隐马尔可夫模型详解ppt(有例子_具体易懂)
合集下载
详细讲解隐马尔可夫模型配有实际例题
![详细讲解隐马尔可夫模型配有实际例题](https://img.taocdn.com/s3/m/a9010356f08583d049649b6648d7c1c708a10b2f.png)
05
隐马尔可夫模型的优缺点
优点分析
能够处理序列数据,适用于 语音识别、自然语言处理等 领域
模型简单,易于理解和实现
具有较强的鲁棒性,能够适 应各种类型的数据
可以通过训练数据学习模型 的参数,提高模型的准确性
和泛化能力
缺点分析
计算复杂度高:隐马尔可夫模型的训练和预测需要大量的计算资源。
模型参数多:隐马尔可夫模型需要估计的状态转移概率和发射概率数量庞大,容易导致过拟合。
模型评估与调整
评估指标:准确率、召回率、F1值等 调整方法:调整模型参数、增加训练数据、调整模型结构等 评估工具:Python库(如sklern、pyrch等)、自定义评估函数等 调整策略:根据评估结果,选择合适的调整方法,以提高模型性能。
模型选择与决策
隐马尔可夫模型的定义和特点 隐马尔可夫模型的建立方法 隐马尔可夫模型的参数估计 隐马尔可夫模型的决策过程 隐马尔可夫模型的实际应用案例分析
04
隐马尔可夫模型的应用实例
语音识别
语音识别技术简介
隐马尔可夫模型在语音识 别中的应用
语音识别系统的组成和原 理
隐马尔可夫模型在语音识 别中的具体应用案例
自然语言处理
语音识别:将语音信号转化为文字 机器翻译:将一种语言的文本翻译成另一种语言 文本生成:根据输入生成连贯的文本 情感分析:分析文本中的情感倾向,如积极、消极、中性等
生物信息学
DN序列分析: 使用隐马尔可 夫模型预测DN 序列的进化关
系
RN结构预测: 利用隐马尔可 夫模型预测RN 的二级结构和
三级结构
蛋白质结构预 测:通过隐马 尔可夫模型预 测蛋白质的三 维结构和功能
基因调控网络 分析:使用隐 马尔可夫模型 分析基因调控 网络的动态变
隐马尔可夫模型.pptx
![隐马尔可夫模型.pptx](https://img.taocdn.com/s3/m/82cb593424c52cc58bd63186bceb19e8b9f6ec45.png)
第28页/共85页
学习问题
• Baum-Welch重估计公式
• 已知X和 的情况下,t时刻为状态i,t+1时刻为状态j的后验概率
θ
ij
(t
)
i
(t
1)aij P(XT
b |
jk
θ)
j
(t
)
向前
向后
T
jl (t)
t 1 l
bˆ v(t )vk
jk
T
jl (t)
t 1 l
第29页/共85页
例如:ML估计
第10页/共85页
估值问题
• 直接计算HMM模型产生可见长度为T的符号序列X的概率
其中,
表示状态 的初始概率
假设HMM中有c个隐状态,则计算复杂度为
!
例如:c=10,T=20,基本运算1021次!
(1)
第11页/共85页
O(cTT )
估值问题
• 解决方案
• 递归计算
t时刻的计算仅涉及上一步的结果,以及
x1和x3统计独立,而 其他特征对不独立
第32页/共85页
相关性例子
• 汽车的状态 • 发动机温度 • 油温 • 油压 • 轮胎内气压
• 相关性 • 油压与轮胎内气压相互独立 • 油温与发动机温度相关
第33页/共85页
贝叶斯置信网
• 用图的形式来表示特征之间的因果依赖性 • 贝叶斯置信网(Bayesian belief net) • 因果网(causal network) • 置信网(belief net)
P(θi )
P(θi | X)
θi P(X | θi )
第20页/共85页
解码问题
HMM隐马尔可夫模型解析课件
![HMM隐马尔可夫模型解析课件](https://img.taocdn.com/s3/m/785e7ac96429647d27284b73f242336c1eb930c9.png)
n 根据初始概率分布,随机选择N个缸中的一个开始实验 n 根据缸中球颜色的概率分布,随机选择一个球,记球
的颜色为O1,并把球放回缸中 n 根据描述缸的转移的概率分布,随机选择下一口缸,
重复以上步骤。
n 为最观后察得值到序一列个O描。述球的颜色的序列O1,O2, … ,称
HMM实例——约束
在上述实验中,有几个要点需要注意:
n (a)转移矩阵没有零值 的Markov链
n (b)转移矩阵有零值的 Markov链
n (c)和(d)是左-右形式表 示的Markov链
HMM实例
Urn 3 Urn 2 Urn 1
Veil
Observed Ball Sequence
HMM实例——描述
n 设有N个缸,每个缸中装有很多彩球,球的颜色 由一组概率分布描述。实验进行方式如下
的统计特性,即状态转移概率确定;这个 状态产生的输出亦为随机的,取决于该状 态生成语音观察量的概率。
n 无跨越模型符合人类的语音特点,广泛应 用于语音识别中。
n 有跨越用于反映音素在发音中可能被吸收 或删除的情况。
Two types of HMM
n State-emission HMM (Moore machine):
n X(t+1) = f(X(t) ) n 现实中存在很多马尔可夫过程
马尔可夫链
n 时间和状态都离散的马尔可夫过程称为马尔可夫链
n 记作{Xn = X(n), n = 0,1,2, …}
n 在时间集T1 = {0,1,2, …}上对离散状态的过程相继观察的结果
n 链的状态空间记做I = {a1, a2, …}, ai∈R.
