汽包水位调节

汽包水位调节
汽包水位调节

汽包水位运行分析

汽包水位是锅炉正常运行中最主要的监视参数之一。水位过高,蒸汽空间缩小将会引起蒸汽带水,使蒸汽品质恶化,以致在过热器管内产生盐垢沉积,使管子过热,金属强度降低而发生爆破;满水时蒸汽大量带水,将会引起管道和汽机内产生严重的水冲击,造成设备的损坏。水位过低,将会引起水循环的破坏,使水冷壁管超温过热;严重缺水时,还可能造成更严重的设备损坏事故。因此加强对水位的监视和调整至关重要。

我厂#8锅炉汽包的主要参数如下:

设计压力:20MPa,总长:26983mm,214只Φ292mm轴流式分离器,中心线标高:71000mm,零水位在中心线上位置: 51mm 。

汽包水位的控制范围: 正常值:±51mm,报警值:±100mm,跳闸值(MFT): +250/-365mm。

1、影响汽包水位变化的因素

锅炉在运行中,水位是经常变化的。引起水位发生变化的原因主要是锅炉的外扰和内扰。当出现外扰和内扰时,将使蒸发设备的物质平衡关系(即蒸发量与给水量之间的平衡关系)发生破坏,或者工质状态发生变化(当锅炉压力变化时,水和蒸汽的比容发生变化),从而造成汽包水位发生变化。汽包水位变化的剧烈程度,不仅与扰动量的大小有关,而且还与扰动速度有关。

1.1 锅炉负荷变化的影响

汽包水位的变化与锅炉负荷(蒸发量)的变化有密切关系,因为蒸汽是从给水进入锅炉以后逐渐受热汽化而产生的。当负荷变化时,蒸发受热面中水消耗量发生变化,必然引起汽包水位的变化。当负荷增加时,如果给水量不变或增加不及时,则蒸发设备中的水量逐渐被消耗,其最终结果将使水位下降;反之,水位上升。所以水位变化的幅度反映了锅炉蒸发量与给水量之间平衡关系相称程度,如给水量大于蒸发量,则水位上升;给水量小于蒸发量,则水位下降,只有给水量等于蒸发量(排污及阀门泄漏除外)即蒸发设备中保持物质平衡时,水位才能保持稳定。

当外界负荷突然增加,将引起锅炉汽压骤降,汽包水位瞬间升高(虚假水位),这时为了恢复汽压而过分加强燃烧,则会引起蒸汽带水,恶化蒸汽品质;反之,

如果外界负荷突减,则引起锅炉汽压骤升,汽包水位骤减,如此时大大减弱燃烧,则促使水位更低,若安全门动作又会使水位升高。所以,当负荷骤变时,必须严密监视水位,预防水位事故的发生。

1.2 燃烧工况变化的影响

燃烧工况的改变对水位的影响也很大。在外界负荷及给水量不变的情况下,当燃料量突然增加,水位暂时升高而后下降;燃料突减,水位暂时降低而后升高,这是由于燃烧工况的改变使炉内放热量改变,而引起工质状态发生变化的缘故。当燃烧强化时,炉水吸热量增加,汽泡增多,体积膨胀,而使水位暂时升高。由于产生的蒸汽量不断增加,使汽压上升,饱和温度也相应地提高了,炉水中汽泡数量又随之减少,水位又下降。因此水位波动的大小,取决于燃烧工况改变的强烈程度以及运行调节的及时性。

1.3 给水压力的变化

给水压力变化时,将使给水流量发生变化,从而破坏了给水量与蒸发量的平衡,引起水位变化。当给水压力增加时,给水流量增大,水位上升;给水压力下降时,给水流量减少,水位下降。

给水压力波动过大,将使给水自动调节器失调。水压过低,则汽包进水困难,若给水压力低于汽包压力,给水将无法进入汽包,会造成锅炉严重缺水。给水泵故障、给水管道破裂、给水门故障等均能使给水压力降低,故应对给水压力和给水流量严加监视,注意控制给水流量与蒸汽流量相适应。

1.4锅炉汽水管泄漏或排污阀不严密

锅炉受热面管损坏(如炉管爆破、省煤器泄漏等),将消耗大量的蒸汽和水,如果负荷过大给水不能满足要求时,将造成水位的逐渐下降,如果损坏严重将会造成锅炉严重减水。锅炉下联箱放水门不严或连续排污门不严时,泄漏大量的炉水,也将会造成汽包水位下降,致使汽包发生缺水事故。

1.5 炉水品质对水位变化的影响

当锅炉给水品质不合格长期运行时,或化学监督不当,炉水处理或加药不当,以及锅炉排污不及时等,将使得炉水含盐量过大,不但会造成蒸汽的污染,而且会在水冷壁受热面上结垢,甚至会腐蚀受热面,同时由于炉水中的油脂、悬浮物或含盐浓度过高时,蒸汽泡的表面含有杂质而不易被撕破,在汽包水面上产生大

量泡沫,使汽包水位急剧升高并产生强烈的波动现象。

1.6汽包水位计不准确

若水位计不准确,则在运行中将无法判断汽包水位的真实性。若水位表汽连通管堵塞或泄漏时,则水位表指示偏高;若水位表水连通管堵塞或泄漏时,则水位表指示偏低或不动作。另外电接点水位计电源中断或云母水位计泄漏等均影响水位计的准确性,易造成误判断。所以对水位计的监视、校对、冲洗、维护特别重要。发现水位表有缺陷,应及时消除,经常保持各水位表的指示正确、动作灵活。

1.7给水自动失灵运行人员手动调节不及时

运行中由于个别点超限产生坏点、操作不当致使给水压力过高、给水泵并列运行时发生RB现象,运行中的给水泵负荷过高以及给水自动调节系统故障等均会引起给水自动失灵,在手动调节时,对水位的变化趋势及给水量与蒸汽量的匹配重视不够,使得给水量猛增或猛减,最后导致水位的上下波动。

2、水位调节

2.1 启机过程中对汽包水位的控制

2.1.1 炉上水及点火初期的水位控制

锅炉上水前应将电动给水泵启动,在冷态下使给水泵处于打循环状态,根据锅炉汽包的温度情况,将除氧器投加热,在除氧器水温不断提高的同时,电泵本体温度在不断上升,以达到暖泵的目的。当除氧器水温与汽包壁温差小于50℃时,可向锅炉上水,为防止汽包产生壁温差,上水速度不应过快,空炉上水一般控制在2-4小时,当汽包水位上至-50mm(点火水位)时停止上水,关闭给水门,电泵打循环将电泵转速控制在2100rpm。

锅炉点火后随着油枪数量的增多,炉内的热负荷在不断增加,炉水温度在升高,水的体积在不断扩大,当炉水温度达100℃时,水中开始产生汽泡,炉水体积开始膨胀,水位开始升高,此时应用事故放水或连排对水位进行控制,但水位不应保持过低,宜保持高水位运行,这样将有利于控制汽包的壁温差不致过大。在汽轮机冲转前,随着锅炉压力的不断升高,由于锅炉受热面的疏水及主汽管道的疏水将使蒸汽不断损耗,水位开始有所下降,此时应根剧汽包水位的变化,用省煤器入口阀进行上水。

