隐马尔科夫模型(原理图解)

合集下载

隐马尔科夫模型(原理图解)

隐马尔科夫模型(原理图解)

• 下时期状态只取决于当前时期状态和转移概率 P ( q t S j|q t 1 S i , q t 2 S k ,) P ( q t S j|q t 1 S i )
qt-1
t-1时 刻
3
qt
t时刻
q1 q2 q3 … qt-1
T=1 T=2 T=3
t-1时 刻
qt
t 时刻
S1


S2
)
aa2102 S2
S1
a11 S1 a12 2 ( 2 )
S2
a21
S1
S2
a22 aa0233
1(3) S3
S2
a22 a23
2 (3) S3
S2
SaN0a5aN014aaNNN2
1(4 S4
)
S3
a32 2 ( 4 ) a33 S4
SN
1(5)
O1
S5 O2
2 (5) S5 O3
3 (1 ) t=T-
S1
a11 a12
t=3
t=4
t=5
SS11
a11 a12
SS11
a11 a12
a21
SS22 a22
S2 a22
S2 a22
S2 a22
SS22
a23
a23
a23
a23
a31 a32
a32
a32
a32
S3 a33
SS33 a33
S3
a33
S3 a33
S3
I-隐藏状态
b2(Q3)
Q2





QM
QM
QM

QM

隐马尔可夫模型.pptx

隐马尔可夫模型.pptx

第28页/共85页
学习问题
• Baum-Welch重估计公式
• 已知X和 的情况下,t时刻为状态i,t+1时刻为状态j的后验概率
θ
ij
(t
)
i
(t
1)aij P(XT
b |
jk
θ)
j
(t
)
向前
向后
T
jl (t)
t 1 l
bˆ v(t )vk
jk
T
jl (t)
t 1 l
第29页/共85页
例如:ML估计
第10页/共85页
估值问题
• 直接计算HMM模型产生可见长度为T的符号序列X的概率
其中,
表示状态 的初始概率
假设HMM中有c个隐状态,则计算复杂度为

例如:c=10,T=20,基本运算1021次!
(1)
第11页/共85页
O(cTT )
估值问题
• 解决方案
• 递归计算
t时刻的计算仅涉及上一步的结果,以及
x1和x3统计独立,而 其他特征对不独立
第32页/共85页
相关性例子
• 汽车的状态 • 发动机温度 • 油温 • 油压 • 轮胎内气压
• 相关性 • 油压与轮胎内气压相互独立 • 油温与发动机温度相关
第33页/共85页
贝叶斯置信网
• 用图的形式来表示特征之间的因果依赖性 • 贝叶斯置信网(Bayesian belief net) • 因果网(causal network) • 置信网(belief net)
P(θi )
P(θi | X)
θi P(X | θi )
第20页/共85页
解码问题

马尔科夫模型(转载)

马尔科夫模型(转载)

隐马尔可夫模型(一)——马尔可夫模型马尔可夫模型(Markov Model)描述了一类随机变量随时间而变化的随机函数。

考察一个状态序列(此时随机变量为状态值),这些状态并不是相互独立的,每个状态的值依赖于序列中此状态之前的状态。

数学描述:一个系统由N个状态S= {s1,s2,...s n},随着时间的推移,该系统从一个状态转换成另一个状态。

Q= {q1,q2,...q n}为一个状态序列,q i∈S,在t时刻的状态为q t,对该系统的描述要给出当前时刻t所处的状态s t,和之前的状态s1,s2,...s t, 则t时刻位于状态q t的概率为:P(q t=s t|q1=s1,q2=s2,...q t-1=s t-1)。

这样的模型叫马尔可夫模型。

特殊状态下,当前时刻的状态只决定于前一时刻的状态叫一阶马尔可夫模型,即P(q t=s i|q1=s1,q2=s2,...q t-1=s j) =P(q t=s i|q t-1=s j)。

状态之间的转化表示为a ij,a ij=P(q t=s j|q t-1=s i),其表示由状态i转移到状态j的概率。

其必须满足两个条件: 1.a ij≥ 0 2.=1对于有N个状态的一阶马尔科夫模型,每个状态可以转移到另一个状态(包括自己),则共有N2次状态转移,可以用状态转移矩阵表示。

例如:一段文字中名词、动词、形容词出现的情况可以用有3个状态的y一阶马尔科夫模型M 表示:状态s1:名词状态s2:动词状态s3:形容词状态转移矩阵: s1 s2 s3A=则状态序列O=“名动形名”(假定第一个词为名词)的概率为:P(O|M) = P(s1,s2,s3,s4} = P(s1)*p(s2|s1)p(s3|s2)p(s1|s3)=p(s1)*a12*a23*a31=1*0.5*0.2*0.4=0.04在马尔可夫模型中,每一个状态都是可观察的序列,是状态关于时间的随机过程,也成为可视马尔可夫模型(Visible Markov Model,VMM)。

