常用无机粉体材料种类及作用

合集下载

【精品文章】涂料中的颜料、填料粉体种类及其性能

【精品文章】涂料中的颜料、填料粉体种类及其性能

≥325 有磁性、导电性,有良好的耐酸、耐碱性及耐水性 3~8 氧化铁黄 300~400 贮存稳定性好,有光泽、耐候性良好等 2~6 氧化铁红 300~600 对日光、大气、碱和稀酸稳定,遮盖力高,耐候 10~25 锌钡黄 有机无机复合颜料,耐碱、耐光、耐溶剂、耐热、耐磨,分散性及着色 力好 8~10 钴蓝 色泽鲜明,耐候,耐酸碱及耐溶剂性极优,耐热达 1 200 ℃,能制造不 燃性涂料 5~8 尖晶石颜料 325 耐氧化、还原性优,分散性及耐热性极好,耐光,耐溶剂及耐候性好, 可制造伪装涂料,外用卷材涂料和工业涂料等
碳酸钙 400~1 250 有化学活性,减少涂膜起泡,防霉、阻燃 15~30 硅微粉 400~800 耐蚀,绝缘,化学稳定性优,用于浇注,灌封,塑料及包封等材料 30~55 白云母粉 600~800 钙镁复合岩,耐光耐热耐候 20~25 石英粉 300~800 提高涂膜硬度,有绝缘性 20~40 石墨粉 250~1250 有耐磨、导电和导热等功能 5~15 特种硅酸盐 片径厚 1~100 nm 片状结构的无机硅酸盐抗老化,防龟裂,保涂膜内颜料的颜色长久不褪
5~8 为了满足涂料的应用要求,往往会添加多种颜料,合理的复配颜料可以 产生协同效果性能让涂料更加优秀。涂料工艺学涉及学问众多,本篇只对 颜料、填料常见的粉体材料及其基本性能做简单介绍,更多的内容可以继 续关注“ 表格资料数据编辑:Focus tips:感谢大家的阅读,本文由我司收集整编。仅供参阅!
适量 效应颜料 铝粉 片状粒子厚度 0.1~0.2μm,直径 0.5~200 μm 对光反射率高有闪烁性和随角异色效应 适量 云母珠光颜料 粒径 15~200 μm 优异的闪烁性和随角异色效应,色彩装饰效果优美 适量 防锈颜料 磷酸锌好 >325 匹配性突出,防锈效果 2~4 云母氧化铁 325~600 防水及气体渗透优,耐候、耐蚀、耐温、与活性防锈颜料配合后产生良 好的协同效应 10~20 三聚磷酸铝 ≥325 无毒、防锈、耐蚀、耐酸碱盐效果突出

锶铁钼粉体

锶铁钼粉体

锶铁钼粉体是一种无机非金属材料,通常用于制造高温超导材料、磁性材料和电子器件等领域。

锶铁钼粉体的制备方法有多种,其中一种常用的方法是化学共沉淀法。

该方法是将锶、铁和钼的盐类溶解在水中,然后加入沉淀剂,如氨水或氢氧化钠等,使溶液中的离子形成沉淀物。

经过滤、洗涤和干燥等处理后,即可得到锶铁钼粉体。

锶铁钼粉体的性质取决于其化学成分和制备工艺。

通过调整原料的配比、沉淀剂的种类和浓度、沉淀温度和时间等参数,可以控制锶铁钼粉体的晶体结构和形貌。

在高温超导材料领域,锶铁钼粉体可以与其他超导材料复合,制备出具有优异性能的高温超导材料,如超导线圈、超导磁体和超导电缆等。

这些超导材料在电力系统、医疗设备和科学研究等领域有广泛应用。

此外,锶铁钼粉体还可以用于制造磁性材料和电子器件等。

由于其特殊的磁学性能和电子性能,锶铁钼粉体在磁记录、电子存储和传感器等领域也有广泛的应用前景。

总之,锶铁钼粉体是一种重要的无机非金属材料,在高温超导材料、磁性材料和电子器件等领域具有广泛的应用前景。

随着科学技术的不断发展和新材料的不断涌现,锶铁钼粉体的应用领域将会进一步拓展。

有机抗粘连剂种类及作用

有机抗粘连剂种类及作用

有机抗粘连剂种类及作用小伙伴们!今天咱就来聊聊有机抗粘连剂的种类及作用哈。

一、聚烯烃类抗粘连剂。

这类抗粘连剂那可是相当常见的哟。

像聚乙烯、聚丙烯这些都属于聚烯烃类。

它们的作用可不小呢。

比如说聚乙烯,它可以在一些塑料薄膜制品中发挥大作用。

当薄膜在生产或者使用过程中,很容易因为相互接触而粘连在一起,这时候聚乙烯抗粘连剂就像一个小小的“隔离卫士”,在薄膜表面形成一层很薄的隔离层,让薄膜之间不会轻易地粘到一块儿,这样就方便了薄膜的加工、包装和使用啦。

而聚丙烯抗粘连剂呢,它在一些需要较高耐热性的场合就大显身手啦。

因为聚丙烯本身有比较好的耐热性能,所以制成的抗粘连剂在高温环境下也能稳定地发挥作用,保持良好的抗粘连效果,让塑料制品在高温加工或者使用时也不会因为粘连而出现问题哟。

二、硅酮类抗粘连剂。

硅酮类抗粘连剂也是很厉害的哟!它具有很低的表面能,啥意思呢?就是它不容易和其他物质粘在一起。

想象一下,它就像一个特别光滑的“滑梯”,其他物质碰到它就很容易滑走,不会粘在上面啦。

这种抗粘连剂常用于一些对透明度要求比较高的塑料包装材料中。

因为它不仅能很好地防止粘连,还不会影响包装材料的透明度,让里面的东西一目了然。

比如说一些食品包装,用了硅酮类抗粘连剂的包装薄膜,既可以保证食品不会因为包装粘连而受到损坏,又能让消费者清楚地看到食品的样子,是不是很棒呀?而且硅酮类抗粘连剂还具有良好的耐候性,不管是在炎热的夏天还是寒冷的冬天,它都能稳定地发挥抗粘连作用呢。