2.1.2 汽机冲转、并网、低负荷暖机时水位控制

当汽轮机冲转并网后,由于蒸汽经汽轮机开始做功,蒸汽量在不断增加,因此所需给水量开始逐渐增多,因此应根据汽包水位、主汽压力的变化在保证合适的电泵转速的情况下及时开大省煤器入口调阀,在汽包水位稳定的情况下将该阀投入单冲量给水自动控制。根据省煤器入口调阀的开度及时改变给水泵勺管的开度以适应汽包压力的变化。

2.2 机组发生RB时对汽包水位的控制

2.2.1三台磨运行时一台磨跳闸机组发生RB

当机组正常运行中一台磨跳闸时如果机组负荷不高(250MW以下)时,此种情况对汽包的水位影响一般不大,此时应加强对水位自动的监视,并根据给水情况与汽包水位的变化加强燃烧调整,如果水位自动良好应保持水位处于自动调整状态。

当机组负荷较高时(250MW以上)一台磨跳闸,机组此时处于快减负荷状态,燃料量的突然减小(汽泡破灭)可能造成汽包水位下降,如果水位自动良好,应及时将水位设定值提高,但当水位有所回升时必须立即将水位设定值降低(因为此时的水位是虚假水位),减少给水量以防汽包满水。

2.2.2当锅炉发生RB半侧运行时对水位的控制

当锅炉运行中的一台风机跳闸发生RB时,跟据情况应及时投油稳燃,将机组的出力减至一台风机所能承受的最大负荷,此时密切注意水位的变化,一般情况水位先低而后升高,因此当水位自动好用的情况下注意当水位回升时及时将水位设定值调低,以防水位自动过调导致水位升高。

2.3 当受热面漏泄时对水位的控制

机组运行中由于设计、制造、安装以及受热面超温等各因素造成受热面泄漏时,如炉管爆破,省煤器漏泄,过热器、再热器及管道漏泄等均会造成蒸汽量与给水量的不平衡导致汽包水位的变化。此时如能维持汽包水位可适当降低参数运行,等待停炉时间。但如不能维持汽包水位,有可能造成汽包减水时必须立即停炉。

3 结束语

影响汽包水位变化的因素很多,但只要我们能够认真监视水位的变化,及时

发现问题并迅速采取措施,一般情况下能够将水位控制在规定的范围内,只有保证汽包水位在正常的范围内运行机组的安全方能得到保证。

虚假水位是由于汽包内压力变化造成的。汽包内部压力又是随蒸汽负荷变化及锅炉工况而变化的,如当锅炉燃烧强度未变,而负荷突然增加,需从汽包内多取出一部分蒸汽量,水位应下降,但因此时燃料未及时增加,势必引起汽包压力下降,使整个汽水混合物的体积增大,结果反使水位升高了。这与物质量平衡对水位的影响规律相反,故称为虚假水位。

待燃料增加后,压力才能逐步恢复额定值,假水位现象才逐步消除。虚假水位有使给水量向与负荷变化方向相反向变化的趋势,造成错误调节动作。

锅炉汽包水位控制系统设计-毕业论文

摘要 汽包水位是影响锅炉安全运行的一个重要参数,汽包水位过高或者过低的后果都非常严重,因此对汽包水位必须进行严格控制。PLC技术的快速发展使得PLC 广泛应用于过程控制领域并极提高了控制系统性能,PLC已经成为当今自动控制领域不可缺少的重要设备。 本文从分析影响汽包水位的各种因素出发,重点分析了锅炉汽包水位的“假水位现象”,提出了锅炉汽包水位控制系统的三冲量控制方案。按照工程整定的方法进行了PID参数整定,并进行了仿真研究。根据控制要求和所设计的控制方案进行硬件选型以及系统的硬件设计,利用PLC编程实现控制算法进行系统的软件设计,最终完成PLC在锅炉汽包水位控制系统中应用。 关键词:汽包水位、三冲量控制、PLC、PID控制

ABSTRACT The steam drum water level is a very important parameter for the boiler safe operation, both high and low steam drum water level may lead to extremely serious consequence; therefore it must be strictly to be controlled. With the rapid development of PLC technology, it can widely be applied to the process control domain and enhances the performance of control system enormously. PLC has already become the essential important equipment in automatic control domain. Based on the analysis of all kinds of factors which influence steam drum water level, “unreal water level phenomenon”is analyzed specially, and three impulses control plan for steam drum water level control system is proposed. PID parameters are regulated by engineering regulation method, and simulation study is done. According to the needs of control, the selection of control requirements hardware and system hardware design as well as system software design are carried out. Finally the application of PLC in boiler steam drum water control system is completed. Key words:Steam drum water level、Three impulses control、PLC、PID control

锅炉汽包水位测量问题分析及技术措施

浙江省火电厂锅炉汽包水位测量问题分析及改进 孙长生1,蒋健1,刘卫国2,丁俊宏1,王蕙1 (1.浙江省电力试验研究院,杭州市,310014;2.国华浙能发电有限公司,浙江省宁波 市,315612) 摘要:汽包水位是表征锅炉安全运行的重要参数。由于配置、安装、运行及维护不当等因素,导致汽包水位测量系统存在测量值与实际值不符的情况,影响机组安全、经济、稳定运行。本文对浙江省火电厂汽包水位测量、水位保护投入状况进行现场调查,总结存在的问题,分析问题产生的原因,探讨并提出消除或减少这些问题的技术改进措施,供同行参考。 关键词:汽包水位测量;偏差分析;技术措施;锅炉;水位保护;水位计 doi:10.3969/j.issn.1000-7229.2010.10.000 Analysis of Running Status and Research of T echnical Proposal to the Drum Water Level Measurement Systems of Zhejiang Fired Power Plant SUN Chang-sheng1,JIANG Jian1,LIU Wei-guo2,WANG Huo (1.Zhejiang Provincial Electric Power Test and Research Institute,Hangzhou 310014,China;2.Zhejiang Guohua Zheneng Power Generation Co. Ltd.,Ningbo 315612,Zhejiang Province, China) ABSTRACT:Because of many reasons during installment, operation and maintenance, the drum water level measurement systems often have been found the difference between the observed value and the actual value, that seriously affectes unit's stable operation.This article has investigated many power plants in the Zhejiang Province closely, surveyed the situation of the drum water level measurement and the water level protection conditions of Zhejiang fired power plant, and has gived useful suggestion.of the reference water column. KEYWORDS:drum water level measurement;warp analysis;technical proposal;boiler;water level protection;water level meter 0 引言 汽包水位是表征锅炉安全运行的重要参数,其测量的准确性与其偏差问题(以下简称“水位测量问题”)的解决,是一直困扰火电机组热工测量与安全、经济运行的难题。针对水位测量问题,在浙江省内火电厂进行了专题调查,就存在的水位测量问题进行了深入的专题探讨,提出了提高汽包水位测量系统运行可靠性的改进意见,供同行参考。 1 存在的主要问题 1.1 模拟量测量信号系统存在的问题 目前浙江省蒸发量为400 t/h及以上的汽包炉共有57台,这些锅炉运行中模拟量测量信号系统存在的主要问题包括以下几方面: (1)测量显示偏差。不同测量变送器显示的示值不一致,两侧显示偏差高的超过100 mm,即使是同侧偏差,有时也高达几十mm,且随着机组负荷的变化而不同,难以找出其变化规律。 (2)逻辑故障判断功能不完善。一些机组不具备《防止电力生产重大事故的二十五项重点要求》(请核实是否修改正确)中的汽包水位信号故障后的逻辑判断自动转换功能、水位和补偿用的汽包压力信号坏信号判别功能。 (3)共用测量孔。由于汽包上给出的取样孔不足,因此存在共用取样孔和平衡容器情况,未能做到全程独立。