隐马尔可夫模型 Hidden Markov model
的颜色为O1,并把球放回缸中 n 根据描述缸的转移的概率分布,随机选择下一口缸,
重复以上步骤。
n 为最观后察得值到序一列个O描。述球的颜色的序列O1,O2, … ,称
HMM实例——约束
在上述实验中,有几个要点需要注意:
n (a)转移矩阵没有零值 的Markov链
n (b)转移矩阵有零值的 Markov链
n (c)和(d)是左-右形式表 示的Markov链
HMM实例
Urn 3 Urn 2 Urn 1
Veil
Observed Ball Sequence
HMM实例——描述
n 设有N个缸,每个缸中装有很多彩球,球的颜色 由一组概率分布描述。实验进行方式如下
的统计特性,即状态转移概率确定;这个 状态产生的输出亦为随机的,取决于该状 态生成语音观察量的概率。
n 无跨越模型符合人类的语音特点,广泛应 用于语音识别中。
n 有跨越用于反映音素在发音中可能被吸收 或删除的情况。
Two types of HMM
n State-emission HMM (Moore machine):
n X(t+1) = f(X(t) ) n 现实中存在很多马尔可夫过程
马尔可夫链
n 时间和状态都离散的马尔可夫过程称为马尔可夫链
n 记作{Xn = X(n), n = 0,1,2, …}
n 在时间集T1 = {0,1,2, …}上对离散状态的过程相继观察的结果
n 链的状态空间记做I = {a1, a2, …}, ai∈R.
隐马尔可夫模型 Hidden Markov model
《隐马尔可夫模型》课件
![《隐马尔可夫模型》课件](https://img.taocdn.com/s3/m/27dce231178884868762caaedd3383c4ba4cb45f.png)
它是一种双重随机过程,包括一个状态转移的随 机过程和一个观测值生成的随机过程。
隐马尔可夫模型在许多领域都有应用,如语音识 别、自然语言处理、生物信息学和金融预测等。
隐马尔可夫模型的应用领域
01
语音识别
用于将语音转换为文本,或识别说 话人的意图。
生物信息学
用于分析基因序列、蛋白质序列和 代谢物序列等。
03 隐马尔可夫模型的建立
观察概率矩阵的确定
总结词
观察概率矩阵描述了在给定状态下,观察到不同状态的概率 分布。
详细描述
观察概率矩阵是隐马尔可夫模型中的重要组成部分,它表示 了在给定状态下,观察到不同状态的概率分布。例如,在语 音识别中,观察概率矩阵可以表示在特定语音状态下发出不 同音素的概率。
状态转移概率矩阵的确定
VS
原理
通过动态规划找到最大概率的路径,该路 径对应于最可能的隐藏状态序列。
05 隐马尔可夫模型的优化与 改进
特征选择与模型参数优化
要点一
特征选择
选择与目标状态和观测结果相关的特征,提高模型预测准 确率。
要点二
模型参数优化
通过调整模型参数,如状态转移概率和观测概率,以改进 模型性能。
高阶隐马尔可夫模型
初始状态概率分布表示了隐马尔可夫模型在初始时刻处于各个状态的概率。这个概率分布是隐马尔可 夫模型的重要参数之一,它决定了模型在初始时刻所处的状态。在某些应用中,初始状态概率分布可 以根据具体问题来确定,也可以通过实验数据来估计。
04 隐马尔可夫模型的训练与 预测
前向-后向算法
前向算法
用于计算给定观察序列和模型参 数下,从初始状态到某个终止状 态的所有可能路径的概率。
《隐马尔可夫模型》 ppt课件
隐马尔可夫模型在许多领域都有应用,如语音识 别、自然语言处理、生物信息学和金融预测等。
隐马尔可夫模型的应用领域
01
语音识别
用于将语音转换为文本,或识别说 话人的意图。
生物信息学
用于分析基因序列、蛋白质序列和 代谢物序列等。
03 隐马尔可夫模型的建立
观察概率矩阵的确定
总结词
观察概率矩阵描述了在给定状态下,观察到不同状态的概率 分布。
详细描述
观察概率矩阵是隐马尔可夫模型中的重要组成部分,它表示 了在给定状态下,观察到不同状态的概率分布。例如,在语 音识别中,观察概率矩阵可以表示在特定语音状态下发出不 同音素的概率。
状态转移概率矩阵的确定
VS
原理
通过动态规划找到最大概率的路径,该路 径对应于最可能的隐藏状态序列。
05 隐马尔可夫模型的优化与 改进
特征选择与模型参数优化
要点一
特征选择
选择与目标状态和观测结果相关的特征,提高模型预测准 确率。
要点二
模型参数优化
通过调整模型参数,如状态转移概率和观测概率,以改进 模型性能。
高阶隐马尔可夫模型
初始状态概率分布表示了隐马尔可夫模型在初始时刻处于各个状态的概率。这个概率分布是隐马尔可 夫模型的重要参数之一,它决定了模型在初始时刻所处的状态。在某些应用中,初始状态概率分布可 以根据具体问题来确定,也可以通过实验数据来估计。