HMM隐马尔可夫模型在自然语言处理中的应用

HMM隐马尔可夫模型在自然语言处理中的应用

HMM隐马尔可夫模型在自然语言处理中的应用隐马尔可夫模型(Hidden Markov Model,HMM)是自然语言处理中常用的一种概率统计模型,它广泛应用于语音识别、文本分类、机器翻译等领域。

本文将从HMM的基本原理、应用场景和实现方法三个方面,探讨HMM在自然语言处理中的应用。

一、HMM的基本原理HMM是一种二元组( $λ=(A,B)$),其中$A$是状态转移矩阵,$B$是观测概率矩阵。

在HMM中,状态具有时序关系,每个时刻处于某一状态,所取得的观测值与状态相关。

具体来说,可以用以下参数描述HMM模型:- 隐藏状态集合$S={s_1,s_2,...,s_N}$:表示模型所有可能的状态。

- 观测符号集合$V={v_1,v_2,...,v_M}$:表示模型所有可能的观测符号。

- 初始状态分布$\pi={\pi (i)}$:表示最初处于各个状态的概率集合。

- 状态转移矩阵$A={a_{ij}}$:表示从$i$状态转移到$j$状态的概率矩阵。

- 观测概率矩阵$B={b_j(k)}$:表示处于$j$状态时,观测到$k$符号的概率。

HMM的主要任务是在给定观测符号序列下,求出最有可能的对应状态序列。

这个任务可以通过HMM的三种基本问题求解。

- 状态序列概率问题:已知模型参数和观测符号序列,求得该观测符号序列下各个状态序列的概率。

- 观测符号序列概率问题:已知模型参数和状态序列,求得该状态序列下观测符号序列的概率。

- 状态序列预测问题:已知模型参数和观测符号序列,求得使得观测符号序列概率最大的对应状态序列。

二、HMM的应用场景1. 语音识别语音识别是指将语音信号转化成文字的过程,它是自然语言处理的关键技术之一。

HMM在语音识别领域具有广泛应用,主要用于建立声学模型和语言模型。

其中,声学模型描述语音信号的产生模型,是从语音输入信号中提取特征的模型,而语言模型描述语言的组织方式,是指给定一个句子的前提下,下一个字或单词出现的可能性。

隐马尔科夫(HMM)模型详解及代码实现

隐马尔科夫(HMM)模型详解及代码实现

机器学习之隐马尔科夫模型(HMM)机器学习之隐马尔科夫模型(HMM)1、隐马尔科夫模型介绍2、隐马尔科夫数学原理3、Python代码实现隐马尔科夫模型4、总结隐马尔可夫模型介绍马尔科夫模型(hidden Markov model,HMM)是关于时序的概率模型,描述由一个隐藏的马尔科夫随机生成不可观测的状态随机序列,再由各个状态生成一个观测从而产生观测随机序列的过程,属于一个生成模型。

下面我们来从概率学角度定义马尔科夫模型,从一个典型例子开始:假设有4个盒子,每个盒子里面有不同数量的红、白两种颜色的球,具体如下表:盒子编号1234红球数5368白球数5742现在从这些盒子中取出T个球,取样规则为每次选择一个盒子取出一个球,记录其颜色,放回。

在这个过程中,我们只能观测到球的颜色的序列,观测不到球是从哪个盒子中取出来的,即观测不到盒子的序列,这里有两个随机序列,一个是盒子的序列(状态序列),一个是球的颜色的观测序列(观测序列),前者是隐藏的,只有后者是可观测的。

