石灰软化法和石灰纯碱软化法的原理及适用情况教学资料
锅炉房工艺系统及辅助设备—锅炉水处理之石灰水处理软化除碱

石灰—纯碱法可同时消除碳酸盐硬度、非碳酸盐硬度和 碱度,水的软化程度比单独用石灰处理要好,原水总残留硬 度可降至0.3~1.0mmol/L。
3. 石灰—氯化钙法 石灰—氯化钙法是在水中同时投加石灰和氯化钙(CaCl2)
。加氯化钙的目的在于消除水中的负硬度,其化学反应式为
2NaHCO3+ CaCl2+ Ca(OH)2= 2CaCO3↓+2NaCl+2 H2O 2KHCO3+ CaCl2+ Ca(OH)2= 2CaCO3↓+2KCl+2 H2O
二、石灰水处理软化除碱工艺流程
如图所示为工业锅炉常用的沉淀处理工艺流程。药剂(石 灰、纯碱、氯化钙)和水在混合器中作用后生成沉淀,并流入 沉淀池中使泥渣沉降,软化和除碱水则流入装有石英砂滤料 的过滤池过滤后进入水箱。沉淀池中沉降下来的泥渣定时排 除;过滤池中的滤料使用到一定程度要进行反洗,清除泥渣 .以保证水的过滤效果。
化学反应式为 CO2+Ca(OH)2=CaCO3↓+H2O
Ca(HCO3)2+Ca(OH)2=2CaCO3↓+2H2O Mg(HCO3)2+2Ca(OH)2=Mg(OH)2↓+2CaCO3↓+2H2O
• 石灰法可消除水中的碳酸盐硬度和碱度,但不能消除水中 的非碳酸盐硬度。
2. 石灰—纯碱法 石灰—纯碱法是在水中同时投加石灰和纯碱(Na2 CO3)。
石灰水处理软化除碱工艺流程
三、石灰水处理软化除碱的特点 • 石灰水处理软化除碱所使用药剂的作用 • 常将石灰水处理作为锅炉给水的预处理。石灰水处理与钠
离子交换器串联使用,前者出水再经过后者进一步软化。 • 采用石灰水处理时,水中的胶体物质会阻碍盐类结晶,必
石灰软化法除硬度

石灰软化法使用石灰软化硬水的方法称为石灰软化法,又称石灰纯碱软化法,在硬水中加入消石灰,使水中的镁生成氢氧化镁沉淀,这样,加入碳酸钠使水中的钙生成碳酸钙而沉淀,硬水即变为软水,利用这种方法可使水中钙浓度降低到10~35ppm。
其化学反应式如下:CaSO4+Na2CO3→CaCO3↓+Na2SO4CaCl2+Na2CO3→CaCO3↓+2NaClMgSO4+Na2CO3→MgCO3+Na2CO3MgCO3+Ca(OH)2→CaCO3↓+Mg(OH)2↓采用石灰软化法处理高硬度含氟地下水,考察了药剂投量、反应时间对处理效果的影响。
结果表明,在CaO和Na2CO3的投量分别为187和106mg/L并反应25min的条件下,再投加10mg/L的聚合氯化铝铁和0.25mg/L的PAM可将出水浊度降至1NUT以下;若要将出水总硬度分别降至400、300、200mg/L,在略高于理论投药量的条件下,需控制搅拌反应时间分别为25、35、50min;水中氟化物可通过与软化过程中生成的Mg(OH)2形成共沉淀而得到有效去除,但由于出水pH值过高,需进行调节。
华东地区某市因地表水污染严重,计划适度开采高储量的地下水作为饮用水水源(开采量约为5.0×10 m /d)。
取样分析结果表明,该市地下水清澈透明,但水中硬度和氟化物含量不达标,为保证居民饮水安全,需对该地下水进行软化及除氟处理。
降低水中硬度的常用方法有离子交换法、电渗析法及药剂软化法等。
其中离子交换法和电渗析法均存在造价高、运行费用高等缺点;石灰是药剂软化法中最常用的药剂,其价格较低,但如果用量不当,则会造成出水水质稳定性欠佳,给实际操作管理带来麻烦,因此有必要进行试验确定药剂用量。
去除氟离子的常用方法有电化学法(电凝聚、电渗析)、·49·第23卷第13期中国给水排水www.watergasheat.corn 混凝沉淀法和离子交换法等。
石灰软化法除硬度