04 隐马尔可夫模型的训练与 预测
前向-后向算法
前向算法
用于计算给定观察序列和模型参 数下,从初始状态到某个终止状 态的所有可能路径的概率。
《隐马尔可夫模型》 ppt课件
隐马尔可夫模型(有例子-具体易懂)课件
![隐马尔可夫模型(有例子-具体易懂)课件](https://img.taocdn.com/s3/m/3ea8e5311fb91a37f111f18583d049649a660e19.png)
解决问题一—前向算法
定义前向变量为:
“在时间步t, 得到t之前的所有明符号序列, 且时间 步t的状态是Si”这一事件的概率, 记为 (t, i) = P(o1,…,ot, qt = Si|λ)
则
算法过程
HMM的网格结构
前向算法过程演示
t=1
t=2
t=3
t=4
t=5
t=T
t=6
t=7
问题 1 – 评估问题
给定
一个骰子掷出的点数记录
124552646214614613613666166466163661636616361651561511514612356234
问题
会出现这个点数记录的概率有多大? 求P(O|λ)
问题 2 – 解码问题
给定
一个骰子掷出的点数记录
124552646214614613613666166466163661636616361651561511514612356234
HMM的三个基本问题
令 λ = {π,A,B} 为给定HMM的参数, 令 O = O1,...,OT 为观察值序列,则有关于 隐马尔可夫模型(HMM)的三个基本问题: 1.评估问题: 对于给定模型,求某个观察值序列的概率P(O|λ) ; 2.解码问题: 对于给定模型和观察值序列,求可能性最大的状态序列maxQ{P(Q|O,λ)}; 3.学习问题: 对于给定的一个观察值序列O,调整参数λ,使得观察值出现的概率P(O|λ)最大。
5点
1/6
3/16
6点
1/6
3/8
公平骰子A与灌铅骰子B的区别:
时间
1
2
3
4
5
6
7
骰子
A
A
定义前向变量为:
“在时间步t, 得到t之前的所有明符号序列, 且时间 步t的状态是Si”这一事件的概率, 记为 (t, i) = P(o1,…,ot, qt = Si|λ)
则
算法过程
HMM的网格结构
前向算法过程演示
t=1
t=2
t=3
t=4
t=5
t=T
t=6
t=7
问题 1 – 评估问题
给定
一个骰子掷出的点数记录
124552646214614613613666166466163661636616361651561511514612356234
问题
会出现这个点数记录的概率有多大? 求P(O|λ)
问题 2 – 解码问题
给定
一个骰子掷出的点数记录
124552646214614613613666166466163661636616361651561511514612356234
HMM的三个基本问题
令 λ = {π,A,B} 为给定HMM的参数, 令 O = O1,...,OT 为观察值序列,则有关于 隐马尔可夫模型(HMM)的三个基本问题: 1.评估问题: 对于给定模型,求某个观察值序列的概率P(O|λ) ; 2.解码问题: 对于给定模型和观察值序列,求可能性最大的状态序列maxQ{P(Q|O,λ)}; 3.学习问题: 对于给定的一个观察值序列O,调整参数λ,使得观察值出现的概率P(O|λ)最大。
5点
1/6
3/16
6点
1/6
3/8
公平骰子A与灌铅骰子B的区别:
时间
1
2
3
4
5
6
7
骰子
A
A
隐马尔可夫模型HiddenMarkovmodel-PPT文档资料
![隐马尔可夫模型HiddenMarkovmodel-PPT文档资料](https://img.taocdn.com/s3/m/1895af2252ea551810a687bd.png)
通俗的说,就是在已经知道过程“现在”的条 件下,其“将来”不依赖于“过去”。
2019/3/7
知识管理与数据分析实验室
7
马尔科夫链
• 时间和状态都离散的马尔科夫过程称为马尔科夫 链 • 记作{Xn = X(n), n = 0,1,2,…} – 在时间集T1 = {0,1,2,…}上对离散状态的过程相 继观察的结果 • 链的状态空间记做I = {a1, a2,…}, ai∈R. • 条件概率Pij ( m ,m+n)=P{Xm+n = aj|Xm = ai} 为马氏 链在时刻m处于状态ai条件下,在时刻m+n转移到 状态aj的转移概率。
16
内容框架
1 隐马尔科夫模型的由来
2 隐马尔科夫模型的基本理论及实例
3 隐马尔科夫模型的三个基本算法
4 隐马尔科夫模型的应用
2019/3/7
知识管理与数据分析实验室
17
向前算法及向后算法