这里就构成了一个马尔科夫的例子。

定义是所有的可能的状态集合,V是所有的可能的观测的集合:其中,N是可能的状态数,M是可能的观测数,例如上例中N=4,M=2。

是长度为T的状态序列,是对应的观测序列:A是状态转移概率矩阵:其中, 是指在时刻处于状态的条件下在时刻转移到状态的概率。

B是观测概率矩阵:其中, 是指在时刻处于状态的条件下生成观测的概率。

是初始状态概率向量:其中, 是指在时刻=1处于状态的概率。

由此可得到,隐马尔可夫模型的三元符号表示,即称为隐马尔可夫模型的三要素。

由定义可知隐马尔可夫模型做了两个基本假设:(1)齐次马尔科夫性假设,即假设隐藏的马尔科夫链在任意时刻的状态只和-1状态有关;(2)观测独立性假设,观测只和当前时刻状态有关;仍以上面的盒子取球为例,假设我们定义盒子和球模型:状态集合: = {盒子1,盒子2,盒子3,盒子4}, N=4观测集合: = {红球,白球} M=2初始化概率分布:状态转移矩阵:观测矩阵:(1)转移概率的估计:假设样本中时刻t处于状态i,时刻t+1转移到状态j 的频数为那么转台转移概率的估计是:(2)观测概率的估计:设样本中状态为j并观测为k的频数是那么状态j观测为k的概率, (3)初始状态概率的估计为S个样本中初始状态为的频率。

隐马尔可夫模型(有例子-具体易懂)课件

隐马尔可夫模型(有例子-具体易懂)课件
解决问题一—前向算法
定义前向变量为:
“在时间步t, 得到t之前的所有明符号序列, 且时间 步t的状态是Si”这一事件的概率, 记为 (t, i) = P(o1,…,ot, qt = Si|λ)

算法过程
HMM的网格结构
前向算法过程演示
t=1
t=2
t=3
t=4
t=5
t=T
t=6
t=7
问题 1 – 评估问题
给定
一个骰子掷出的点数记录
124552646214614613613666166466163661636616361651561511514612356234
问题
会出现这个点数记录的概率有多大? 求P(O|λ)
问题 2 – 解码问题
给定
一个骰子掷出的点数记录
124552646214614613613666166466163661636616361651561511514612356234
HMM的三个基本问题
令 λ = {π,A,B} 为给定HMM的参数, 令 O = O1,...,OT 为观察值序列,则有关于 隐马尔可夫模型(HMM)的三个基本问题: 1.评估问题: 对于给定模型,求某个观察值序列的概率P(O|λ) ; 2.解码问题: 对于给定模型和观察值序列,求可能性最大的状态序列maxQ{P(Q|O,λ)}; 3.学习问题: 对于给定的一个观察值序列O,调整参数λ,使得观察值出现的概率P(O|λ)最大。
5点
1/6
3/16
6点
1/6
3/8
公平骰子A与灌铅骰子B的区别:
时间
1
2
3
4
5
6
7
骰子
A
A

多变量隐马尔可夫模型

多变量隐马尔可夫模型

多变量隐马尔可夫模型多变量隐马尔可夫模型(Multivariate Hidden Markov Model,简称MHMM)是一种常用的统计模型,用于描述多个随机变量之间的概率关系。

它是隐马尔可夫模型(Hidden Markov Model,简称HMM)在多维空间中的扩展,广泛应用于语音识别、自然语言处理、生物信息学等领域。

隐马尔可夫模型是一种用来描述状态序列和观测序列之间关系的概率模型。

在传统的HMM中,观测序列是一维的,即每个时刻只观测到一个状态。

而在多变量隐马尔可夫模型中,观测序列是多维的,即每个时刻观测到多个状态。

这种模型能够更准确地捕捉到多个变量之间的相关性,提高模型的表达能力和预测准确度。

在多变量隐马尔可夫模型中,有两个基本假设:观测序列和状态序列之间的条件独立性假设,以及状态转移概率和观测概率的马尔可夫性假设。

根据这两个假设,可以通过对观测序列的统计推断来估计模型的参数,进而进行状态预测和序列生成。

多变量隐马尔可夫模型由三个要素组成:初始状态概率向量、状态转移矩阵和观测概率矩阵。

初始状态概率向量表示模型在初始时刻各个状态的概率分布;状态转移矩阵表示模型在各个时刻状态之间转移的概率;观测概率矩阵表示模型在各个状态下观测到各个观测值的概率分布。

通过这些要素,可以计算出给定观测序列的概率,进而进行状态预测和序列生成。

在实际应用中,多变量隐马尔可夫模型常用于语音识别和自然语言处理。

在语音识别中,观测序列可以表示为一段语音信号的频谱特征序列,状态序列可以表示为对应的语音单元序列(如音素或音节);在自然语言处理中,观测序列可以表示为一段文本的词向量序列,状态序列可以表示为对应的词性序列。