锅炉汽包水位的变化及控制

锅炉汽包水位的变化及控制 [摘要]对影响汽包水位变化的因素进行了全面分析,针对机组在启动过程中及机组事故过程中水位的变化特点,提出了合理的汽包水位控制方案,从而进一步保证了机组的运行安全。 【关键词】汽包水位;给水流量;蒸汽量;自动调整 前言 沙角A电厂#4、5机组的锅炉为亚临界压力一次中间再热控制循环汽包炉,正压直吹式制粉系统,锅炉最大连续蒸发量1025T/H,是上海锅炉厂引进美国CE公司技术生产的。锅炉采用两台汽动给水泵及一台电动给水泵上水,给水系统流程如下: 汽包水位是锅炉正常运行中最主要的监视参数之一。水位过高过低都可能造成设备损坏事故,影响机组安全。运行中,必须加强对汽包水位的监视和调整。我厂#4、5炉汽包水位的控制范围:正常值:0±50mm,报警值:+127/-178mm,跳闸值(MFT): +320/-380mm。 1. 影响汽包水位变化的因素 锅炉在运行中,汽包水位是经常变化的,引起汽包水位发生变化的原因主要是锅炉的外扰和内扰。当出现外扰和内扰时,将使蒸发设备的物质平衡关系(即蒸发量与给水量之间的平衡关系)发生破坏,或者工质状态发生变化(当锅炉压力变化时,水和蒸汽的比容发生变化),从而造成汽包水位发生变化。汽包水位变化的剧烈程度,不仅与扰动量的大小有关,而且还与扰动速度有关。影响汽包水位变化因素主要有: 1.1锅炉负荷的变化汽包水位的变化与锅炉负荷(蒸发量)的变化有密切关系,因为蒸汽是从给水进入锅炉以后逐渐受热汽化而产生的。当负荷变化时,蒸发受热面中水消耗量发生变化,必然引起汽包水位的变化。当负荷增加时,如果给水量不变或增加不及时,则蒸发设备中的水量逐渐被消耗,其最终结果将使水位下降;反之,水位上升。所以水位变化的幅度反映了锅炉蒸发量与给水量之间平衡关系相称程度。当外界负荷突增或突减时,会引起锅炉汽压骤变,汽包水位会出现虚假水位,若安全门动作又会使水位升高。所以,当负荷骤变时,必须严密监视水位,预防水位事故的发生。 1.2燃烧工况的变化燃烧工况的改变对水位的影响也很大。在外界负荷及给水量不变的情况下,当燃料量突然增加,水位暂时升高而后下降;燃料突减,水位暂时降低而后升高。因此,水位波动的大小取决于燃烧工况改变的强烈程度以及运行调节的及时性。 1.3给水压力的变化给水压力变化时,将使给水流量发生变化,从而破坏了给水量与蒸发量的平衡,引起水位变化。给水压力波动过大,将使给水自动调节器失调。水压过低,则汽包进水困难,若给水压力低于汽包压力,给水将无法进入汽包,会造成锅炉严重缺水。给水泵故障、给水管道破裂、给水门故障等均能使给水压力降低,故应对给水压力和给水流量严加监视,注意控制给水流量与蒸汽流量相适应。 1.4锅炉汽水管泄漏或下联箱放水门误开锅炉受热面管损坏(如水冷壁管泄漏、省煤器泄漏等),将消耗大量的蒸汽和水,如果负荷过大给水不能满足要求时,将造成汽包水位的逐渐下降,如果损坏严重将会造成锅炉严重缺水。锅炉下

汽包水位三冲量给水调节的工作原理

汽包水位三冲量给水调节系统 1、所谓冲量,是指调节器接受的被调量的信号; 2、汽包水位三冲量给水调节系统由汽包水位测量筒及变送器、蒸汽流量测量装置及变送器、给水流量测量装置及变送器、调节器、执行器等组成; 3、在汽包水位三冲量给水调节系统中,调节器接受汽包水位、蒸汽流量和给水流量三个信号,如图所示。其中,汽包水位H是主信号,任何扰动引起的水位变化,都会使调节器输信号发生变化,改变给水流量,使水位恢复到给定值;蒸汽流量信号qm.S是前馈信号,其作用是防止由于“虚假水位”而使调节器产生错误的动作,改善蒸汽流量扰动时的调节质量;蒸汽流量和给水流量两个信号配合,可消除系统的静态偏差。当给水流量变化时,测量孔板前后的差压变化很快并及时反应给水流量的变化,所以给水流量信号qm.w作为介质反馈信号,使调节器在水位还未变化时就可根据前馈信号消除内扰,使调节过程稳定,起到稳定给水流量的作用。 4、在大、中型火力发电厂锅炉汽包水位的变化速度比较快,“虚假水位”现象较为严重,为了达到生产过程中对汽包水位调节的质量要求,因而广泛采用了三冲量汽包水位调节系统。

5、关于测量信号接入调节器的极性说明:当信号值增大时要求开大调节阀,该信号标以“”号;反之,当信号值减小时要求关小调节阀,该信号标以“-”号。在给水调节系统中,当蒸汽流量信号增大时,要求开大调节阀,该信号标以“”号;给水流量信号增大时,要求关小调节阀,该信号标以“-”号;当汽包水位升高时,差压减小,水位测量信号减小,要求关小调节阀,则该信号标以“”号。 直流炉没有三冲量啊,没有汽包,在直流状态下给多少水就产生多少汽的,是通过中间点温度来调整锅炉燃水比的! 单冲量三冲量切换条件:一般用给水流量来划分,小于200t/h(30%,我们300MW机组就是这样)时为单冲量,大于则为三冲量 为啥要到30%负荷时,电泵由单冲量切到三冲量啊?要防止汽包的虚假水位。在低负荷的时候,单冲量主要是给系统上水,在高负荷时,给水的任务就是维持汽包水位。