向前算法及向后算法主要解决评估问题,即用来 计算给定一个观测值序列O以及一个模型λ时,由 模型λ产生出观测值序列O的概率 。
13
HMM中状态与观测的对应关系示意图
2019/3/7
知识管理与数据分析实验室
14
HMM的基本要素
• 用模型五元组 =( N, M, π ,A,B)用来描述 HMM,或简写为 =(π ,A,B)
2019/3/7
知识管理与数据分析实验室
15
HMM可解决的问题
评估问题 解码问题 学习问题
给定观测序列 O=O1O2O3…Ot 和模型参数 λ=(A,B,π),怎样 有效计算某一观 测序列的概率。 此问题主要用向 前向后算法。
2
隐马尔可夫模型(HMM)的由来
2019/3/7
知识管理与数据分析实验室
7
马尔科夫链
• 时间和状态都离散的马尔科夫过程称为马尔科夫 链 • 记作{Xn = X(n), n = 0,1,2,…} – 在时间集T1 = {0,1,2,…}上对离散状态的过程相 继观察的结果 • 链的状态空间记做I = {a1, a2,…}, ai∈R. • 条件概率Pij ( m ,m+n)=P{Xm+n = aj|Xm = ai} 为马氏 链在时刻m处于状态ai条件下,在时刻m+n转移到 状态aj的转移概率。
16
内容框架
1 隐马尔科夫模型的由来
2 隐马尔科夫模型的基本理论及实例
3 隐马尔科夫模型的三个基本算法
4 隐马尔科夫模型的应用
2019/3/7
知识管理与数据分析实验室
17
向前算法及向后算法
向前算法及向后算法主要解决评估问题,即用来 计算给定一个观测值序列O以及一个模型λ时,由 模型λ产生出观测值序列O的概率 。
13
HMM中状态与观测的对应关系示意图
2019/3/7
知识管理与数据分析实验室
14
HMM的基本要素
• 用模型五元组 =( N, M, π ,A,B)用来描述 HMM,或简写为 =(π ,A,B)
2019/3/7
知识管理与数据分析实验室
15
HMM可解决的问题
评估问题 解码问题 学习问题
给定观测序列 O=O1O2O3…Ot 和模型参数 λ=(A,B,π),怎样 有效计算某一观 测序列的概率。 此问题主要用向 前向后算法。
2
隐马尔可夫模型(HMM)的由来
隐马尔可夫模型课件
![隐马尔可夫模型课件](https://img.taocdn.com/s3/m/5830d333178884868762caaedd3383c4bb4cb425.png)
隐马尔可夫模型课 件
目录
ቤተ መጻሕፍቲ ባይዱ
• 隐马尔可夫模型简介 • 隐马尔可夫模型的基本概念 • 隐马尔可夫模型的参数估计 • 隐马尔可夫模型的扩展 • 隐马尔可夫模型的应用实例 • 隐马尔可夫模型的前景与挑战
01
隐马尔可夫模型简介
定义与特点
定义
隐马尔可夫模型(Hidden Markov Model,简称HMM)是 一种统计模型,用于描述一个隐藏的马尔可夫链产生的观测 序列。
观测概率
定义
观测概率是指在给定隐藏状态下,观测到某一特定输出的概率。在隐马尔可夫 模型中,观测概率表示隐藏状态与观测结果之间的关系。
计算方法
观测概率通常通过训练数据集进行估计,使用最大似然估计或贝叶斯方法计算 。
初始状态概率
定义
初始状态概率是指在隐马尔可夫模型中,初始隐藏状态的概率分布。
计算方法
05
隐马尔可夫模型的应用实 例
语音识别
语音识别是利用隐马尔可夫模型来识别连续语音的技术。通过建立语音信号的时间序列与状态序列之 间的映射关系,实现对语音的自动识别。
在语音识别中,隐马尔可夫模型用于描述语音信号的动态特性,将连续的语音信号离散化为状态序列, 从而进行分类和识别。
隐马尔可夫模型在语音识别中具有较高的准确率和鲁棒性,广泛应用于语音输入、语音合成、语音导航 等领域。
Baum-Welch算法
总结词
Baum-Welch算法是一种用于隐马尔可夫模型参数估计的迭代算法,它通过最大化对数似然函数来估计模型参数 。
详细描述
Baum-Welch算法是一种基于期望最大化(EM)算法的参数估计方法,它通过对数似然函数作为优化目标,迭 代更新模型参数。在每次迭代中,算法首先使用前向-后向算法计算给定观测序列和当前参数值下的状态序列概 率,然后根据这些概率值更新模型参数。通过多次迭代,算法逐渐逼近模型参数的最优解。
隐马尔可夫模型(课堂PPT)
![隐马尔可夫模型(课堂PPT)](https://img.taocdn.com/s3/m/fc7abd0f8762caaedc33d479.png)
骰子作弊问题模型化: 作弊问题由 5 个部分构成:
(1)隐状态空间 S (状态空间):
S {正常骰子A,灌铅骰子 B} ,赌场具体使用哪个骰子,赌 徒是不知道的。 (2)观测空间 O :O {1,2,3,4,5,6}。正常骰子 A 和灌铅骰 子 B 的所有六个面可能取值。
.