通过训练多变量隐马尔可夫模型,可以提高语音识别和自然语言处理的准确性和效率。

多变量隐马尔可夫模型是一种强大的统计模型,能够描述多个随机变量之间的概率关系。

它在语音识别、自然语言处理、生物信息学等领域有着广泛的应用。

隐马尔科夫模型(HMM)详解

隐马尔科夫模型(HMM)详解

马尔科夫过程马尔科夫过程可以看做是一个自动机,以一定的概率在各个状态之间跳转。

考虑一个系统,在每个时刻都可能处于N个状态中的一个,N个状态集合是{S1,S2,S3,...S N}。

我们如今用q1,q2,q3,…q n来表示系统在t=1,2,3,…n时刻下的状态。

在t=1时,系统所在的状态q取决于一个初始概率分布PI,PI(S N)表示t=1时系统状态为S N的概率。

马尔科夫模型有两个假设:1. 系统在时刻t的状态只与时刻t-1处的状态相关;〔也称为无后效性〕2. 状态转移概率与时间无关;〔也称为齐次性或时齐性〕第一条详细可以用如下公式表示:P(q t=S j|q t-1=S i,q t-2=S k,…)= P(q t=S j|q t-1=S i)其中,t为大于1的任意数值,S k为任意状态第二个假设那么可以用如下公式表示:P(q t=S j|q t-1=S i)= P(q k=S j|q k-1=S i)其中,k为任意时刻。

下列图是一个马尔科夫过程的样例图:可以把状态转移概率用矩阵A表示,矩阵的行列长度均为状态数目,a ij表示P(S i|S i-1)。

隐马尔科夫过程与马尔科夫相比,隐马尔科夫模型那么是双重随机过程,不仅状态转移之间是个随机事件,状态和输出之间也是一个随机过程,如下列图所示:此图是从别处找来的,可能符号与我之前描绘马尔科夫时不同,相信大家也能理解。

该图分为上下两行,上面那行就是一个马尔科夫转移过程,下面这一行那么是输出,即我们可以观察到的值,如今,我们将上面那行的马尔科夫转移过程中的状态称为隐藏状态,下面的观察到的值称为观察状态,观察状态的集合表示为O={O1,O2,O3,…O M}。

相应的,隐马尔科夫也比马尔科夫多了一个假设,即输出仅与当前状态有关,可以用如下公式表示:P(O1,O2,…,O t|S1,S2,…,S t)=P(O1|S1)*P(O2|S2)*...*P(O t|S t) 其中,O1,O2,…,O t为从时刻1到时刻t的观测状态序列,S1,S2,…,S t那么为隐藏状态序列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
隐马尔可夫模型原理图解
Hidden Markov Models
张庆科
山东大学高性能计算与大数据处理学科组
High Performance Computing and Big Data Processing Group
提 纲
1 2
Markov Model Model Hidden Markov
隐马尔科夫模型的三个问题
t=1 系统状态数目(N=3)
t=2
t=3
t=4
t=5
S1
a11 a13 a12
S1
a11 a12
S1
a11 a12
S1
a11 a12
S1
S1 S2 S3


a21 S2 a22 a23 a31
S3
a21 S2 a22 a23
a21 S2 a22 a23
a21 S2 a22 a23
S2

a32 a33
a1N a2 N aNN
E

a0N
aN1 aN2 (4) a 1 04 SN S3 aNN S 4 a05
1 (5)
O1 S5 O 2
a32 2 (4) SN a33
S4
3 (4)
SN
a32T (4) a33 S SN
4
aT4
aT5
BN *M
2 (5)
S5 O 3
3 (5)
S5 OT-1
T (5)
S5 OT
b11 12 1M b b b2 M 21 22 bN 1 bN 2 bNM
…S 2…S 3Leabharlann S4a12T (2)
S2
aT1
AN *N
aT2 a21 z S 3 (3) S2 a22 T (3) S 2 2 aT3 a23
S3
a11 a12 a a 21 22 aN 1 aN 2
A转移概率矩阵

S1 1
S1
N
π
S2 2
S2
AN *N
a11 a12 a aS2 21 22 aN 1 aN 2
A转移概率矩阵
a1N … S2 a2 N aNN
S2 2
a23
S3 S3
a31
… …
Q1
观 测 状 态
Q2
QM QM
t=1

SN
aN 1
Q Q1 1 Q2

SN
Q1 Q2

SN
状态序列≠观测序列
Q1 Q2

SN

SN

SN
H M M
… … … …
Q Q1 1 Q2
Q1 Q2 一般随机过程 观察状态序列


QM
t=2

QM
t=3

QM
t=T-1

QM
t=T
后 向 算 B生成概率矩阵 法 b b
P(O | )
1 (k ) a0k bk (o1 )
8

问题本质:计算产生观测序列O的所有可能的状态序列对应的概率之和
QST





Pr(O,Q | )= Pr(O, 路径Q |)+Pr(O, 路径Q |)+
t=1 t=2
aN1 a04
1 (3)
2 (3)
S S3 2
3 (3)
S3 S2
T (3)
S3
S S3 2
z S S 2 2
a3-0 a4-0
a11 a12 a a 21 22 aN 1 aN 2
E
A转移概率矩阵
qt
t时刻
q1
T=1
q2
T=2
q3
T=3