石灰软化法使用石灰软化硬水的方法称为石灰软化法,又称石灰纯碱软化法,在硬水中加入消石灰,使水中的镁生成氢氧化镁沉淀,这样,加入碳酸钠使水中的钙生成碳酸钙而沉淀,硬水即变为软水,利用这种方法可使水中钙浓度降低到10~35ppm。
其化学反应式如下:CaSO4+Na2CO3→CaCO3↓+Na2SO4CaCl2+Na2CO3→CaCO3↓+2NaClMgSO4+Na2CO3→MgCO3+Na2CO3MgCO3+Ca(OH)2→CaCO3↓+Mg(OH)2↓采用石灰软化法处理高硬度含氟地下水,考察了药剂投量、反应时间对处理效果的影响。
结果表明,在CaO和Na2CO3的投量分别为187和106mg/L并反应25min的条件下,再投加10mg/L的聚合氯化铝铁和0.25mg/L的PAM可将出水浊度降至1NUT以下;若要将出水总硬度分别降至400、300、200mg /L,在略高于理论投药量的条件下,需控制搅拌反应时间分别为25、35、50min;水中氟化物可通过与软化过程中生成的Mg(OH)2形成共沉淀而得到有效去除,但由于出水pH值过高,需进行调节。
华东地区某市因地表水污染严重,计划适度开采高储量的地下水作为饮用水水源(开采量约为5.0×10 m /d)。
取样分析结果表明,该市地下水清澈透明,但水中硬度和氟化物含量不达标,为保证居民饮水安全,需对该地下水进行软化及除氟处理。
降低水中硬度的常用方法有离子交换法、电渗析法及药剂软化法等。
其中离子交换法和电渗析法均存在造价高、运行费用高等缺点;石灰是药剂软化法中最常用的药剂,其价格较低,但如果用量不当,则会造成出水水质稳定性欠佳,给实际操作管理带来麻烦,因此有必要进行试验确定药剂用量。
去除氟离子的常用方法有电化学法(电凝聚、电渗析)、·49·第23卷第13期中国给水排水www.watergasheat.corn 混凝沉淀法和离子交换法等。
石灰-纯碱法原理

石灰-纯碱法原理
石灰-纯碱法是一种利用石灰水和纯碱溶液进行化学反应制备碳酸钠的方法。
其原理如下:
1. 石灰水制备:将生石灰与水进行反应,生成石灰水。
石灰的化学名为氢氧化钙(Ca(OH)2),它与水反应产生氢氧化钙的溶液。
CaO + H2O → Ca(OH)2
2. 纯碱制备:纯碱的化学名为氢氧化钠(NaOH),它可通过电解氯化钠溶液得到。
在电解过程中,钠离子(Na+)被还原为氢氧化钠。
2Na+ + 2H2O + 2e- → 2NaOH + H2 ↑
3. 石灰溶液与纯碱溶液反应:将制备好的石灰水与纯碱溶液进行反应,生成碳酸钠的沉淀物。
反应方程式如下:
Ca(OH)2 + 2NaOH → Na2CO3 + 2H2O
通过这一反应,石灰水中的氢氧化钙与纯碱溶液中的氢氧化钠反应生成碳酸钠(Na2CO3)和水,碳酸钠为无色结晶体沉淀物,可以从溶液中过滤出来。
石灰-纯碱法是一种传统的制备碳酸钠的方法,现在已经被其他更高效的工业方法所取代。
水的软化方法