三、脂肪酸酰胺类抗粘连剂。

这一类抗粘连剂在塑料加工行业也是广泛应用的哟。

常见的有硬脂酸酰胺、油酸酰胺等。

它们的作用原理呢,主要是通过在塑料表面形成一层润滑的薄膜,来降低塑料之间的摩擦力,从而达到抗粘连的效果。

就好比给塑料表面涂了一层润滑油一样,让它们之间变得“滑溜溜”的,不容易粘在一起。

硬脂酸酰胺常用于一些聚氯乙烯、聚乙烯等塑料的加工中,它可以改善塑料的加工性能,使塑料在挤出、注塑等加工过程中更加顺利,减少因为粘连而造成的加工困难。

无机非金属材料概论

无机非金属材料概论

无机非金属材料概论无机非金属材料(inorganicnonmetallicmaterials)是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。

是除有机高分子材料和金属材料以外的所有材料的统称。

无机非金属材料的提法是20世纪40年代以后,随着现代科学技术的发展从传统的硅酸盐材料演变而来的。

无机非金属材料是与有机高分子材料和金属材料并列的三大材料之一。

常见种类二氧化硅气凝胶、水泥、玻璃、陶瓷。

成分结构在晶体结构上,无机非金属的晶体结构远比金属复杂,并且没有自由的电子。

具有比金属键和纯共价键更强的离子键和混合键。

这种化学键所特有的高键能、高键强赋予这一大类材料以高熔点、高硬度、耐腐蚀、耐磨损、高强度和良好的抗氧化性等基本属性,以及宽广的导电性、隔热性、透光性及良好的铁电性、铁磁性和压电性。

硅酸盐材料是无机非金属材料的主要分支之一,硅酸盐材料是陶瓷的主要组成物质。

应用领域无机非金属材料品种和名目极其繁多,用途各异,因此,还没有一个统一而完善的分类方法。

通常把它们分为普通的(传统的)和先进的(新型的)无机非金属材料两大类。

传统的无机非金属材料是工业和基本建设所必需的基础材料。

如水泥是一种重要的建筑材料;耐火材料与高温技术,尤其与钢铁工业的发展关系密切;各种规格的平板玻璃、仪器玻璃和普通的光学玻璃以及日用陶瓷、卫生陶瓷、建筑陶瓷、化工陶瓷和电瓷等与人们的生产、生活休戚相关。

它们产量大,用途广。

其他产品,如搪瓷、磨料(碳化硅、氧化铝)、铸石(辉绿岩、玄武岩等)、碳素材料、非金属矿(石棉、云母、大理石等)也都属于传统的无机非金属材料。

新型无机非金属材料是20世纪中期以后发展起来的,具有特殊性能和用途的材料。

它们是现代新技术、新产业、传统工业技术改造、现代国防和生物医学所不可缺少的物质基础。

主要有先进陶瓷(advancedceramics)、非晶态材料(noncrystalmaterial〉、人工晶体(artificialcrys-tal〉、无机涂层(inorganiccoating)、无机纤维(inorganicfibre〉分类传统陶瓷:其中,瓷是粉体的致密烧结体,较之较早的陶,其气孔率明显降低,致密度升高。

碳酸钙(CaCO3)在塑料中的应用及其具体要求

碳酸钙(CaCO3)在塑料中的应用及其具体要求

1、碳酸钙在塑料工业中的地位与作用众所周知,碳酸钙无论是重质碳酸钙还是轻质碳酸钙,是塑料工业中使用数量最大、应用面最广的粉体填料。

我国塑料制品的年产量已超过3000万吨,以塑料用粉体填料数量占塑料制总量10%,而碳酸钙在各种粉体填料总量的70%计算,目前我国塑料工业每年使用的各种规格的碳酸钙至少在210万吨以上。

随着塑料原料——合成树脂价格不断上升,特别是从2003年下半年开始的涨价狂潮暴发以来,合成树脂的市场价格已经上升50%以上,如低密度聚乙烯已上升到每吨万元以上,拉丝级聚丙烯已上升至九千多元/吨。

众多塑料加工企业的目光不约而同地落到廉价的非矿粉体材料上面,特别是碳酸钙以价格低廉、使用方便、副作用少等众多优点成为塑料加工行业首选的增量材料,为碳酸钙行业带来巨大商机。

碳酸钙作为廉价的填充材料其经济性是不言而喻的。

每年使用二百多万吨非金属矿产品代替以石油为原料的合成树脂,相当于国家少建2~3座大型石油化工厂,不仅可以节约数百亿元的投资,而且节约下来的是地球上不可再生且日益成为国家必争的战略资源的石油,对社会、对国家乃至对整个地球人类都是不可磨灭的贡献!而对于塑料加工行业来说,每多使用1%的碳酸钙等非矿粉体材料,就等于降低100元左右的原材料成本,而100元的差价往往会成为盈亏的分界线,会成为市场竞争力的分水岭,成为企业生存和发展的关键!多年的应用实践表明,碳酸钙不仅可以降低塑料制品的原材料成本,而且还具有改善塑料材料某些性能的作用,例如PP编织袋的色泽由半透明变为白色以及表面极性增加有利于印刷等。

近几年来的研究更是获得可喜成果,多家大专院校和科研单位的研究成果表明,达到一定细度的碳酸钙在使用得当时,可显著提高基体塑料的抗冲击性能,即碳酸钙可作为塑料材料的抗冲改性剂使用。