qt-1
t-1时刻
qt
t 时刻
3
山东大学高性能计算与大数据处理学科组
3. 隐马尔可夫模型
t=1 t=2 t=3 t=T-1 t=T
S1
隐 藏 状 态
S1 S2
S1 S2
S1 S2 S3
… …
S1 S2 S3
S1 S1 2 S3 马儿科夫过程 隐藏状态序列
S2 S3
1 (N)
SN
t 1 (N)
SN
t (N)
……
bk (ot )
a N 0
SN T (N)
O1
Ot-1
Ot
……
OT
P(O| ) T (k) ak 0
k 1 N
前进
N t (k ) t 1 (l ) alk bk (ot ) l 1
St=T-1 1
S1t=T
S1
a01 a02
1 (2) S
S2
1
2 (2)
S2
S1
3 (2)
a01


S2
S1 1
T (2) S
S2
1
a1-0 a2-0
AN *N
a01 a π 02 viterbi 算法 a0 N
a02
B
S2
a03
概率计算问题
路径预测问题
参数学习问题
3
总结
1
山东大学高性能计算与大数据处理学科组
1马尔可夫模型
马尔可夫模型是数学中具有马尔可夫性质的离散时间随机过程,是用于描述随机
过程统计特征的概率模型。
t=1 t=2 t=3 t=T-1 t=T
S1 S1 S2 S2 S3 S3 S2 S1 S1 S2 S3
b2(Q2) O2
II-观察序列
Q3

从某时刻状态到下时刻的状态按一定概率转移

下时期状态只取决于当前时期状态和转移概率
aij P(qt S j | qt 1 Si )
qt-1
t-1时刻
5
P(qt S j | qt 1 Si , qt 2 Sk , ) P(qt S j | qt 1 Si )
a10
S1
1 (1)
…… ……
S1
t 1 (1)
a1k ak k
S1
t (1)
…… ……
S1
a01
0

Sk


t (k )
a0k
a0 N
1 (k )
Sk

Sk
Sk
ak 0

0
P(O | )

1 (k ) a0k bk (o1 )

SN

……
bk (o1 )
aN k
B生成概率矩阵




SN
SN
OT

HMM模型五元组表示:λ =( N, M, π , A, B)用来描述HMM,或简写为 λ =(π , A, B)
6




OM

山东大学高性能计算与大数据处理学科组
提 纲
1 2
Hidden Markov Model 隐马尔科夫模型的三个问题
概率计算问题
路径预测问题
T (N)
Ot
后退
N
Ot+1
OT
t (k ) ak l bl (ot 1 ) t 1 (l )
l 1
T (k ) ak 0 bk (oT )
10
山东大学高性能计算与大数据处理学科组
提 纲
1 2
Hidden Markov Model 隐马尔科夫模型的三个问题
概率计算问题
参数学习问题
3
总结
7
山东大学高性能计算与大数据处理学科组
1. 隐马尔可夫模型-全概率计算 问题1:给定观察序列O=O1,O2, …,OT,以及模型λ=(π,A,B),计算P(O|λ)?
t=1
Π:初始概率向 量
1 (1)
t=2
2 (1)
t=3
3 (1)
S1
t=T-1
T (1)
t=T

4
山东大学高性能计算与大数据处理学科组
4. 隐马尔可夫模型(Hidden Markov Models,HMM)
一阶隐马尔可夫模型(Hidden Markov Models)图解
t=1
转移概率
t=2
t=3
t=4
t=5
S1
a11 a13 a12
S1
a11 a12
S S1 1
a11 a12
S1 1
a11 a12
山东大学高性能计算与大数据处理学科组
2. 概率计算问题:前向算法(Forward Algorithm) 问题1:给定观察序列O=O1,O2, …,OT,以及模型λ=(π,A,B),如何计算P(O|λ)? 初始化阶段(t = 1)
1
中间递归阶段(t = 2,…,T)
t-1 t T
结束阶段
T (1)
前进
N=5, T=100, => 计算量3000
9
山东大学高性能计算与大数据处理学科组
3. 概率计算问题:后向算法(Forward Algorithm) 问题1:给定观察序列O=O1,O2, …,OT,以及模型λ=(π,A,B),如何计算P(O|λ)? 结束阶段
1
中间递归阶段(t = T-1,…, 2,1)
相关文档
最新文档