汽包水位控制原则及调整

汽包水位控制原则及调整 一、汽包水位调节原则 1在负荷较低时,主给水电动门未开,由给水旁路阀控制汽包水位。当主蒸汽达到要求流量,全开主给水电动门,全关给水旁路阀。反之,当主蒸汽减少到要求流量且持续一定时间后,将旁路给水阀投自动,关主给水电动门,给水由主路切换到旁路。 2锅炉汽包水位的调节是通过改变主给水调节阀的开度或给水泵的转速,在机组负荷小于25%时,采用单冲量调节;当机组负荷大于25%后,给水切换为三冲量调节,此时通过控制汽泵转速控制汽包水位,电泵备用。单冲量,三冲量调节器互为跟踪,以保证切换无扰。 3锅炉正常运行中,汽包水位应以差压式水位计为准,参照电接点水位计和双色水位计作为监视手段,通过保持给水流量,减温水流量和蒸汽流量之间的平衡使汽包水位保持稳定。 4为了保证汽包水位各表计指示的正确性,每班就地对照水位不少于一次,同类型水位计指示差值≯30mm。 5两台汽动给水泵转速应尽可能一致,负荷基本平衡。 6两台汽动给水泵及一台电动给水泵均可由CCS自动调节水位,正常情况下汽包水位调节由自动装置完成,运行人员应加强水位监视。 7当汽包水位超过正常允许的变化范围,且偏差继续增大时应及时将自动切至手动方式运行。手动调整时幅度不可过大,应防止由于大幅度调节而引起的汽包水位大幅度波动和缺、满水事故。 8经常分析主蒸汽流量、给水流量、主汽压力变化规律,发现异常及时处理。 二、遇有下列情况时应注意水位变化(必要时采用手动调节) 1给水压力、给水流量波动较大时; 2负荷变化较大时; 3事故情况下; 4锅炉启动、停炉时; 5给水自动故障时; 6水位调节器工作不正常时; 7锅炉排污时; 8安全门起、回座时; 9给水泵故障时; 10并泵及切换给水泵时; 11锅炉燃烧不稳定时。 三、给水控制系统(CCS控制) 1本机组装有两台50%汽动调速给水泵和一台30%电动调速泵。

锅炉汽包水位控制系统(过程控制仪表课程设计)

过程控制仪表课程设计 题目锅炉汽包水位控制系统 指导教师高飞燕 班级自动化071 学号 20074460107 学生姓名丁滔滔 2011年1月5号

附录:仪表配接图 (20) 锅炉汽包水位控制系统 1.系统简介: 控制系统一般由以下几部分组成 图1 自动控制系统简易图 锅炉水位系统如下图:

其单位阶跃响应图如下:

图3 蒸汽流量干扰下水位阶跃曲线 通过电容式液位计将检测来的液位信号变送给成标准信号,再输送给控制器,调节器再通过执行机构和阀来控制进水量,从而达到自动控制锅炉水位。 2.锅炉控制系统: 2.1锅炉: 锅炉是火力发电厂中主要设备之一。它的作用是使燃料在炉膛中燃烧放热,井将热量传给工质,以产生一定压力和温度的蒸汽,供汽轮发电机组发电。电厂锅炉与其他行业所用锅炉相比,具有容量大、参数高、结构复杂、自动化程度高等特点。 2.2过热器和再热器: 蒸汽过热器是锅炉的重要组成部分,它的作用是将饱和蒸汽加热成为具有一定温度的过热蒸汽,并要求在锅炉负荷或其他工况变动时,保证过

热气温的波动处在允许范围内。 提高蒸汽初压和初温可提高电厂循环热效率,但蒸汽初温的进一步提高受到金属材料耐热性能的限制。蒸汽初压的提高随可提高循环热效率,但过热蒸汽压力的进一步提高受到汽轮机排气湿度的限制,因此为了提高循环热效率及降低排气湿度,可采用再热器。通常,再热蒸汽压力为过热蒸汽压力的20%左右,再热蒸汽温度与过热蒸汽温度相近。 过热器和再热器内流动的为高温蒸汽,其传热性能差,而且过热器和再热器又位于高烟温区,所以管壁温度较高。如何使过热器和再热器管能长期安全工作是过热器和再热器设计和运行中的重要问题。 在过热器和再热器的设计及运行中,应注意下列问题: ⑴运行中应保持汽温的稳定,汽温波动不应超过±(5~10)℃。 ⑵过热器和再热器要有可靠的调温手段,使运行工况在一定范围内变化时能维持额定的汽温。 ⑶尽量防止和减少平行管子之间的偏差。 2.3省煤器和空气预热器: 省煤器和空气预热器通常布置在锅炉对流烟道的尾部,进入这些受热面的烟气温度已较低,因此常把这两个受热面称为尾部受热面或低温受热面。 省煤器是利用锅炉尾部烟气的热量来加热给水的一种热交换装置。它可以降低排烟温度,提高锅炉效率,节省燃料。在现代大型锅炉中,一般都利用汽轮机抽汽来加热给水,而且随着工质参数的提高,常采用多级给水加热器。 空气预热器不仅能吸收排烟中的热量,降低排烟温度,从而提高锅炉效率;而且由于空气中的预热,改善了燃料的着火条件,强化了燃烧过程,减少了不完全燃烧热损失,这对于燃用难着火的无烟煤及劣质煤尤为重要。使用预热空气,可使炉膛温度提高,强化炉膛辐射热交换,使吸收同样辐射热的水冷壁受热面可以减少。较高温度的预热空气送到制粉系统作为干燥剂,在磨制高水分的劣质煤时更为重要。因此空气预热器也成为现

汽包水位的调整

300MW锅炉汽包水位的调整 锅炉汽包水位的调整直接关系到整个机组的运行安全,调整操作不当将造成两种事故,一种是汽包满水事故(高三值锅炉MFT,机组掉闸),严重超过上限水位,使蒸汽带水严重,温度急剧下降,发生水冲击,损坏蒸汽管道和汽轮机组;另一种是汽包缺水事故(低三值锅炉MFT);即水位低于能够维持锅炉正常水循环的水位,蒸汽温度急剧上升,水冷壁管得不到充分的冷却而发生过热爆管。 1 汽包水位的变化机理 1.1 锅炉启动过程中的汽包水位变化 锅炉点火初期,由于冷风带走的热量和燃油燃烧释放的热量相等,汽包水位无大的变化,当0.8t/h或1.7t/h的油枪增投至2支及以上时,炉水开始产生汽泡, 汽水混合物的体积膨胀 壁内水循环流速加快后,大量汽水混合物进人汽包进行分离,饱和蒸汽进入过热器,使汽包水位开始明显下降。当到达冲转参数(主蒸汽压力3.5-4.2 MPa,主蒸汽温度320-360℃)、关闭30%旁路的过程中,蒸发量下降,很多已生成的蒸汽凝 结为水,汽水混合物的体积缩小,促使汽包水位迅速下降 这时在给水量未变的情况下由于锅炉耗水量下降汽包水位会迅速回升。在挂 闸冲转后水位的变化相反。机组并网后负荷50 -70MW给水主、旁路阀切换时,由于给水管路直径的变大使给水流量加大,汽包水位上升很快。其它阶段只要给水量随负荷的上升及时增加,汽包水位的变化不太明显。 1.2 引风机、送风机、一次风机、磨煤机跳闸后汽包水位变化 上述四大转动机械任意1台跳闸,相当于锅炉内燃烧减弱,水冷壁吸热量减少, 汽泡减少,炉水体积缩小1台引风 机后的10S内,给水自动以2 t/s的速度增加,汽包水位下降速率仍然高达 5-6mm/s。同时,汽压下降,饱和温度降低,炉水中汽泡数量又增加,水位又上 升, 1.3 高加事故解列后汽包水位变化 高加事故解列,即汽轮机的一、二、三段抽汽量突然快速为0。对于锅炉而言, 1.4 突然掉大焦和一次风压突升后汽包水位变化