14
(3)初始状态概率空间 :
❖ 马尔可夫模型的观测序列本身就是 状态序列;
❖ 隐马尔可夫模型的观测序列不是状 态序列;
.
9
引例2
设有N个篮子,每个都装了许多彩色小球, 小球颜色有M种.现在按下列步骤产生出一个输 出符号(颜色)序列:按某个初始概率分布,随机 的选定一个篮子,从中随机地取出一个球,记 录球的颜色作为第一个输出符号,并把球放回 原来的篮子.然后按照某个转移概率分布(与当 前篮子相联系)选择一个新的篮子(也可能仍停 留在当前篮子),并从中随机取出一个球,记下 颜色作为第二个输出符号.
.
10
如此重复地做下去,这样便得到一个输出序列. 我们能够观测到的是这个输出序列—颜色符号 序列,而状态(篮子)之间的转移(状态序列)被隐 藏起来了.每个状态(篮子)输出什么符号(颜色)是 由它的输出概率分布(篮子中彩球数目分布)来随 机决定的.选择哪个篮子(状态)输出颜色由状态 转移矩阵来决定.
a11
a22
1 a31
a12
a21
a13
a32
2 a23
3
a33 .
7
O(o1o2..o.T)(HHH.T.T.H ) HT
❖ 每个硬币代表一个状态; ❖每个状态有两个观测值: 正面 H 和反面 T; ❖ 每个状态产生H的概率:P(H); ❖ 每个状态产生T的概率为:1-P(H)
隐马尔科夫模型教学PPT
![隐马尔科夫模型教学PPT](https://img.taocdn.com/s3/m/18dd5d17f18583d0496459f5.png)
i 1 j 1 t ij j
N
N
t 1
) t 1 ( j )
t (i ) t (i, j ) t时刻处于状态Si的概率
j 1
N
t 1 T 1 t 1 t
T 1
t
(i ) 整个过程中从状态Si 转出的次数(number of time)的预期
i j
(i, j ) 从S 跳转到S 次数的预期
Baum-Welch算法(续)
• 定义:
给定模型 和观察序列条件下,从i到j的 转移概率定义为t (i, j )
t (i, j ) P ( st i, st 1 j | X , ) t (i )aij b j (Ot 1 ) t 1 ( j )
பைடு நூலகம்
(i)a b ( x
• 知道了小球颜色的序列,我们并不能直接 确定缸子之间转换的序列。即如果给定一 个观察序列,不能直接确定状态转换序列, 因为状态转换的过程被隐藏起来了,所以 这类随机过程称为隐马尔科夫过程。
• 在实验中可以看出,隐马尔科夫过程是比 马尔科夫的更为复杂,在马尔科夫过程中, 每个状态只有一个输出。而在这个实验中, 可以从每个缸子中拿出不同颜色的小球, 即每个状态能产生多个输出,观察到的事 件并不是与一个状态一一对应,而是通过 一组概率分布相联系。
• 4. B ,观测概率矩阵。其中 • BJ(K) = P[VK(T) | QT = SJ]; 1≤J≤N,1≤K≤M. • 表示在T时刻、状态是SJ条件下,观察符号为VK(T) 的概率。 • 5.π 初始状态概率矩阵 π={πJ} πJ= P[Q1 = SJ];1≤J≤N. • 表示在初始T=1时刻状态为SJ的概率。 • 一般的,可以用λ=(A,B,π)来简洁的表示一个隐马尔 可夫模型。给定了N,M,A,B,π后,隐马尔可夫模型可以产 生一个观测序列 O=O1O2O3…OT
N
N
t 1
) t 1 ( j )
t (i ) t (i, j ) t时刻处于状态Si的概率
j 1
N
t 1 T 1 t 1 t
T 1
t
(i ) 整个过程中从状态Si 转出的次数(number of time)的预期
i j