水的软化几种方法通常对硬度高、碱度高的水采用石灰软化法;对硬度高、碱度低的水采用石灰-纯碱软化法;而对硬度低、碱度高的负硬水则采用石灰-石膏处理法。
1. 石灰软化法为避免投加生石灰(CaO)产生的灰尘污染,通常先将生石灰制成消石灰Ca(OH)2(即熟石灰)使用,其反应如下CaO+H2O====Ca(OH)2消石灰投入高硬水中,会产生下列反应Ca(OH)2+CO2====CaCO3+H2OCa(OH) 2+Ca(HCO3) 2====2CaCO3+2H2O2Ca(OH) 2+Mg(HCO3) 2====2CaCO3+Mg(OH) 2+2H2O形成的CaCO3和Mg(OH)2都是难溶化合物,可从水中沉淀析出。
但水中的永硬和负硬却不能用石灰处理的方法除去,因为镁的永硬与负硬和消石灰会产生下列反应MgSO4+Ca(OH) 2====Mg(OH) 2+CaSO4MgCl2+Ca(OH) 2====Mg(OH) 2+CaCl2NaHCO3+Ca(OH) 2====CaCO3+NaOH+H2O由反应式可看出,镁的永硬全部转化为等量的溶解度很大的钙的永硬,而负硬则转化为等量的氢氧化钠、碱度,所以水中的碱度没有除去。
石灰加入量可按下式估算[CaO]=28/Z1{[CO2]+[Ca(HCO3) 2]+2[Mg(HCO3)2+B]}式中[CaO]——需投加的工业石灰量,mg/L;[CO2]——原水中CO2的浓度(1/2CO2计),mmol/L;[Ca(HCO3) 2]——原水中Ca(HCO3) 2的浓度[1/2Ca(HCO3) 2计],mmol/L[Mg(HCO3) 2]——原水中Mg(HCO3) 2的浓度[1/2 Mg(HCO3) 2计]mmol/L;Z1——工业石灰纯度,%;28——1/2CaO的摩尔质量,g/mol;B——石灰过剩量(1/2CaO计),mmol/L(一般为0.2—0.4mmol/L)。
2.石灰-纯碱软化法石灰软化法只适用于暂硬高、永硬低的水质处理。
脱盐技术

高含盐水脱盐技术现状1.石灰/石灰-纯碱软化法石灰软化作为应用最广泛应用的单元技术之一,能有效降低水中结垢成份与悬浮物浓度,并且可使部分水处理剂经软化工艺后再回流系统中继续循环使用,石灰乳与水中的碳酸盐硬度成分反应,生成难溶的CaCO3或Mg(OH)2后沉淀析出。
单纯的石灰软化法只能去除碳酸盐硬度,而石灰-纯碱软化法能有效去除水中结垢的主要成分如钙、镁、磷酸盐和二氧化硅等,并将水中的悬浮物、腐蚀产物和微生物粘泥等在沉淀和过滤过程中去除,且产生泥渣易脱水,可作为非毒性废弃物掩埋处置。
另外,石灰价格低廉、来源广泛,运行成本低,可与絮凝过程同时进行,即可降低水的硬度,又可除浊。
因此,石灰-纯碱软化法已广泛用于工业纯水系统补充水的预处理。
2.膜分离近40年来,膜分离技术已迅速发展成为工业循环冷却水系统中旁流处理中最重要、最广泛采用的新型高效节能分离单元技术,电渗析(ED)、反渗透(RO)、微滤(MF)、超滤(UF)、纳滤(NF)和渗透汽化(PV)等膜技术相继发展,并成为集成处理技术系统中的关键技术。
主要膜分离技术简述如下:(1)反渗透膜技术反渗透膜技术是以渗透压差作为推动力的一类膜分离过程。
依据各种物料的不同渗透压,通过RO膜技术达到分离提取、纯化与浓缩的目的。
RO技术的最大优点是节能,其能耗仅为电渗析的1/2,蒸馏技术的1/40,而且能够达到深度除盐目的。
近年来,随着膜分离技术的快速发展,工程造价和运行成本持续降低,RO膜技术已逐渐取代传统的离子交换、电渗析除盐技术,成为工业水系统中首选除盐技术。
RO膜技术今后主要发展趋势是降低RO膜的操作压力,提高RO系统纯水产率和浓缩回收率,以及廉价高效预处理技术,增强膜组件抗污能力等。
尤其近年来,在电厂循环冷却水脱盐回用领域,集成膜工艺已成为主要发展方向,其中“UF+RO"双膜工艺已成为电厂深度除盐的主导技术。
(2)电渗析技术电渗析技术是以电位差作为推动力的一类膜分离过程。
石灰软化法