如清华大学高分子研究所研制的HDPE/CaCO3复合材料(重量比为1:1),其缺口冲击强度可达基体塑料的十倍左右,见表1。

南京工业大学材料科学与工程学院的研究成果也证明了这一点,均聚PP/ 碳酸钙复合材料的缺口冲击强度较基体塑料提高一倍,见表2。

无机粉体在塑料改性中的应用

无机粉体在塑料改性中的应用

市场前景
1 2
市场需求持续增长
随着人们对环保和健康的关注度不断提高,对无 机粉体改性塑料的需求也在持续增长。
竞争格局激烈
无机粉体改性塑料市场竞争激烈,企业需要加强 技术创新和品质策的加强和技术的不断进步, 无机粉体改性塑料行业将向绿色化、智能化方向 发展。
层状无机粉体在塑料改性中的应用
层状无机粉体具有独特的层状 结构和可调的物理化学性质, 因此在塑料改性中具有独特的 应用价值。
层状无机粉体可以作为塑料的 增稠剂、触变剂和流变助剂, 改善塑料的加工性能和成型性 能。
层状无机粉体还可以作为塑料 的阻燃剂、电磁屏蔽材料和抗 菌剂等,提高塑料的功能性。
纤维状无机粉体在塑料改性中的应用
无机粉体在塑料改性中的 应用
• 引言 • 无机粉体在塑料改性中的作用 • 无机粉体在塑料改性中的实际应用 • 无机粉体在塑料改性中的挑战与前景
01
引言
主题简介
• 无机粉体是一种广泛应用于塑料改性的填料,通过添加无机粉体,可以改善塑料的物理性能、加工性能和成本效益。
无机粉体的种类和特性
种类
无机粉体包括碳酸钙、滑石粉、硅灰石、云母粉等,不同种类的无机粉体具有 不同的性质和用途。
未来发展方向
01
02
03
加强技术创新
通过技术创新,提高无机 粉体改性塑料的性能和降 低生产成本,满足市场需 求。
拓展应用领域
将无机粉体改性塑料应用 到更广泛的领域,如汽车、 建筑、电子等。
推进绿色化发展
加强环保和安全管理,实 现无机粉体改性塑料的绿 色化生产和使用。
THANKS
感谢观看
特性
无机粉体具有高填充性、低成本、环保无毒、稳定性好等特性,能够显著降低 塑料的收缩率、提高塑料的刚性、改善塑料的加工性能和降低生产成本。

腻子的原材料

腻子的原材料

腻子的原材料
腻子,又称填缝剂,是一种用于填补墙面、天花板等建筑物表面缝隙和不平整处的材料。

它的主要作用是修补和平整墙面,以便进行后续的涂料施工。

腻子的原材料种类繁多,不同类型的腻子所需的原材料也有所不同。

下面将介绍一些常见的腻子原材料。

1. 石膏粉,石膏粉是制作腻子的主要原料之一。

它是由石膏矿石经过研磨加工而成,具有良好的粘结性和耐水性。

石膏粉可以有效填补墙面缝隙,使墙面更加平整。

2. 硅酸钙,硅酸钙是一种无机粉体材料,常用于制作腻子。

它具有很强的吸湿性和粘结性,可以增加腻子的附着力和硬度,提高墙面的平整度和耐久性。

3. 纤维素,纤维素是一种天然的有机物质,常用于改良腻子的性能。

它可以增加腻子的韧性和抗裂性,防止墙面出现开裂和起壳现象。

4. 起壳剂,起壳剂是一种用于防止腻子表面起壳的添加剂。

它可以改善腻子的抗水性和耐久性,延长墙面的使用寿命。

5. 塑化剂,塑化剂是一种用于改善腻子施工性能的添加剂。

它可以提高腻子的延展性和流动性,使施工更加顺畅和高效。

6. 防霉剂,防霉剂是一种用于防止腻子发霉的添加剂。

它可以有效抑制霉菌的生长,保持墙面清洁和健康。

除了上述原材料外,制作腻子还需要适量的水和助剂。

在实际施工中,可以根据需要对腻子的配方进行调整,以满足不同墙面的要求。

总的来说,腻子的原材料种类繁多,每种原材料都起着不可替代的作用。

合理选择和搭配原材料,可以制作出质量优良的腻子,为墙面装饰提供坚实的基础。

希望本文对您了解腻子的原材料有所帮助。

应用无机化学:第一章 新型无机材料概述

应用无机化学:第一章 新型无机材料概述
• 20世纪90年代开始,进入纳米陶瓷阶段——第三阶段
✓ 粉体原料的粒度是纳米量级的,显微结构中的晶粒、晶界、气孔、缺陷分布均在纳米尺度。 ✓ 纳米陶瓷表面和界面非常大,晶界对材料性能其主导影响作用 ✓ 纳米陶瓷是当前陶瓷研究的一个重要趋向,将促使陶瓷从性能到应用都提高到崭新的阶段 9
现代社会的合成材料
钇铝石榴石激光材料,氧化铝、氧化钇透 明材料和石英系或多组分玻璃的光导纤维 等
金 属
高温结构陶瓷
高温氧化物、碳化物、氮化物及硼化物等 难熔化合物

超硬材料
碳化钛、人造金刚石和立方氮化硼等

人工晶体
铌酸锂、钽酸锂、砷化镓、氟金云母等
生物陶瓷
长石质齿材、氧化铝、磷酸盐骨材和酶的
载体等
21
无机复合材料
陶瓷基、金属基、碳素基的复合材料
对人体有较好的适应性
心瓣膜、人造关节等
23
硬度大、耐磨损
高温炉管
透明、耐高压 氧化铝陶瓷制品




