都已成为发达国家。

当今重视发展纳米技术的国家很可能在21世纪成为先进国家。

纳米技术对我们既是严峻的挑战,又是难得的机遇。

必须加倍重视纳米技术和纳米基础理论的研究,为我国在21世纪实现经济腾飞奠定坚实的基础。

整个人类社会将因纳米技术的发展和商业化而产生根本性的变革。

相关文档
最新文档