石灰软化法使用石灰软化硬水的方法称为石灰软化法,又称石灰纯碱软化法,在硬水中加入消石灰,使水中的镁生成氢氧化镁沉淀,这样,加入碳酸钠使水中的钙生成碳酸钙而沉淀,硬水即变为软水,利用这种方法可使水中钙浓度降低到10~35ppm。
其化学反应式如下:CaSO4+Na2CO3→CaCO3↓+Na2SO4CaCl2+Na2CO3→CaCO3↓+2NaClMgSO4+Na2CO3→MgCO3+Na2CO3MgCO3+Ca(OH)2→CaCO3↓+Mg(OH)2↓采用石灰软化法处理高硬度含氟地下水,考察了药剂投量、反应时间对处理效果的影响。
结果表明,在CaO和Na2CO3的投量分别为187和106mg/L并反应25min的条件下,再投加10mg/L的聚合氯化铝铁和0.25mg/L的PAM可将出水浊度降至1NUT以下;若要将出水总硬度分别降至400、300、200mg/L,在略高于理论投药量的条件下,需控制搅拌反应时间分别为25、35、50min;水中氟化物可通过与软化过程中生成的Mg(OH)2形成共沉淀而得到有效去除,但由于出水pH值过高,需进行调节。
华东地区某市因地表水污染严重,计划适度开采高储量的地下水作为饮用水水源(开采量约为5.0×10 m /d)。
取样分析结果表明,该市地下水清澈透明,但水中硬度和氟化物含量不达标,为保证居民饮水安全,需对该地下水进行软化及除氟处理。
降低水中硬度的常用方法有离子交换法、电渗析法及药剂软化法等。
其中离子交换法和电渗析法均存在造价高、运行费用高等缺点;石灰是药剂软化法中最常用的药剂,其价格较低,但如果用量不当,则会造成出水水质稳定性欠佳,给实际操作管理带来麻烦,因此有必要进行试验确定药剂用量。
去除氟离子的常用方法有电化学法(电凝聚、电渗析)、·49·第23卷第13期中国给水排水www.watergasheat.corn 混凝沉淀法和离子交换法等。
脱盐技术

高含盐水脱盐技术现状1.石灰/石灰-纯碱软化法石灰软化作为应用最广泛应用的单元技术之一,能有效降低水中结垢成份与悬浮物浓度,并且可使部分水处理剂经软化工艺后再回流系统中继续循环使用,石灰乳与水中的碳酸盐硬度成分反应,生成难溶的CaCO3或Mg(OH)2后沉淀析出。
单纯的石灰软化法只能去除碳酸盐硬度,而石灰-纯碱软化法能有效去除水中结垢的主要成分如钙、镁、磷酸盐和二氧化硅等,并将水中的悬浮物、腐蚀产物和微生物粘泥等在沉淀和过滤过程中去除,且产生泥渣易脱水,可作为非毒性废弃物掩埋处置。
另外,石灰价格低廉、来源广泛,运行成本低,可与絮凝过程同时进行,即可降低水的硬度,又可除浊。
因此,石灰-纯碱软化法已广泛用于工业纯水系统补充水的预处理。
2.膜分离近40年来,膜分离技术已迅速发展成为工业循环冷却水系统中旁流处理中最重要、最广泛采用的新型高效节能分离单元技术,电渗析(ED)、反渗透(RO)、微滤(MF)、超滤(UF)、纳滤(NF)和渗透汽化(PV)等膜技术相继发展,并成为集成处理技术系统中的关键技术。
主要膜分离技术简述如下:(1)反渗透膜技术反渗透膜技术是以渗透压差作为推动力的一类膜分离过程。
依据各种物料的不同渗透压,通过RO膜技术达到分离提取、纯化与浓缩的目的。
RO技术的最大优点是节能,其能耗仅为电渗析的1/2,蒸馏技术的1/40,而且能够达到深度除盐目的。
近年来,随着膜分离技术的快速发展,工程造价和运行成本持续降低,RO膜技术已逐渐取代传统的离子交换、电渗析除盐技术,成为工业水系统中首选除盐技术。
RO膜技术今后主要发展趋势是降低RO膜的操作压力,提高RO系统纯水产率和浓缩回收率,以及廉价高效预处理技术,增强膜组件抗污能力等。
尤其近年来,在电厂循环冷却水脱盐回用领域,集成膜工艺已成为主要发展方向,其中“UF+RO"双膜工艺已成为电厂深度除盐的主导技术。
(2)电渗析技术电渗析技术是以电位差作为推动力的一类膜分离过程。
石灰纯碱法