熔点高
24
氧化铝陶瓷球磨罐
星式氧化铝陶瓷球磨机
25
高压钠灯是发光效率很高的一种电光源,光色 金白,在它的灯光下看物清晰,不刺眼。平均 寿命长达1万小时~2万小时,比高压汞灯寿命 长2倍,高过白炽灯的寿命10倍,是目前寿命 最长的灯。早在20世纪30年代初,人们就已经 知道利用钠蒸气放电可获得一种高效率的光源, 但一直到1960年,高压钠灯才呱呱坠地,后经 不断发展改进,才得以实际应用。
2014级本科生选修课程
应用无机化学
课程内容
第一章 新型无机材料概述
• 新型无机材料发展概况 • 新型无机材料特点 、分类 • 新型无机材料应用领域

粉体性质

粉体性质
鉴于以上原因,材料学、无机非金属材料、冶金 、化学工程、环境等相关专业学生有必要学习“粉体 工程”课程。
2020/8/9
二、粉体工程研究的内容、意义
人类赖以生存、活动、利用的资源,除水、石油、空 气等单相流体外都存在“粒度化小”和“颗粒处理”的问 题,前者构成“粉体工程学”(Powder Technology or Powder Engineering),后者构成“颗粒学”(Particulate) 。例如矿产资源从开采到各有价成分的分离、回收和利用 都属于粉体工程范畴。水泥、玻璃、陶瓷以及耐火材料等 的生产同样离不开粉体处理。粉碎是粉体工程中的主要研 究内容,此外还有颗粒性质、颗粒传输、固液(气)分离 等。
2020/8/9
一、开课目的
科学技术发展至近代,几乎所有的工业部门均涉 及到粉粒体处理过程。人类赖以生存、活动、利用的 资源,除水、石油、空气等单相流体外都存在“粒度 化小”和“颗粒处理”的问题,例如矿产资源从开采 到各有价成分的分离、回收和利用都离不开粉体制备 技术与设备。水泥、玻璃、陶瓷以及耐火材料等的生 产同样离不开粉体处理。各种材料的性能在很大程度 上取决于材料粒度、形状、表面特性等性质,而这些 又与粉体制备技术和设备有关。
在定义中用“相近”一词,使定义更有一般性; (4)将待测颗粒的某种物理特性或物理行为与同质球体 作比较时,有时能找到一个确定的直径的球与之对应, 有时则需一组大小不同的球的组合与之对应,才能最相 近(例如激光粒度仪)。
由于所采用的测定方法不同,目前出现的表示方法 主要有以下几种(详见表1-2)。 (1)用指定的特征线段表示;如定方向径dF,定方向等 分径(Martin径)dM,定向最大径 (2)用算术平均直径表示; (3)用几何特征的平均值表示; (4)用等效直径表示,即某种图形的当量直径;

第三章 化妆品原料-基本成分-粉类及添加剂保湿剂2013

第三章 化妆品原料-基本成分-粉类及添加剂保湿剂2013

改善:应养成早睡早起的习
惯,让睡眠充足、并多喝水。
鼻头痘:
状况:通常是胃火过大,消
化系统异常引起。
改善:少吃冰冷食物,寒性
食物容易引起胃酸分泌,造 成胃火过大。
眼头痘:
状况:通常是肝脏功能不好
引起。
改善:生活作息要正常、避
免熬夜,尽量在11点前上床 睡觉。
印堂痘:
状况:出现在两眉中间的痘
痘,通常有胸闷、心律不齐、 心悸等毛病。
参考价格:
50ML:10元 100ML:10元 250ML:22.50元
自制保湿水:V(glycerol):V(pure water)=1:20
DIY蜂蜜保湿水
做法: 将1茶勺蜂蜜,10毫升甘油,100毫升水混合,搅
拌均匀便可以了。 因为蜂蜜可以维持肌肤水分和油分平衡,而保湿效果超强 的甘油可以将水分和营养成分牢牢锁在肌肤里,使水分不易流 失。
将溶于水的组分溶于水中,加热,加入粉料,制成水 相。将其他成分混合,加热溶解,制成油相。将水相加入 油相,均匀乳化分散,冷却后加入香精等。
化妆品
是以天然、合成或者提取的各种具有不同作用 的物质作为原料,经加热、搅拌和乳化等生产程 序加工而成的化学混合物质。
以涂抹、喷、洒或者其他类似方法,施于 人体(皮肤、毛发、指趾甲、口唇齿等),以达到 清洁、保养、美化、修饰和改变外观或修正人体气 味,保持良好状态为目的的精细化工品。
粉底液 配方
精制水 滑石粉 聚乙二醇 高岭土 聚氧乙烯油酸酯 Span-85 十六醇 49.2% 6.0% 5.0% 3.0% 1.0% 1.0% 0.3% 液体石蜡 20.0% 二氧化钛 6.0% 丙二醇 5.0% 硬脂酸 2.0% 三乙醇胺 1.0% 胶体硅酸镁铝 0.5% 香精色素防腐剂 适量