锅炉水位三冲量控制及调节

汽包水位三冲量调节系统是指汽包水位、蒸汽流量和给水流量三个信号作用于调节器上, 即三个被控变量对应一个调节器。 工作原理:汽包水位作为主信号,水位变化,调节器输出发生变化,继而改变给水流量,使水位恢复到给定值;蒸汽流量作为前馈信号,防止“虚假水位”使调节器产生错误的动作;给水流量作为反馈信号,使调节器在水位还未变化时就可根据前馈信号消除内扰, 使调节过程稳定,起到稳定给水流量的作用。 锅炉汽包水位三冲量调节系统是火电厂锅炉核心控制之一。汽包水位三冲量调节系统的给水调节阀动作频繁,锅炉水位对给水调节阀执行机构的动作比较敏感,稍有不慎就可能出现严重的危险情况,汽包水位三冲量调节系统关系到整个机组的安全运行:若汽包水位过高,会造成蒸汽带水;若汽包水位过低,会造成锅炉“干锅”,可能严重烧坏锅炉设备。汽包水位三冲量调节系统的重要性由此可见一斑,所以汽包水位的相关保护要完善可靠、汽包水位自动调节系统运行要平稳。 目前,汽包水位三冲量自动调节控制策略已经相当成熟,但在实际锅炉运行中会各种原因导致水位自动调节系统投入困难,甚至自动不能投入。这种现象让人对串级三冲量调节系统的调节能力和控制策略产生疑问。为此云润与大家交流运用心得,对级三冲量调节系统进行定性分析,并对一些异常情况的处理办法进行探讨。 1、水位三冲量调节控制策略 汽包水位三冲量调节系统使用的三个冲量分别是汽包水位、给水流量和蒸汽流量。 汽包水位作为主调(PID调节器)的输入信号,去抑制水位本身的偏差。副调(外给定调节器)使用了一个反馈信号(给水流量)和一个前馈信号(蒸汽流量),以消除扰动和虚假水位。各种介绍汽包水位三冲量调节系统的书籍中,都有对传递函数的计算,这些计算对系统设计很重要。如果用经验调节法对于系统维护,则完全可以抛开理论计算。在此只对其物理意义进行定性思考和作一番揣测。 1.1?反馈信号 反馈信号指给水流量信号,也叫内扰。 水位三冲量调节系统中被调量发生变化的时候,PID 经过运算,去控制执行机构进行合理的动作,执行机构改变给水调节阀的开度,阀门控制介质变化,达到控制给水流量的目的。可是给水调节阀执行机构特性、水位三冲量调节系统的运行状况存在很多差异,这些差异主要有: (1)执行机构线性:执行机构改变开度后,流量随之改变的大小。 (2)执行机构死区:PID 输出每变化多少,执行机构才能动作一次。 (3)执行机构空行程:执行机构在改变动作方向的时候,改变多少开度,给水流量才发生变化(减去死区的值)。 (4)执行机构回差:执行机构进行开、关两个方向的动作的时候,流量变化不相等,这个流量变化绝对值的差叫回差。 (5)执行机构及阀门的特性曲线改变:阀门线性改变,阀门每变化1%,流量变化量与以往不同。 (6)水位三冲量调节系统软故障:偶尔发生的系统故障使得给水流量变化不均匀,或者时有停顿。 (7)系统介质参数发生变化:指因给水压力、蒸汽压力变化导致给水流量变化。

汽包水位PID整定步骤

1、设置副调流量系数 包括给水流量系数和蒸汽流量系数。这两个系数没有固定值。如果副调的比例作用很弱,这两个系数甚至可以取消不用。之所以要设置系数,是要提醒读者注意:在调试过程中,切不可先令副调比例作用过强!否则有可能造成系统震荡,最终导致安全事故。我们可以预设这个系数为0.3左右。 一般来说,蒸汽流量系数和给水流量系数应该大致相等。稳定工况下,尽量使调节器的输入端为0。 2、设置副调的比例带非常大,积分时间为无穷大,微分为0,即纯比例作用 比例作用的大小因系统而异。总体方向上,应该先把副调比例作用放很小。以防止系统或者副调震荡。 3、设置主调的积分时间为0,比例作用比较弱 之所以没有给出比例作用的具体数值,是因为根据不同的系统,不同的DCS,不同的程序,这个值往往变化很大。 一般来说,副调的比例带可以先设为150~600,主调比例带设为100~200。4、逐渐降低主调比例带 根据观察结果,逐渐增强比例作用,直到系统接近平稳。或者继续增强比例作用,直到系统接近于等幅震荡,然后把此时的比例带除以0.6,基本上接近于可用了。但是对于汽包水位系统,最好不要调到等幅震荡,因为这样会使系统处于危险的境地。 5、逐渐增强积分作用 积分作用逐渐增强,能在较短时间(约10分钟)内消除静差即可。 许多人对积分作用特别偏爱,往往给主调的积分作用放得很强。这种方法不仅没有好处,还会带来危害。因为在被调量开始强势回调的时候,需要调节器的输出也要快速回调,这样才能使得被调量不会大幅度超调,而这时候如果积分作用很强,积分作用会使得调节器的输出不仅不回调,而且还可能按照原来的趋势继续调节,一直等到被调量和设定值接近相等的时候,才开始回调,这时候已经太晚了,必然造成大幅度的超调。要记住:主调积分的目的是为了消除静差的。只要系统没有静差,积分作用就不必要增强。 6、没有必要使用微分作用 微分作用可以超前调节,但是该系统完全没有必要使用。并且因为水位、流量