石灰纯碱法
石灰纯碱法是一种工业生产中常用的方法,用于制取纯碱(氢氧化钠)。
它是基于石灰(氧化钙)与盐类(如氯化钠)反应生成氢氧化钠的化学过程。
具体步骤如下:
1. 准备原料:石灰(氧化钙)和盐类(如氯化钠)作为主要原料。
2. 石灰消石灰:将石灰与水反应生成石灰水,并进行搅拌,以使石灰完全溶解。
3. 反应器反应:将石灰水和盐类(如氯化钠)加入反应器中进行反应。
在反应器中,氯化钠与石灰水发生反应生成氢氧化钠和氯化钙。
4. 沉淀分离:通过沉淀分离的方式,将产生的氯化钙沉淀物与未反应的石灰水分离开来。
5. 过滤:将分离出的氯化钙沉淀物进行过滤,去除其中的杂质和不需要的固体颗粒。
6. 浓缩蒸发:将过滤后的溶液进行浓缩蒸发,以去除其中的水分,使溶液浓度增加。
7. 结晶:在适当的条件下,让浓缩后的溶液进行结晶,使氢氧化钠从溶液中析出。
8. 分离收集:将析出的氢氧化钠颗粒进行分离和收集,得到纯碱产品。
石灰纯碱法是一种较为常用的制取纯碱的工业生产方法,它通过化学反应和物理处理等步骤,将石灰与盐类反应得到氢氧化钠,并最终得到纯碱产品。
这种方法具有反应效率高、操作简便等优点,在实际生产中得到广泛应用。
石灰-碳酸钠软化技术浅谈

石灰-碳酸钠软化技术浅谈张志军(青海云天化国际化肥有限公司氮肥产品部,青海湟中,810000)摘要:软化水作为水处理装置的源头,其软化效果为后系统能否正常运行或最终出水指标的控制发挥着重要作用。
石灰-碳酸钠软化法作为国内经济、普遍的软化处理工艺,其控制和软化效果与单纯的石灰软化法相比有较大的差异,本文从工艺、原理、指标等方面作了进一步分析。
关键词: 原理离子含量硬度溶度积成本1 概述青海云天化化肥公司原水软化装置于2016年建成投产,其主要工艺流程为:园区管网来水进入首先进入混凝剂投加池,加聚合硫酸铁,通过搅拌机搅拌,经快速混合后进入石灰投加池,然后进入絮凝池,絮凝池中投加碳酸钠和PAM,不断形成矾花。
最后进入沉淀池,矾花下沉,澄清水经斜管分离后送下一工序。
沉降的泥渣部分与进水混合,底部多余的泥渣外送公司渣场。
2 化学原理(1)、石灰一般用于去除水中的碳酸盐硬度(暂时硬度):熟石灰配置成石灰乳液后加入,与原水接触后,先与 CO2 反应,然后将水中的暂时硬度去除,反应原理如下:CO2 +Ca(OH)2 →CaCO3↓+ H2OCa(HCO3)2 + Ca(OH)2 →2CaCO3↓+ 2H2OMg(HCO3)2+ Ca(OH)2→MgCO3+CaCO3↓+ 2H2O MgCO3 + Ca(OH)2→Mg(OH)2↓+CaCO3↓(2)、去除水中永久硬度(非碳酸盐硬度): CaSO4 +Na2CO3→CaCO3↓+Na2SO4CaCl2 +Na2CO3 →CaCO3↓+2NaClMgSO4 +Na2CO3→MgCO3 +Na2SO4MgCl2 +Na2CO3 →MgCO3 +2NaCl在较高 pH值时,MgCO3很快水解:MgCO3 +H2O→Mg(OH)2↓+CO2↑碳酸钠也能去除部分暂时硬度:Ca(HCO3)2+ Na 2CO3→CaCO3↓+ 2NaHCO3 Mg(HCO3 )2 +Na2CO3 →MgCO3 +2NaHCO3MgCO3 +H2O→Mg(OH)2↓+CO2↑3 物理原理在泥渣悬浮层上方按装倾角60度的斜管组件,便原水中的悬浮物,固体物或经投加混凝剂后形成的絮体矾花,在斜管底侧表面积积聚成薄泥层,依靠重力作用滑回泥渣悬浮层,继而沉入集泥斗,上清液逐渐上升至集水管排出进入下游工序。
石灰法软化水