涂料用填料介绍及应用

涂料用填料介绍及应用

涂料用填料介绍及应用涂料是一种常见的工业原材料,具有广泛的应用领域。

填料是涂料中的重要组成部分,起到增加涂料厚度、调节流变性能、改善涂层性能等作用。

以下是填料的介绍及应用。

一、填料的种类1.粉体填料:如钛白粉、滑石粉、滑石、云母等。

2.纤维填料:如玻璃纤维、碳纤维、苏打纤维、丝瓜纤维等。

3.颗粒填料:如纳米颗粒、微球、沙石粉等。

4.有机填料:如胶粉、树脂、蜡等。

二、填料的应用1.增加涂料厚度:填料能够在涂料中形成体积,增加涂料的厚度,提高涂膜的覆盖性和遮盖力。

常用的填料有滑石粉、钛白粉等。

2.调节流变性能:填料能够改变涂料的流变性能,使涂料具有较好的均匀性、稳定性和涂布性。

常用的填料有纳米颗粒、微球等。

3.改善涂层性能:填料能够改善涂层的硬度、耐磨性、耐候性等性能,使涂层具有良好的保护效果。

常用的填料有碳纤维、滑石等。

4.调节涂料颜色:填料能够调节涂料的颜色,使涂料具有丰富的色彩选择。

常用的填料有颜料颗粒、有机颗粒等。

5.降低涂料成本:填料能够降低涂料的成本,提高涂料的经济性。

常用的填料有滑石、云母等。

三、填料在不同涂料中的应用1.水性涂料中的填料应用:水性涂料中的填料一般要求具有较好的分散性和保湿性,常用的填料有滑石粉、颜料颗粒等。

2.油性涂料中的填料应用:油性涂料中的填料一般要求具有较好的耐磨性和耐候性,常用的填料有钛白粉、滑石等。

3.高温涂料中的填料应用:高温涂料中的填料一般要求具有较好的耐高温性和耐腐蚀性,常用的填料有玻璃纤维、硅石粉等。

4.防腐涂料中的填料应用:防腐涂料中的填料一般要求具有较好的抗酸碱性和抗腐蚀性,常用的填料有钛白粉、苏打纤维等。

四、填料的选择与注意事项1.根据涂料的需要选择合适的填料,考虑填料的物理化学性质和涂料性能的匹配性。

2.注意填料的分散性和稳定性,避免填料在涂料中出现聚集或沉淀现象。

3.控制填料的使用量,过多的填料可能会导致涂料的粘度增加和涂膜的均匀性变差。

4.注意填料的安全性,避免使用对人体有害的填料,及时清理涂料中的有毒或有害填料残留。

最新常用无机粉体材料种类及作用

最新常用无机粉体材料种类及作用

常用无机粉体材料种类及作用目前,在中国每年至少有400万吨的无机粉体材料作为原料的一部分被用于塑料制品的生产。

用无机粉体材料替代部分石油产品,一方面,每年可以节约数百万吨石油;另一方面,对于所生成的塑料制品而言,不但有利于降低原材料成本,而且可以使填充塑料材料的某些性能按照预定的方向得到改善,从而提高塑料制品的巿场竞争力。

常用无机粉体材料种类及作用据统计,中国500余家碳酸钙厂家生产的约500万吨产品中,有一半是销往塑料行业的。

此外,滑石粉、煅烧高岭土、硅灰石粉等多种无机粉体材料也被广泛应用,有的甚至成为功能性塑料材料不可缺少的组成部分。

碳酸钙碳酸钙是塑料加工时用得最广、用量最大的无机粉体填料。

据中国无机盐工业协会钙镁分会统计,每年用于塑料填充的碳酸钙总量在二百多万吨,是各种用途中所占份额最大的,约50%左右。

根据加工方法不同,碳酸钙分为轻质和重质两种。

轻质碳酸钙(简称轻钙)是由石灰石经煅烧、消化、碳化而成的,其间经历了化学反应,而重质碳酸钙是经研磨(干法或湿法)而成的,只有粒径大小的变化而无化学反应过程。

目前在塑料薄膜中使用的碳酸钙都是1250目的重质碳酸钙,已大量用于PE包装袋的生产,在农用地膜中因透光性受到影响,虽然可以使用,但添加量较小。

1)重钙的细度对PE薄膜力学性能的影响十分明显,见表1。

表1 重质细度对PE薄膜力学性能的影响2)碳酸钙粒子的分散对PE薄膜的性能具有决定性作用PE薄膜生产企业对重钙的添加量十分关心,希望添加量越多越好,但同时力学性能、耐老化性能、透光性都不要受到过大的影响。

特别是在农用地膜中到底能够使用多少碳酸钙是非常值得努力探讨的问题。

宝鸡云鹏塑料科技有限公司对此进行了有益的探索,并取得喜人的成果。

表2列出纯LLDPE地膜及分别添加10%、15%、20%、33%云鹏公司生产的纳米改性塑料复合材料的LLDPE地膜的力学性能。

由表2所列数据可以看出,添加10%以上直至33%纳米改性塑料复合材料的LLDPE地膜较之纯LLDPE地膜,各项力学性能相差不大。

小学无机涂料知识点总结

小学无机涂料知识点总结

小学无机涂料知识点总结无机涂料是一种用于涂料表面修饰的材料,通常由无机颜料、稀释剂和增塑剂等混合而成。

无机涂料的特点是耐久、耐候、耐高温,具有良好的防腐蚀性能和装饰性能。

在小学化学课程中,无机涂料作为一种常见的材料,有必要了解其基本知识点和特性。

1. 无机涂料的基本成分无机涂料的主要成分包括颜料、稀释剂和增塑剂。

其中,颜料是无机涂料的主要成分,它决定了涂料的颜色和覆盖性能。

稀释剂是用来调节涂料的流动性和粘度,使涂料更易施工和干燥。

增塑剂则是用来提高涂料的柔韧性和耐久性,使涂料更加耐用。

2. 无机涂料的分类根据不同的用途和成分,无机涂料可以分为多种类型,常见的有水性涂料、油性涂料、乳液涂料等。

水性涂料是以水为溶剂的涂料,对环境友好,干燥速度快,但耐久性相对较差;油性涂料是以溶剂为基础的涂料,干燥速度较慢,但耐久性好;乳液涂料是一种以乳胶为基础的涂料,对健康环保,色彩鲜艳,但耐久性较差。

这些不同类型的涂料在实际应用中有着各自的优缺点。

3. 无机涂料的特性无机涂料具有许多特性,如优异的密封性和防腐蚀性能、良好的耐候性和耐磨性、高温稳定性等。

这些特性使得无机涂料在工业生产和建筑装饰中得到广泛应用,如在汽车制造、机械设备、建筑材料等领域都有广泛应用。

4. 无机涂料的应用范围无机涂料在建筑装饰、机械设备、汽车制造、家具生产等领域都有着重要的应用。

在建筑装饰中,无机涂料可以用于外墙涂料、内墙涂料、地板涂料等;在机械设备中,无机涂料可以用于防腐蚀涂料、高温涂料、防火涂料等;在汽车制造中,无机涂料可以用于车身漆、车窗涂料等。