主蒸汽流量测量方式对汽包水位自动调节系统的影响

主蒸汽流量测量方式对汽包水位自动调节系统的影响 摘要:介绍目前最常见的两种主蒸汽流量测量方式,分析两种不同的测量方式在不同工况下对串级三冲量给水自动调节系统的影响。 关键词:电厂锅炉 主蒸汽流量 汽包水位 自动调节 目前,国内大型火力发电厂汽包水位自动调节系统都采用串级三冲量给水自动调节系统。所谓串级就是指此调节系统中有两个调节器:主调节器和副调节器;三冲量是指引入调节系统的三个参数:汽包水位H、主蒸汽流量D、给水流量G。由于串级三冲量给水自动调节系统综合考虑了主蒸汽量和给水流量相等的原则,又考虑了水位偏差的大小,因而既能补偿“虚假水位”的影响,又能纠正给水量的扰动,是目前大型汽包锅炉普遍采用的给水自动调节系统。值得注意的是此调节系统对上述三个参数汽包水位H、主蒸汽流量D、给水流量G的测量仪表提出了更高的要求。(不像单冲量自动调节系统仅仅要求汽包水位H正常即可。)因为任何一块仪表故障都会引起串级三冲量给水自动调节系统误动作。譬如作为前馈信号的主蒸汽流量仪表开路,主蒸汽流量D显示为0,那么调节系统就会大幅动作减少给水流量,从而有可能引起事故的发生。我们在这里只讨论不同的主蒸汽流量测量方式对串级三冲量给水自动调节系统(以下简称给水调节系统)有何影响。 目前,一些大型机组为了减少在主蒸汽管道上开孔,改变了传统的在主蒸汽管道上装设节流装置(流量孔板或者流量喷嘴),再配以差压式流量测量装置测量主蒸汽流量的方法,而采取借用汽轮机调节级压力通用公式计算得出主蒸汽流量的数值(如平圩发电厂#1、2机组2×600MW;渭河发电厂#5、6机组2×300MW;汕尾发电厂#1、2机组2×600MW)。由于这二者的位置不同,特性不同,在各种工况下对给水调节系统的影响就不同。现在分析比较如下。为了叙述的方便,分析前我们先设两个假定:1、假定主蒸汽管道上节流装置的位置安装在过热器安全门、过热器PCV阀的前面(按照主蒸汽流程);2、我们把由差压式流量测量装置测得的主蒸汽流量数值设为D1,而把用汽轮机调节级压力通用公式计算得出的主蒸汽流量数值设为D2,并不考虑二者仪表的误差。 汽轮机冲转前。 此时主蒸汽管道的疏水一般开启,汽轮机旁路系统有可能投入。差压式流量测量装置因为流量小测得的数值误差很大,所以D1的数值不正确;而此时汽轮机调节级压力为0,D2就是0,这是个错误的数值。此时给水调节系统就不能投入。 机组负荷在0~30%时。 由于主蒸汽流量小,差压式流量测量装置测得的数值误差仍然很大,所以D1的数值不正确;此时汽轮机旁路系统关闭,主蒸汽管道上的疏水有可能开启有可能关闭。由于低负荷时主蒸汽压力低,主蒸汽管道上的疏水排放量小,所以D2的数值基本接近于实际数值。此工况下主蒸汽流量信号如果是D1,给水调节系统就不能正常动作;如果是D2,虽然主蒸汽流量数值误差不大,但作为三冲量的另一个信号给水流量G是采用差压式流量测量装置所测得的,它的数值也因为流量小误差大,所以也不宜投入给水调节系统。 许多电厂设计在机组负荷小于30%的工况下采用单冲量给水自动调节系统。由于单冲量给水自动调节系统仅仅要求汽包水位数值H准确即可,对主蒸汽流量D和给水流量G不做要求,所以机组负荷在0~30%时此调节系统能正常工作。

锅炉汽包水位控制系统的设计

/ 过程控制系统实验报告( 专业 xxxxxx 班级 xxxxxxxxx 学生姓名 xxxxxx < 学号 xxxxxxxx

锅炉汽包水位控制系统设计 < 一、控制要求 设计一个汽包水位控制系统,使汽包水位维持在90CM,稳态误差±0,5CM,以满足生产要求。 二、完成的主要任务 1.掌控锅炉生产蒸汽工及其工作流程 2.对被控对象进行特性分析,画出汽包水位控制系统方框图和流程图 3.选择被控参数和被控变量,说明其选择依据 4.】 5.设计控制系统方案,如何选择检测仪表,说明其选择原则和仪表性能指标 6.说明单回路控制系统4个环节的工作形式对控制过程 7.对控制进行PID控制说明其参数整定理论 8.对锅炉汽包水位进行simulink仿真,对参数进行整定,其仿真图要满足动态性能 指标 9.总结实验课程设计的经验和收获 (

* 过程控制系统实验报告............................... - 0 -第一章锅炉汽包水位控制系统的组成原理............ - 3 -概述............................................ - 3 -! 锅炉生产蒸汽工艺简述 ............................ - 3 - 锅炉生产蒸汽工作流程 ............................ - 4 - ............... - 5 -对被控对象进行特性分析 ............................... - 5 -汽包水位控制系统方框图和流程图......................... - 5 -液位控制系统的方框图.................................. - 5 - 液位控制系统的方案图.................................. - 6 -选择被控参数和被控变量 ................................ - 6 -; 选择检测仪表,说明其选择原则和仪表性能指标............. - 7 -传感器、变送器选择........................................... - 7 -执行器的选择................................................. - 8 -关于给水调节阀的气开气关的选择。............................. - 8 - 关于给水调节阀型号的选择。.................................. - 8 -

汽包水位调试分析

第二章锅炉汽包水位测量系统试验 第一节简介 1.1汽包水位测量的重要性 锅炉汽包水位是锅炉运行的一项重要安全性指标。水位过高或急剧波动会引起蒸汽品质的恶化和带水,造成受热面结盐,严重时会导致汽轮机水冲击、损坏汽轮机叶片;水位过低会引起排污失效,炉内加药进入蒸汽,甚至引起下降管带汽,影响炉水循环工况,造成锅炉水冷壁爆管。由于汽包水位测量和控制问题而造成的上述恶性事故时有发生,严重威胁火电厂机组的正常运行和安全。 锅炉运行中,我们主要通过水位测量系统监视和控制汽包水位。当汽包水位超出正常运行范围时,通过报警系统发出报警信号,同时保护系统动作采取必要的保护措施,以确保锅炉和汽轮机的安全。 1.2汽包水位测量的基本方法 目前,从锅炉汽包水位测量的基本原理看,广泛使用的主要是联通管式和差压式两种原理的汽包水位计。由于锅炉汽包水位计对象的复杂性,以及联通管式和差压式测量原理的固有特性,决定了汽包水位测量的复杂性以及实际运行中存在的不确定因素,一致多个汽包水位计常常存在较大偏差,容易酿成事故。根据新版《火力发电厂锅炉汽包水位测量系统技术规定》DRZ/T 01-2004规定: 1)锅炉汽包水位测量系统的配置必须采用两种或以上工作原理共存的配置方式,以防 止系统性故障。锅炉汽包至少应配置 1 套就地水位计、3 套差压式水位测量装置 和 2 套电极式水位测量装置。 2)应严格遵循锅炉汽包水位控制和保护独立性的原则,最大限度地减少故障风险,并 降低故障停机几率。 3)汽包水位保护和控制的测量系统至少应按三重冗余的原则设计。 4)汽包水位至少配置两种相互独立的监视仪表。 5)锅炉汽包水位控制应分别取自 3 个独立的差压变送器进行逻辑判断后的信号。 6)锅炉汽包水位保护应分别取自 3 个独立的电极式测量装置或差压式水位测量装置 ( 当采用 6 套配置时 ) 进行逻辑判断后的信号。当锅炉只配置 2 个电极式测量 装置时 , 汽包水位保护应取自 2 个独立的电极式测量装置以及差压式水位测量 装置进行逻辑判断后的信号。3 个独立的测量装置输出的信号应分别通过 3 个独 立的I/O模件引入 DCS 的元余控制器。 7)汽包水位测量信号应采取完善的信号判断手段,以便及时地报警和保护。 只有深刻理解上述两种锅炉汽包水位的测量原理及其误差的成因,才能清醒的指导锅炉汽包水位测量系统的设计、安装、调试和运行维护。下面就对联通管式和差压式水位计的测量原理进行分别介绍。 1.3联通管式汽包水位计测量原理 联通管式水位计结构简单 , 显示直观 , 如图 1 所示 , 它可以做成仅仅在就地显示的云母水位计 ( 包括便于观察的双色水位计 ) , 也可以采取一些远传措施 , 如在水位计中加电接点或用摄像头等构成电极式水位计或工业电视水位计等。但就其原理来说 , 都是属于联通管式测量原理。。其中云母水位计常用于连接水位电视;电接点