石灰法软化水
石灰法软化水是一种常见的水处理方法,它利用石灰(氢氧化钙)将硬水中的钙、镁离子与碳酸根离子反应,生成碳酸钙和水的化学反应,从而去除水中的硬度离子,软化水质。
石灰法软化水的具体步骤如下:
1. 在水中加入石灰,使其与水中的碳酸根离子反应,生成碳酸钙。
2. 碳酸钙随后沉淀,将水中的钙、镁离子一同带走。
3. 过滤或沉淀去除碳酸钙沉淀物,得到软化后的水。
石灰法软化水的优点是操作简单、成本低廉、效果稳定,但也存在一些缺点,如残留石灰的问题,可能会对水质造成二次污染。
因此,在实际应用中需要结合具体情况进行选择。
水的软化法

水软化创建词条编辑词条(一)软化方法通常对硬度高、碱度高的水采用石灰软化法;对硬度高、碱度低的水采用石灰-纯碱软化法;而对硬度低、碱度高的负硬水则采用石灰-石膏处理法。
1.石灰软化法为避免投加生石灰(CaO)产生的灰尘污染,通常先将生石灰制成消石灰Ca(OH)2(即熟石灰)使用,其反应如下CaO+H2O====Ca(OH)2消石灰投入高硬水中,会产生下列反应Ca(OH)2+CO2====CaCO3+H2OCa(OH)2+Ca(HCO3)2====2CaCO3+2H2O2Ca(OH)2+Mg(HCO3)2====2CaCO3+Mg(OH)2+2H2O形成的CaCO3和Mg(OH)2都是难溶化合物,可从水中沉淀析出。
但水中的永硬和负硬却不能用石灰处理的方法除去,因为镁的永硬与负硬和消石灰会产生下列反应MgSO4+Ca(OH)2====Mg(OH)2+CaSO4MgCl2+Ca(OH)2====Mg(OH)2+CaCl2NaHCO3+Ca(OH)2====CaCO3+NaOH+H2O由反应式可看出,镁的永硬全部转化为等量的溶解度很大的钙的永硬,而负硬则转化为等量的氢氧化钠、碱度,所以水中的碱度没有除去。
石灰加入量可按下式估算[CaO]=28/☪1{[CO2]+[Ca(HCO3)2]+2[Mg(HCO3)2+ ]}式中 [CaO]——需投加的工业石灰量,mg/L;[CO2]——原水中CO2的浓度(1/2CO2计),mmol/L;[Ca(HCO3)2]——原水中Ca(HCO3)2的浓度[1/2Ca(HCO3)2计],mmol/L[Mg(HCO3)2]——原水中Mg(HCO3)2的浓度[1/2 Mg(HCO3)2计]mmol/L;☪1——工业石灰纯度,%;28——1/2CaO的摩尔质量,g/mol;——石灰过剩量(1/2CaO计),mmol/L(一般为0.2—0.4mmol/L)。
2.石灰-纯碱软化法石灰软化法只适用于暂硬高、永硬低的水质处理。
软化的几种方法