这些应用领域的不同,对涂料的要求也有所不同。

5. 无机涂料的环保性无机涂料作为一种涂料材料,在其生产和应用过程中都会产生一定的环境污染。

为了提高涂料的环保性,广泛使用低VOC(挥发性有机化合物)的无机涂料,减少对环境的污染。

同时,开发和应用水性无机涂料,也是提高涂料环保性的重要途径。

总的来说,无机涂料作为一种重要的涂料材料,在工业生产和建筑装饰中有着广泛的应用。

气相法白炭黑

气相法白炭黑

气相法白炭黑又称气相二氧化硅、烟化二氧化硅,是利用硅烷的卤化物,如四氯硅烷(SiCl4)、甲基三氯硅烷(CH3SiCl4)等,是在氢氧燃烧火焰中高温水解制得的一种无定形二氧化硅。

其原生粒子粒径为5-50nrn,比表面积一般为50-400m2/g。

无机纳米粉体材料气相法白炭黑以其优异的补强、增稠和触变性能和粒子的纳米效应,广泛地应用于有机硅材料、涂料、油漆、胶黏剂、电器、电子、造纸、化妆品、医药等领域。

近年来,气相法白炭黑作为高分子材料的添加剂、补强剂,对聚合物性能的提高和改善越来越受到科研工作者的关注。

1 气相法白炭黑的制备生产气相法白炭黑的硅烷卤化物原料目前主要有SiCl4和CH3SiCl3两种。

1941年,德国Degussa公司成功开发了气相法白炭黑的生产技术,使用的卤化物就是SiCl4。

此外,随着全球有机硅工业的发展,有机硅甲基单体生产的副产物甲基三氯硅烷(CH3SiCl3)的处理问题成为制约有机硅发展的一大障碍,国际上通常的做法是将副产物作为原料生产气相法白炭黑,为解决CH3SiCl3的堆积和促进有机硅甲基单体工业的良性发展提供了一条新的途径。

气相法白炭黑的制备原理是硅烷卤化物在氢氧焰生成的水中发生高温水解反应,温度一般高达1200-1600℃,然后骤冷,再经过聚集、旋风分离、空气喷射脱酸、沸腾床筛选、真空压缩包装等后处理获得成品。

反应原理如下:SiCl4+2H2+O2→(高温水解)SiO2+4HClCH3SiCl3+2H2+3O2→(高温水解)SiO2+CO2+3HCl+2H2O成品的质量(粒径、表面积、纯度等)与原料(包括氢气和氧气)的纯度、原材料的配比、进料温度、氢气和氧气的流量、合成炉和分离器的结构与精度等因素有关。

硅烷卤化物的纯度要高,不能含过多的杂质,否则不但会影响成品的色泽,还会导致其使用效果变差。

而原料中的气体也必须经过预处理,使之不含有水分,因为水分的存在会导致硅烷卤化物的水解。

粉体材料相关知识(一)

粉体材料相关知识(一)

63中国粉体工业 2019 No.4粉体材料相关知识(一)纳米纤维素是通过化学、物理、生物或者几者相结合的手段处理纤维得到的直径<100nm,长度可到微米的纤维聚集体。

1.纳米纤维素简介纳米纤维素是通过化学、物理、生物或者几者相结合的手段处理纤维得到的直径<100nm,长度可到微米的纤维聚集体。

它们具有优异的机械性能、巨大的比表面积、高结晶度、良好的亲水性、高透明度、低密度、良好的生物可降解性与生物相容性以及稳定的化学性质,纤维素表面裸露出大量羟基,使纳米纤维素具有巨大的化学改性潜力。

因此,纳米纤维素在生物制药、食品加工、造纸、能源材料、功能材料等领域的应用研究日益受到人们的重视。

纳米纤维素通常还被称为纤维素纳米晶体(cellulose nanocrystals,CNCs;canocrystalline cellulose,NCC)、纳米纤丝纤维素(nanofibrillated cellulose,NFC)、纤维素纳米晶须(cellulose nanowhisker,CNW)、纤维素纳米颗粒(cellulose nanoparticle,CNP)等。

图1 自然界中几种纤维素来源图2 纤维素化学结构式按照纳米纤维素的形貌、粒径大小及原料来源的不同,纳米纤维素主要分为3种类别,如表1所示。

如果在分子水平上对纤维素纳米结构进行设计与剪裁,调控纤维素纳米结构的形成,选择性构筑并组装出纳米结构的纤维素功能材料,发展可控制造纤维素材料纳米结构的定向设计与构筑的理论和方法,在此基础上研发出绿色、高效制备纤维素高值化材料的方法具有重要的研究意义。

中国粉体工业 2019 No.464图3 纳米纤维素制备的两种主要方法图4 制备纳米纤维素的机械处理方法2.2 化学法纤维原料来源不同,得到的纳米纤维素尺寸分布也不同:以棉花、木材、微晶纤维素为原料制备的纳米纤维素粒径分布较窄,宽度5~10 nm,长度100~300 nm,结晶度较高;以细菌、被囊类动物纤维为原料制备的纳米纤维素粒径分布较宽,宽度5~60 nm,长度几微米。