锅炉汽包水位控制系统

1.汽包水位的动态特性描述 (1) 1.1.汽包在给水流量作用下的动态特性 (1) 1.2.汽包水位在蒸汽流量扰动下的动态特性 (2) 2.汽包水位控制方案的选择及其原理 (4) 2.1.三冲量控制原理及各部分的作用 (4) 2.1.1.控制原理 (4) 2.1.2.各部分的作用 (5) 3.前馈-串级控制系统的特点和调节器作用方式判断 (7) 3.1.控制系统的特点 (7) 3.1.1.前馈控制系统的特点 (7) 3.1.2.串级控制系统特点 (7) 3.2.调节器作用方式判断 (7) 3.2.1.判断副调节器的作用方式 (7) 3.2.2.判断主调节的作用方式 (7) 4.控制仪表及技术参数 (8) 4.1.控制仪表的选定 (8) 4.2.各元器件的型号及参数 (8) 5.总结与体会 (10) 参考文献 (11)

在锅炉运行中,水位是一个很重要的参数。若水位过高,则会影响汽水分离的效果,使用气设备发生故障;而水位过低,则会破坏汽水循环,严重时导致锅炉爆炸。同时高性能的锅炉发生的蒸汽流量很大,而汽包的体积相对来说较小,所以锅炉水位控制显得非常重要。锅炉水位自动控制的任务,就是控制给水流量,使其与蒸发量保持平衡,维持汽包内水位在允许的范围内变化。 锅炉汽包水位是一种非线性、时变大、强耦合的多变量系统,讨论了目前通常采用的控制方法,分析了水位对象模型的动静特性。首先从锅炉汽包内水的热平衡、物质平衡原理出发,推导出了用来描述锅炉水位对象的通用机理控制模型,通过对几种控制方案的分析、研究与比较,选三冲量系统作为最佳控制方案,并着力研究三冲量系统的特点。 关键词:锅炉汽包水位控制三冲量控制系统

锅炉汽包水位调整总结

300MW机组锅炉汽包水位调整技术的探讨 【摘要】阐述了300MW机组锅炉汽包水位的变化机理和锅炉汽包水位调整技术,对锅炉运 行过程中汽包水位的一些关键问题从不同角度进行了探讨,为运行人员提供了科学的操作依据、实践经验和技术支持。【关键词】锅炉水位调整 1、前言锅炉的汽包水位由于调整不当,将造成两种水位事故。一种是汽包满水事故,指锅炉 汽包水位严重高于汽包正常运行水位的上限值,使锅炉蒸汽严重带水,蒸汽温度急剧下降,发生水冲击,损坏管道和汽轮机组。另一种是汽包缺水事故,指锅炉水位低于能够维持锅炉正常水循环的水位,蒸汽温度急剧上升,水冷壁管得不到充分的冷却而发生过热爆管。这种事故的发生轻者造成机组非计划停运,严重时可造成汽轮机和锅炉设备的严重损坏。在机组正常启停和运行中通过科学的判断分析和正确的高水平的调整汽包水位,才能很好的防止恶性事故的发生和间接地降低发电厂的生产成本。 2、汽包水位的变化机理 2.1 锅炉启动过程中的汽包水位变化投入炉底部加热后,辅汽在炉 水中凝结成为炉水,使汽包水位缓慢上升。锅炉点火初期,由于冷风带走的热量和燃油燃烧释放的热量相等,汽包水位无大的变化。当1.8t/h的油枪增投至两支及以上时,由于热量平衡的 破坏,使炉内温度上升,炉水吸热开始产生汽泡,汽水混合物的体积膨胀,汽包水位开始缓慢上升产生暂时的虚假水位,随炉水吸热量的增加,当水冷壁内水循环流速加快后,大量汽水混合物进入汽包后汽水分离,饱和蒸汽进入过热器,使汽包水位开始明显下降。随着汽包压力的升高,这种蒸发速度会降低,但在实践中观察该现象不太明显。当到达冲转参数(主蒸汽压力4.2Mpa,主蒸汽温度320℃)关闭35%旁路的过程中,蒸发量下降,单位工质吸收的热量增加,微观分析,分子运动速度加快,对汽包、水冷壁、过热器的撞击次数增多,宏观观察,汽包压力又进一步升高,送一方面使汽水混合物比容减小,另一方面饱和温度升高,很多已生成的蒸汽凝结为水,水中气泡数量减小汽水混合物的体积缩小,促使汽包水位迅速下降,造成暂时的虚假水位,这时在给水量未变的情况下由于锅炉耗水量下降汽包水位会迅速回升。在挂闸冲转后水位的变化相反。机组并网后负荷50Mw给水主副阀切换时,由于给水管路直径的变大使给水流量加大汽包水位上升很快。其它阶段只要给水量随负荷的上升及时增加汽包水位的变化不太明显。2.2 引风机、送风机、一次风机、磨煤机跳闸后汽包水位的变化锅炉的上述四大转机任意跳闸1台,相当于炉内燃烧减弱,水冷壁吸热量减少,炉水体积缩小,汽泡减少,使水位暂时下降。从实际事故中观察,跳1台引风机后的10s内,给水自动以2t/s的速度增加,其水位下降速率仍然高达6.2mm/s。同时气压也要下降,饱和温度相应降低,炉水中汽泡数量又将增加,水位又会上升,还由于负荷的下降,给水量不变,如果人工不干预,水位最终会上升。这就是平时所说的先低后高。2.3高加事故解列后汽包水位的变化高加事故解列,就是汽轮机的一二三段抽汽量 突然快速为零的过程。对于锅炉来说,发生了2个工况的变化,一个是蒸汽流量减少压力升高,另一个是给水温度降低100℃引起的炉水温度降低,水位将先低后高。2.4 突然掉大焦和一次风压突升后汽包水位的变化这种情况相当于燃烧加强的结果,水冷壁吸热量增加,炉水体积膨胀,汽泡增多,使水位暂时上升:同时气压也要升高,饱和温度相应升高,炉水中汽泡数量又将减少,水位又会下降;随后蒸发量增加,但给水未增加时,水位又进一步下降,即水位先高后低。从实际生产中观察,上升不明显,但下降较快,事故发生10s后,虽然给水以1t/s的速度增加,水位仍以1.7mm/s的速度下降。2.5 锅炉安全门动作和负荷突变后汽包水位的变化当锅炉安全门动作或负荷突增时,汽包压力将迅速下降,送时一方面汽水比容增大,另一方面使饱和温度降低,促使生成更多的蒸汽,汽水混合物体积膨胀,形成虚假高水位。但是由于负荷增大,炉水消耗增加,炉水中的汤泡逐渐逸出水面后,水位开始迅速下降,即先高后低。当安全门回座或负荷突降时,水位变化过程相反。3 锅炉启动过程中汽包水位的调整(1)经过高加水侧锅炉冷态启动上水正常后,投入底部加热之前给电子水位计测量筒进行灌水,使电子水位能正确显示,防止在启动过程中水位误差过大造成汽包水位无法投入和MFT误动事故。(2)锅炉底部