(i, j ) 从S 跳转到S 次数的预期
Baum-Welch算法(续)
• 定义:
给定模型 和观察序列条件下,从i到j的 转移概率定义为t (i, j )
t (i, j ) P ( st i, st 1 j | X , ) t (i )aij b j (Ot 1 ) t 1 ( j )
பைடு நூலகம்
(i)a b ( x
• 知道了小球颜色的序列,我们并不能直接 确定缸子之间转换的序列。即如果给定一 个观察序列,不能直接确定状态转换序列, 因为状态转换的过程被隐藏起来了,所以 这类随机过程称为隐马尔科夫过程。
• 在实验中可以看出,隐马尔科夫过程是比 马尔科夫的更为复杂,在马尔科夫过程中, 每个状态只有一个输出。而在这个实验中, 可以从每个缸子中拿出不同颜色的小球, 即每个状态能产生多个输出,观察到的事 件并不是与一个状态一一对应,而是通过 一组概率分布相联系。
• 4. B ,观测概率矩阵。其中 • BJ(K) = P[VK(T) | QT = SJ]; 1≤J≤N,1≤K≤M. • 表示在T时刻、状态是SJ条件下,观察符号为VK(T) 的概率。 • 5.π 初始状态概率矩阵 π={πJ} πJ= P[Q1 = SJ];1≤J≤N. • 表示在初始T=1时刻状态为SJ的概率。 • 一般的,可以用λ=(A,B,π)来简洁的表示一个隐马尔 可夫模型。给定了N,M,A,B,π后,隐马尔可夫模型可以产 生一个观测序列 O=O1O2O3…OT
隐马尔可夫模型简介PPT课件
![隐马尔可夫模型简介PPT课件](https://img.taocdn.com/s3/m/b6513663284ac850ac02425d.png)
ΩX = {q1,...qN}:状态的有限集合 ΩO = {v1,...,vM}:观察值的有限集合 A = {aij},aij = p(Xt+1 = qj |Xt = qi):转移概率 B = {bik},bik = p(Ot = vk | Xt = qi):输出概率 π = {πi}, πi = p(X1 = qi):初始状态分布
病
症状(观察值):发烧,咳嗽,咽喉肿痛,流涕 疾病(状态值):感冒,肺炎,扁桃体炎 转移概率:从一种疾病转变到另一种疾病的概率 输出概率:某一疾病呈现出某一症状的概率 初始分布:初始疾病的概率 解码问题:某人症状为:咳嗽→咽喉痛→流涕→发烧
请问:其疾病转化的最大可能性如何?
2020/10/13
5
算法:向前算法(一)
P ( O |) P ( O , X |) P ( X |) P ( O |X ,)
X T
P(X| )X1 aXi1Xi i2
X
T
P(O|X,) bXiO i i1
定义前向变量为HMM在时间t输出序列O1…Ot, 并且位于状态Si的概率:
t( i ) P ( O 1 O t,X t q i|)
9
例子:词性标注
问题:
已知单词序列w1w2…wn,求词性序列c1c2…cn
HMM模型:
将词性为理解为状态 将单词为理解为输出值
训练:
统计词性转移矩阵[aij]和词性到单词的输出矩阵[bik]
求解:Viterbi算法
2020/10/13
10
应用
语音识别 音字转换 词性标注(POS Tagging) 组块分析 基因分析 一般化:任何与线性序列相关的现象
2020/10/13
3
问题
病
症状(观察值):发烧,咳嗽,咽喉肿痛,流涕 疾病(状态值):感冒,肺炎,扁桃体炎 转移概率:从一种疾病转变到另一种疾病的概率 输出概率:某一疾病呈现出某一症状的概率 初始分布:初始疾病的概率 解码问题:某人症状为:咳嗽→咽喉痛→流涕→发烧
请问:其疾病转化的最大可能性如何?