无机粉体 导热系数

无机粉体 导热系数

无机粉体导热系数无机粉体是一类重要的材料,因其具有很高的难燃性、化学稳定性、机械强度和导热性能等特点而得到了广泛应用。

其中导热性能是其重要的特性之一,主要通过材料的导热系数来定量描述。

本文将详细介绍无机粉体导热系数。

导热系数(thermal conductivity)是材料的重要物理性质之一,主要用于描述材料对热的传导能力,通常用λ来表示。

由于热传导主要是由微观尺度上的电子、声子和晶格振动来贡献的,因此材料的物理结构、晶格结构以及缺陷都会对其导热性能产生影响。

一般来说,纯净度高、晶粒尺寸小、晶体结构对称性好的材料具有较高的导热系数。

无机粉体是由大量细小颗粒组成的固体,其导热性能与粒子尺寸、晶体结构、晶格缺陷、晶化程度等因素密切相关。

下面将针对常见无机粉体的导热系数进行详细介绍。

1. 金属氧化物粉体金属氧化物是一类具有多种晶体结构的无机化合物,如红、黄、黑、蓝、绿等色的氧化铁。

其导热系数通常在0.15-3 W/m·K之间,其中氧化铝、氧化钇等高熔点的氧化物导热系数较高。

氧化铝的导热系数可以高达30-50 W/m·K,这主要是由于其具有较高的晶体对称性和结构致密性。

2. 碳化硅粉体碳化硅是一种具有高熔点、高硬度、高耐磨性和高抗氧化性能的陶瓷材料。

该材料的导热系数在100-470 W/m·K之间,高于大多数金属和合金。

这是由于碳化硅具有高度的晶格对称性和晶体致密度,同时还有较高的电子和声子热导率的贡献。

3. 陶瓷粉体陶瓷材料是一类具有高熔点、高硬度、高抗腐蚀性能的无机材料,如氧化物陶瓷(氧化铝、氧化锆)、硼化物陶瓷、氮化硅等。

其导热系数一般在10-50 W/m·K之间,这主要是由于陶瓷材料的晶体结构较为复杂、晶格结构不对称性较低,同时陶瓷材料的缺陷和畸变也会对其导热性能产生影响。

金属材料是一类具有高热导率的材料。

其导热系数可以从1 W/m·K到430 W/m·K不等,这取决于金属的种类和结构。

橡胶用碳酸钙(CaCO3)科普,重质和轻质区别,钙粉碱度的影响

橡胶用碳酸钙(CaCO3)科普,重质和轻质区别,钙粉碱度的影响

橡胶用碳酸钙(CaCO3)科普,重质和轻质区别,钙粉碱度的影响碳酸钙(CaCO3)是一种重要的、用途广泛的无机盐,根据加工方式的不同通常分为重质碳酸钙和轻质碳酸钙。

碳酸钙无论是重质碳酸钙还是轻质碳酸钙,是橡胶工业中使用数量最大、应用面最广的粉体填料。

一、相关概念1、碳酸钙。

是一种无机化合物,白色粉末或无色结晶,无气味、无味,俗称灰石、石灰石、石粉、大理石、方解石,是一种化合物,呈碱性,基本上不溶于水,溶于酸,存在于霰石、方解石、白垩、石灰岩、大理石、石灰华等岩石内,是重要的建筑材料,工业上用途甚广。

2、重钙。

重质碳酸钙又称研磨碳酸钙,简称重钙,是以天然方解石、石灰石、白云石、白垩、贝壳等为原料通过物理方法加工制得。

3、轻钙。

轻质碳酸钙又称沉淀碳酸钙,简称轻钙,是用化学方法加工制得。

4、目数。

是指每平方英寸筛网上的空眼数目,50目就是指每平方英寸上的孔眼是50个,500目就是500个,目数越高,孔眼越多。

二、碳酸钙在橡胶中的应用轻质碳酸钙被广泛填充在天然、丁苯、顺丁、丁腈、乙丙等橡胶之中,碳酸钙的添加对提高改善橡胶制品某些性能以扩大其应用范围有一定作用,在橡胶的加工中碳酸钙可以减少橡胶收缩,改善流变态,控制粘度等用途。

碳酸钙的添加在橡胶制品中起到一种骨架作用,对橡胶制品尺寸的稳定有很大作用。

它可以增加橡胶体积、降低产品成本,提高橡胶的尺寸稳定性,提高橡胶的硬度和刚性,改善橡胶的加工性能,提高橡胶的耐热性,改进橡胶的散光性等作用。

其生产出的工程橡胶在某些方面的强度超过钢材,硬度接近玉石,具有耐磨、耐高温、耐老化的特性,可广泛用于电子、航天、精密机械、仪器、汽车行业等领域。

橡胶工业是碳酸钙的重要应用领域,无论是从国际还是国内情况来看,橡胶工业所用填料应用最广的便是碳酸钙,21世纪以来,世界橡胶产品耗用的无机非金属填料大约为1500万吨,而碳酸钙由于拥有其他填料无可比拟的优势,在所耗用的各种非金属填料中约占70%左右,即达到1000万多吨左右。