软化的几种方法:当硬度高、碱度也高的水直接作补充水进入循环冷却水系统后,会使循环水水质处理的难度增大,同时浓缩倍数的提高也受到限制。
另外高硬水也不宜直接作锅炉水的给水。
立式水管锅炉、立式火管锅炉及卧式内燃锅炉的给水总硬度要求在4.0mmol/L以下。
总硬度过高的水不能直接采用离子交换方法达到软化水的要求,经济效果也不好。
碱度过高的水,也不能直接作为锅炉的补给水。
所以上述这类水质均需在进入冷却水系统、锅炉和离子交换软化系统前,首先采用化学药剂方法进行预处理。
(一)软化方法通常对硬度高、碱度高的水采用石灰软化法;对硬度高、碱度低的水采用石灰-纯碱软化法;而对硬度低、碱度高的负硬水则采用石灰-石膏处理法。
1.石灰软化法为避免投加生石灰(CaO)产生的灰尘污染,通常先将生石灰制成消石灰Ca(OH)2(即熟石灰)使用,其反应如下CaO+H2O====Ca(OH)2消石灰投入高硬水中,会产生下列反应Ca(OH)2+CO2====CaCO3 +H2OCa(OH) 2+Ca(HCO3) 2====2CaCO3 +2H2O2Ca(OH) 2+Mg(HCO3) 2====2CaCO3 +Mg(OH) 2+2H2O形成的CaCO3和Mg(OH)2都是难溶化合物,可从水中沉淀析出。
但水中的永硬和负硬却不能用石灰处理的方法除去,因为镁的永硬与负硬和消石灰会产生下列反应MgSO4+Ca(OH) 2====Mg(OH) 2 +CaSO4MgCl2+Ca(OH) 2====Mg(OH) 2 +CaCl2NaHCO3+Ca(OH) 2====CaCO3 +NaOH+H2O由反应式可看出,镁的永硬全部转化为等量的溶解度很大的钙的永硬,而负硬则转化为等量的氢氧化钠、碱度,所以水中的碱度没有除去。
石灰加入量可按下式估算[CaO]=28/☪1{[CO2]+[Ca(HCO3) 2]+2[Mg(HCO3)2+ ]}式中 [CaO]——需投加的工业石灰量,mg/L;[CO2]——原水中CO2的浓度(1/2CO2计),mmol/L;[Ca(HCO3) 2]——原水中Ca(HCO3) 2的浓度[1/2Ca(HCO3) 2计],mmol/L[Mg(HCO3) 2]——原水中Mg(HCO3) 2的浓度[1/2 Mg(HCO3) 2计]mmol/L;☪1——工业石灰纯度,%;28——1/2CaO的摩尔质量,g/mol;——石灰过剩量(1/2CaO计),mmol/L(一般为0.2—0.4mmol/L)。
2023石灰软化选型及计算方法

2023/7/
10
1
(2)石灰-纯碱加入量估算 1)石灰用量估算
[CaO]=56/ε1×([CO2]+ H总+ HMg+ α)
[CaO]-石灰投加量,mg/L;56-CaO的摩尔质量,g/mol; ε1―工业石灰的纯度,%;H总-原水总碱度,mmol/L;
HMg-原水镁硬度,mmol/L; α-石灰过剩量,mmol/L (一般为0.1~0.2mmol/L)
11
1
3、石灰-石膏处理法
对于高碱度的负硬水,即水中总碱度大于总硬度的 水,常以石灰-石膏处理法除去。涉及反应式为:
2NaHCO3+CaSO4+Ca(OH)2═2CaCO3↓+Na2SO4+2H2O 2KHCO3+CaSO4+Ca(OH)2═2CaCO3↓+K2SO4+2H2O
2023/7/
12
1
2023/7/
4
1
三、软化方法及选择 通常对硬度高、碱度高的水采用石灰软化法; 对硬度高、碱度低的水采用石灰-纯碱软化法; 对碱度高的负硬水则采用石灰-石膏处理法。
2023/7/
5
1
1.石灰软化法: (1)基本反应原理
消石灰投入高含量暂时硬度的水中,会产生下列 反应:
Ca(OH)2+CO2═CaCO3↓+H2O Ca(OH)2+Ca(HCO3)2═2CaCO3↓+2H2O 2Ca(OH)2+Mg(HCO3)2═2CaCO3↓+Mg(OH)2↓+2H2O
2023石灰软化选型及计算
石灰软化法
一、工业给水软化的目的 硬度是水质的一个重要指标,通常以水中Ca2+,Mg2+
石灰软化法和石灰纯碱软化法的原理及适用情况