2020/10/13
5
算法:向前算法(一)
P ( O |) P ( O , X |) P ( X |) P ( O |X ,)
X T
P(X| )X1 aXi1Xi i2
X
T
P(O|X,) bXiO i i1
定义前向变量为HMM在时间t输出序列O1…Ot, 并且位于状态Si的概率:
t( i ) P ( O 1 O t,X t q i|)
9
例子:词性标注
问题:
已知单词序列w1w2…wn,求词性序列c1c2…cn
HMM模型:
将词性为理解为状态 将单词为理解为输出值
训练:
统计词性转移矩阵[aij]和词性到单词的输出矩阵[bik]
求解:Viterbi算法
2020/10/13
10
应用
语音识别 音字转换 词性标注(POS Tagging) 组块分析 基因分析 一般化:任何与线性序列相关的现象
2020/10/13
3
问题
第讲隐马尔可夫模型及其应用PPT课件
![第讲隐马尔可夫模型及其应用PPT课件](https://img.taocdn.com/s3/m/de6d0538852458fb760b5635.png)
11
三、隐Markov模型的三个基本问题及其算法(1) 隐Markov模型涉及如下三个基本问题
1 评估问题:给定一个观察序列 O O1O2...OT 和模型λ ,如何计算给定模型λ下观察序列O的概率P(O| λ)。
2 解码问题:给定一个观察序列 O O1O2...OT 和模型λ
,如何计算状态序列Q q1q2...qT
公式1.1
如果系统在 t 时间的状态只与其在时间 t -1 的状态相关,则该系
统构成一个一阶Markov过程:
P(qt S j | qt1 Si , qt2 Sk ,...) P(qt S j | qt1 Si ) 公式1.2
4
Markov模型(3)
如果只考虑独立于时间 t 的随机过程:
5. 初始状态概率分布:
N
i P(q1 Si ), 其中1 i N , i 0, i 1 i 1
一般的,一个HMM可以表示为 λ=(S, O, A, B, π) 或 λ=(A, B, π)
从在 某初 个始 罐时 子刻 取选 出择 某不 种同 颜罐 色子 球的 的概概率率
隐Markov模型及其NLP应用
网络智能信息技术研究所 孙越恒
1
主要内容
1 Markov模型
2
隐Markov模型 (HMM)
3 隐Markov模型的三个基本问题及其算法
4 隐Markov模型的应用
5 隐Markov模型总结
2
一、Markov模型(1)
现实生活中的例子
传染病感染人数变化的过程 人口增长的过程 青蛙在荷叶上跳跃
率:
t (i) P(O1...Ot , qt Si | )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本例中三个基本问题
1.评估问题
• 给定观察序列O和HMM =(π, A, B), 判断O是由产 生出来的可能性有多大
• 计算骰子点数序列的确由“作弊”模型生成的可能性
2.解码问题
• 给定观察序列O和HMM λ =(π, A, B), 计算与序列O相 对应的状态序列是什么 • 在骰子点数序列中, 判断哪些点数是用骰子B掷出的
i=N
i=N-1
α(t,i)
i=5
i=4 i=3 i=2 i=1 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=T-1 t=T
前向算法过程演示
i=N i=N-1 i=5 i=4 i=3 i=2 i=1 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=T-1 t=T
1. 初始化 α(1,i)=π(i)b(i,o1)
HMM定义
一个隐马尔可夫模型 (HMM) 是由一个五元组描述的:
λ =( N,M ,A,B, π )
其中: N = {q1,...qN}:状态的有限集合 M = {v1,...,vM}:观察值的有限集合 A = {aij},aij = P(qt = Sj |qt-1 = Si):状态转移概率矩阵 B = {bjk}, bjk = P(Ot = vk | qt = Sj):观察值概率分布矩阵 π = {πi},πi = P(q1 = Si):初始状态概率分布
如果系统在t时间的状态只与其在时间 t -1的状态相关, 则该系统构成一个离散的一阶马尔可夫链(马尔可夫过程):
马尔可夫模型
如果只考虑独立于时间t的随机过程:
ai , j
其中状态转移概率 aij 必须满足 aij>=0 , 且
,则该随机过程称为马尔可夫模型。
例
假定一段时间的气象可由一个三状态的 马尔可夫模型M描述,S1:雨,S2:多云, S3:晴,状态转移概率矩阵为:
问题 点数序列中的哪些点数是用骰子B掷出的?
求maxQ{P(Q|O,λ)}
问题 3 – 学习问题
给定 一个骰子掷出的点数记录
124552646214614613613666166466163661636616361651561511514612356234
问题 作弊骰子掷出各点数的概率是怎样的?公平骰子 掷出各点数的概率又是怎样的 ? 赌场是何时 换用骰子的 ?