(完整版)基于PLC的锅炉汽包水位控制系统设计毕业设计

以下文档格式全部为word格式,下载后您可以任意修改编辑。 摘要 汽包水位是影响锅炉安全运行的一个重要参数,汽包水位过高或者过低的后果都非常严重,因此对汽包水位必须进行严格控制。PLC技术的快速发展使得PLC广泛应用于过程控制领域并极大地提高了控制系统性能,PLC已经成为当今自动控制领域不可缺少的重要设备。 本文从分析影响汽包水位的各种因素出发,重点分析了锅炉汽包水位的“假水位现象”,提出了锅炉汽包水位控制系统的三冲量控制方案。按照工程整定的方法进行了PID参数整定,并进行了仿真研究。根据控制要求和所设计的控制方案进行硬件选型以及系统的硬件设计,利用PLC编程实现控制算法进行系统的软件设计,最终完成PLC在锅炉汽包水位控制系统中应用。 关键词:汽包水位三冲量控制PLC PID控制

ABSTRACT The steam drum water level is a very important parameter for the boiler safe operation, both widely be applied to the process control domain and enhances the performance of control system enormously. PLC automatic control domain. Based on the analysis of all kinds of factors which influence steam drum water level, “unreal water level phenomenon”is analyzed specially, and three impulses control plan for steam drum water level control system is proposed. PID parameters are regulated by engineering regulation method, and simulation study is done. According to the needs of control, the selection of control requirements as well as system software design are carried out. Finally the application of PLC in boiler steam drum water control system is completed. Key words: Steam drum water level Three impulses control PLC PID control

-煤粉锅炉汽包水位测量及变送器的调校

豆 丁 推 荐 ↓ 精 品 文 档

煤粉锅炉汽包水位测量及变送器的调校Ξ 祁进林,王向钊 (青海碱业有限公司仪表处,青海德令哈 817000) 摘 要:本文以青海碱业有限公司(以下简称我公司)130t h煤粉锅炉汽包水位为实践基础,简单阐述了130t h煤粉锅炉汽包水位测量的几种方法及双室平衡容器的测量原理,并介绍三冲量控制调节原理及日常维护。 关键词:煤粉锅炉;汽包水位;双室平衡容器;三冲量控制;调节 锅炉汽包液位是表征生产过程的主要工艺指标,同时,也是保证锅炉安全运行的主要条件之一。液位过高,使蒸汽产生带液现象,不仅降低蒸汽的产量和质量,而且,还会使过热气结垢,或使汽轮机的叶片损坏;当液位过低时,轻则影响水蒸气平衡,重则烧干锅炉,严重时导致锅炉爆炸,直接危及员工的人身安全,造成重大设备等事故。锅炉汽包液位控制的好坏是制约工艺安、稳、长、满、优生产的一大“瓶颈”问题。 1 煤粉锅炉汽包水位的测量方法 我公司130t h煤粉锅炉为CG-130 3.82-M,测量汽包水位主要有以下三种:双色水位计、电接点水位计、差压式水位计。 1.1 双色水位计 双色水位计是利用光在不同介质中呈现不同折射率和反射率特性的原理,并借助于滤色片使液相呈绿色,气相呈红色的双色显示,气液分界极为清晰。在每台锅炉汽包上配备两套就地双色水位计,操作人员通过双色水位计能直接观察到汽包水位的高低。双色水位计最能真实地反应汽包内的水位情况,一旦其它液位测量仪表失灵,双色水位计将作为其它液位仪表比对的标准。它的缺点是操作人员必须站在就地现场锅炉汽包平台上才能观察,非常不便。为了更好地观察液位我公司安装了摄像头,便于在主控制室内进行观察及监控。 1.2 电接点水位计 每台锅炉配备了一套电接点水位计,它的测量原理是利用锅炉给水和蒸汽导电率差异的特性,由于液位的变化使部分电极侵入水中,部分电极置于蒸汽中,侵入炉水中的电极对筒体的阻抗减小,而置于蒸汽中的水位转换为电量,传送给智能二次仪表,从而实现水位的显示、报警、联锁之功能,使在锅炉主控室应急盘上操作人员对汽包水位进行监控。由于电极结垢、挂水等原因,有时会出现不准现象,为了避免误差在运行中测量筒需要定期排污、清洗,防止电接点结垢,从而延长使用寿命,电极一般半年更换一次。 1.3 差压式水位计 通过双室平衡容器,利用罗斯蒙特3051差压变送器对汽包液位进行测量是我公司控制操作锅炉的主要依据,下面重点介绍带双室平衡容器测量液位的投运及调试方法。它的测量原理是变送器将汽包水位产生的差压转换成4-20mADC标准电流信号,送入DCS系统进行液位显示、报警和调节。由于汽包内汽水分离剧烈,液位波动大,易造成“虚假”水位现象,所以采用了双室平衡容器,其作用主要是减少液位波动,另外为克服“虚假”水位现象,锅炉汽包水位调节一般采用三冲量调节系统。每台锅炉配备两个双室平衡容器,其中一个双室平衡容器安装一台变送器,另一个双室平衡容器安装两台变送器。作为一名仪表工应掌握汽包水位的测量原理,差压的计算和变送器的调校方法。 2 变送器测量汽包水位的原理及计算 2.1 差压变送器量程的计算 我公司130t h煤粉锅炉现场运行情况来看,双室平衡容器内绝对压力为4.1M Pa,温度250℃,此时水的密度为Θ=796.3kg m3,变送器正压室承受的压力为P+,变送器负压室承受的压力为P-,汽包内的压力为P1,当液位为0mm时,变送器的差压值为△P1 P+=P1+0×0.796 =P1mm H2O P-=P1+540×0.796 =P1+429.84mm H2O △P1=P+-P-=P1×(P1+429.84) =-429.84mm H2O=-4212Pa 当液位为600mm时,变送器的差压值为△Ph P+=P1+600×0.796 Ξ收稿日期:2009-04-12 作者简介:祁进林(1977-),青海省民和县人,本科,初级职称,现从事自动化仪表专业,职务为主任助理。

相关文档
最新文档