石灰软化法和石灰纯碱软化法的原理及适用情况
1.石灰软化法
-石灰石与水中的钙离子反应,生成溶解度较低的钙碳酸盐(CaCO3)沉淀物。
-同时,石灰石中的氢氧根离子与水中的镁离子(Mg2+)反应,生成镁碳酸盐(MgCO3)沉淀物。
-石灰软化法主要针对碳酸盐硬度,而对非碳酸盐硬度如硫酸钙(CaSO4)等效果较差。
-水中主要硬度成分为碳酸盐硬度,包括碳酸钙和碳酸镁。
-水中灰分较低,没有影响处理效果的杂质。
-水中无需除去其他成分或污染物。
2.石灰纯碱软化法
石灰纯碱软化法是一种改进的软化方法,它在石灰软化法的基础上加入了纯碱(氢氧化钠或氢氧化钾)。
这样,不仅可以去除水中的碳酸盐硬度,还可以去除水中的非碳酸盐硬度。
石灰纯碱软化法的原理如下:
-石灰纯碱软化法首先通过石灰软化的机理去除水中的碳酸盐硬度。
-然后,纯碱中的氢氧根离子与水中的硬度成分如硫酸钙、硫酸镁等反应生成相应的沉淀物。
-石灰纯碱软化法可以去除碳酸盐硬度和非碳酸盐硬度,具有更全面的软化效果。
石灰纯碱软化法的适用情况如下:
-水中同时含有碳酸盐硬度和非碳酸盐硬度。
-水中含有硫酸钙、硫酸镁等非碳酸盐硬度成分。
-水中有其他需要去除的污染物或成分,如铁、锰等。
总结起来,石灰软化法适用于水中主要的碳酸盐硬度,石灰纯碱软化法适用于碳酸盐硬度和非碳酸盐硬度。
选择合适的软化方法要根据水质的具体情况,包括硬度成分、杂质、其他需要去除的成分等因素进行综合考虑。
石灰软化法除硬度

石灰软化法使用石灰软化硬水的方法称为石灰软化法,又称石灰纯碱软化法,在硬水中加入消石灰,使水中的镁生成氢氧化镁沉淀,这样,加入碳酸钠使水中的钙生成碳酸钙而沉淀,硬水即变为软水,利用这种方法可使水中钙浓度降低到10~35ppm 。
其化学反应式如下:CaSO4+Na2CO3> CaC03j +Na2SO4CaCI2+Na2CO3~ CaC03j +2NaClMgSO4+Na2CO® MgCO3+Na2CO3MgCO3+Ca(OH)P CaCO3j +Mg(0H)2 J采用石灰软化法处理高硬度含氟地下水,考察了药剂投量、反应时间对处理效果的影响。
结果表明,在CaO 和Na2CO3 的投量分别为187 和106mg/L 并反应25min 的条件下,再投加10mg/L 的聚合氯化铝铁和0.25mg /L 的PAM 可将出水浊度降至1NUT 以下;若要将出水总硬度分别降至400、300、200mg/L,在略高于理论投药量的条件下,需控制搅拌反应时间分别为25、35、50min ;水中氟化物可通过与软化过程中生成的Mg(OH)2 形成共沉淀而得到有效去除,但由于出水pH 值过高,需进行调节。
华东地区某市因地表水污染严重,计划适度开采高储量的地下水作为饮用水水源(开采量约为5.0X10 m/ d)。
取样分析结果表明,该市地下水清澈透明,但水中硬度和氟化物含量不达标,为保证居民饮水安全,需对该地下水进行软化及除氟处理。
降低水中硬度的常用方法有离子交换法、电渗析法及药剂软化法等。
其中离子交换法和电渗析法均存在造价高、运行费用高等缺点;石灰是药剂软化法中最常用的药剂,其价格较低,但如果用量不当,则会造成出水水质稳定性欠佳,给实际操作管理带来麻烦,因此有必要进行试验确定药剂用量。
去除氟离子的常用方法有电化学法(电凝聚、电渗析)、・49・第23卷第13期中国给水排水www . watergasheat. corn 混凝沉淀法和离子交换法等。