前向算法过程演示
i=N i=N-1 i=5 i=4 i=3 i=2 i=1 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=T-1 t=T
前向算法过程演示
i=N i=N-1 i=5 i=4 i=3 i=2 i=1 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=T-1 t=T
1点 2点 3点 4点 5点 6点
一次连续掷骰子的过程模拟
时间 骰子 掷出 点数
1 A 3 2 A 3 3 A 4 4 B 5 5 A 1 6 A 6 7 A 2 明序列 隐序列
查封赌场后, 调查人员发现了一些连续掷骰子的记录, 其中有一个骰子掷出的点数记录如下:
124552646214614613613666166466163661636616361651561511514612356234
前向算法过程演示
i=N i=N-1 i=5 i=4 i=3 i=2 i=1 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=T-1 t=T
前向算法过程演示
i=N i=N-1 i=5 i=4 i=3 i=2 i=1 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=T-1 t=T
前向算法过程演示
i=N i=N-1 i=5 i=4 i=3 i=2 i=1 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=T-1 t=T
2. 递归
前向算法过程演示
i=N i=N-1 i=5 i=4 i=3 i=2 i=1 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=T-1 t=T
HMM的三个基本问题
令 λ = {π,A,B} 为给定HMM的参数,
令 O = O1,...,OT 为观察值序列,则有关于 隐马尔可夫模型(HMM)的三个基本问题: 1.评估问题:对于给定模型,求某个观察值序列的 概率P(O|λ) ;
2.解码问题:对于给定模型和观察值序列,求可能 性最大的状态序列maxQ{P(Q|O,λ)}; 3.学习问题:对于给定的一个观察值序列O,调整 参数λ,使得观察值出现的概率P(O|λ)最大。
前向算法过程演示
i=N i=N-1 i=5 i=4 i=3 i=2 i=1 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=T-1 t=T
前向算法过程演示
i=N i=N-1 i=5 i=4 i=3 i=2 i=1 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=T-1 t=T
观察序列产生步骤
给定HMM模型 λ = (A, B, π) ,则观察序列 O=O1,O2,…OT 可由以下步骤产生: 1.根据初始状态概率分布π= πi,选择一初始状态 q1=Si; 2.设t=1; 3.根据状态 Si的输出概率分布bjk,输出Ot=vk; 4.根据状态转移概率分布aij,转移到新状态qt+1=Sj; 5.设t=t+1,如果t<T,重复步骤3、4,否则结束。
…
问题 1 – 评估问题
给定 一个骰子掷出的点数记录
124552646214614613613666166466163661636616361651561511514612356234
问题 会出现这个点数记录的概率有多大?
求P(O|λ)
问题 2 – 解码问题
给定 一个骰子掷出的点数记录
124552646214614613613666166466163661636616361651561511514612356234
学习问题:向前向后算法
EM算法的一个特例,带隐变量的最大似然估计
解决问题一—前向算法
定义前向变量为:
“在时间步t, 得到t之前的所有明符号序列, 且时间 步t的状态是Si”这一事件的概率,
记为 (t, i) = P(o1,…,ot, qt = Si|λ)
则
算法过程
HMM的网格结构
前向算法过程演示
i=N
i=N-1
i=5
i=4 i=3 i=2 i=1 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=T-1 t=T
前向算法过程演示
i=N i=N-1 i=5 i=4 i=3 i=2 i=1 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=T-1 t=T
前向算法过程演示
i=N i=N-1 i=5 i=4 i=3 i=2 i=1 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=T-1 t=T
前向算法过程演示
i=N i=N-1 i=5 i=4 i=3 i=2 i=1 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=T-1 t=T
前向算法过程演示
i=N i=N-1 i=5 i=4 i=3 i=2 i=1 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=T-1 t=T
3.学习问题
• 给定一系列观察序列样本, 确定能够产生出这些序列的模 型=(π, A, B) • 如何从大量的点数序列样本中学习得出“作弊模型”的参数
三个基本问题的求解算法
评估问题:前向算法
定义前向变量 采用动态规划算法,复杂度O(N2T)
解码问题:韦特比(Viterbi)算法
采用动态规划算法,复杂度O(N2T)
例(续)
如果第一天为晴天,根据这一模型,在今后七天中天 气为O=“晴晴雨雨晴云晴”的概率为:
隐马尔可夫模型 (Hidden Markov Model, HMM)
在MM中,每一个状态代表一个可观察的 事件 在HMM中观察到的事件是状态的随机函数, 因此该模型是一双重随机过程,其中状态 转移过程是不可观察(隐蔽)的(马尔可夫 链),而可观察的事件的随机过程是隐蔽的 状态转换过程的随机函数(一般随机过程)。
0.9
0.8
明字符生成概率 :
b11 = b12=…=b16=1/6
0 骰子B
b21=0, b22=b23=1/8, b24=b25=3/16, b26=3/8
0.2
HMM将两个序列相联系起来:
1. 由离散隐状态组成的状态序列(路径)
Q = (q1,…,qT), 每个qt∈S均是一个状态 由初始状态概率及状态转移概率(π, A)所决定
前向算法过程演示
i=N i=N-1 i=5 i=4 i=3 i=2 i=1 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=T-1 t=T
前向算法过程演示
i=N i=N-1 i=5 i=4 i=3 i=2 i=1 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=T-1 t=T
前向算法过程演示
i=N
i=N-1
i=5
i=4
i=3
i=2
i=1 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=T-1 t=T
前向算法过程演示
i=N i=N-1 i=5 i=4 i=3 i=2 i=1 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=T-1 t=T
前向算法过程演示
HMM的三个假设
对于一个随机事件,有一观察值序列: O=O1,O2,…OT 该事件隐含着一个状态序列: Q = q1,q2,…qT。 假设1:马尔可夫性假设(状态构成一阶马尔可夫链) P(qi|qi-1…q1) = P(qi|qi-1)