涂料用填料介绍及应用

涂料用填料介绍及应用

涂料用填料介绍及应用介绍涂料是一种常见的装饰材料,用于保护和美化建筑、家具等物体表面。

涂料的质量和性能取决于其组成成分,其中填料是涂料中的重要组成部分。

填料可以改善涂料的性能和使用效果,根据不同的需求,涂料中的填料种类和比例都会有所区别。

本文将介绍涂料中常见的填料种类以及它们的应用。

粉体填料1. 无机填料1.1 二氧化钛•优点:抗紫外线、耐候性好、白度高、遮盖力强•应用:用于室外涂料、木器涂料、塑料涂料等1.2 高岭土•优点:增加涂料的附着力、增加硬度和耐磨性、改善涂膜光泽•应用:用于防锈漆、家具漆、地坪漆等1.3 氧化铝•优点:增加涂料的硬度和耐磨性、改善涂膜光泽、抗热老化性能好•应用:用于树脂砂浆、防火涂料、汽车涂料等2. 有机填料2.1 聚合物微球•优点:改善涂料流变性质、提高涂膜光泽和硬度、增加抗冲击性•应用:用于木器漆、金属漆、塑料漆等2.2 聚四氟乙烯•优点:使涂料具备耐腐蚀性和防水性、改善抗污染性•应用:用于防腐漆、船底漆、油漆乳胶等颗粒填料1. 石英颗粒•优点:增加涂料的硬度和耐磨性、改善耐候性、提高防火性能•应用:用于木器漆、水性漆、防火涂料等2. 玻璃颗粒•优点:增加涂料的硬度和耐磨性、提高光反射率、改善涂膜光泽•应用:用于屋顶涂料、地坪漆、道路标线涂料等3. 金属颗粒•优点:提高涂膜的导电性和导热性、阻燃性好、提高耐腐蚀性•应用:用于导电涂料、防腐漆、防爆涂料等纤维填料1. 纤维素纤维•优点:增加涂料的韧性和抗裂性、提高涂膜的伸缩性、改善耐候性•应用:用于内墙涂料、地坪漆、绝缘涂料等2. 玻璃纤维•优点:增强涂膜的韧性和抗冲击性、改善耐候性和耐腐蚀性、提高防水性•应用:用于玻璃钢涂料、金属涂料、汽车涂料等应用案例1. 室内墙面漆•使用二氧化钛作为填料,提高涂料的白度和遮盖力•使用纤维素纤维增加涂膜的韧性和耐候性2. 防水涂料•使用高岭土作为填料,提高涂膜的附着力和硬度•使用聚四氟乙烯增加涂料的防水性能3. 木器漆•使用聚合物微球作为填料,改善涂料的流变性质和光泽度•使用石英颗粒增加涂膜的硬度和耐磨性4. 建筑外墙涂料•使用无机填料如氧化铝、石英颗粒等增加涂料的耐候性和防火性能•使用玻璃纤维增强涂膜的韧性和抗冲击性综上所述,填料在涂料中发挥着重要作用,可以改善涂料的性能和使用效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用无机粉体材料种类及作用目前,在中国每年至少有400万吨的无机粉体材料作为原料的一部分被用于塑料制品的生产。

用无机粉体材料替代部分石油产品,一方面,每年可以节约数百万吨石油;另一方面,对于所生成的塑料制品而言,不但有利于降低原材料成本,而且可以使填充塑料材料的某些性能按照预定的方向得到改善,从而提高塑料制品的巿场竞争力。

常用无机粉体材料种类及作用据统计,中国500余家碳酸钙厂家生产的约500万吨产品中,有一半是销往塑料行业的。

此外,滑石粉、煅烧高岭土、硅灰石粉等多种无机粉体材料也被广泛应用,有的甚至成为功能性塑料材料不可缺少的组成部分。

碳酸钙碳酸钙是塑料加工时用得最广、用量最大的无机粉体填料。

据中国无机盐工业协会钙镁分会统计,每年用于塑料填充的碳酸钙总量在二百多万吨,是各种用途中所占份额最大的,约50%左右。

根据加工方法不同,碳酸钙分为轻质和重质两种。

轻质碳酸钙(简称轻钙)是由石灰石经煅烧、消化、碳化而成的,其间经历了化学反应,而重质碳酸钙是经研磨(干法或湿法)而成的,只有粒径大小的变化而无化学反应过程。

目前在塑料薄膜中使用的碳酸钙都是1250目的重质碳酸钙,已大量用于PE包装袋的生产,在农用地膜中因透光性受到影响,虽然可以使用,但添加量较小。

1)重钙的细度对PE薄膜力学性能的影响十分明显,见表1。

表1 重质细度对PE薄膜力学性能的影响2)碳酸钙粒子的分散对PE薄膜的性能具有决定性作用PE薄膜生产企业对重钙的添加量十分关心,希望添加量越多越好,但同时力学性能、耐老化性能、透光性都不要受到过大的影响。

特别是在农用地膜中到底能够使用多少碳酸钙是非常值得努力探讨的问题。

宝鸡云鹏塑料科技有限公司对此进行了有益的探索,并取得喜人的成果。

表2列出纯LLDPE地膜及分别添加10%、15%、20%、33%云鹏公司生产的纳米改性塑料复合材料的LLDPE地膜的力学性能。

由表2所列数据可以看出,添加10%以上直至33%纳米改性塑料复合材料的LLDPE地膜较之纯LLDPE地膜,各项力学性能相差不大。

在添加量达33%时,即LLDPE薄膜中CaCO3成份已占26.4%时,其力学性能仍能保持较高水平,特别是直角撕裂强度还高于纯LLDPE,不仅全面超过GB 13735-92地膜国际优等品技术指标,而且是以往任何CaCO3填充母料所不可能做到的。

表2 云鹏牌纳米改性塑料复合材料填充LLDPE地膜的性能检测结果3)碳酸钙的环境效应——可环境消纳“可环境消纳塑料”是指能综合利用环境条件的,能适应垃圾处理方式的,既可在所处环境中降解,又可堆肥处理或有利于焚烧且危害较小的塑料。

在可环境消纳塑料制造过程中,碳酸钙是重要的组成部分。

研究结果表明,含有30%重钙的光降解膜,在暴晒时其羰基指数(表徵光降解程度的指标)达到某一数值时比不含碳酸钙的光降解膜要提前数天,对环境消纳有利。

同时碳酸钙的存在无论对PE薄膜填埋后继续降解,还是对焚烧时减少有害物质的生成,保护焚烧装置都非常有利。

和添加淀粉的降解膜相比,碳酸钙回归自然时其化学需氧量CODcr值(用于衡量水中还原性物质污染的程度)为0,而含有15%淀粉的聚乙烯薄膜其CODcr值为96。

滑石粉滑石粉是仅次于碳酸钙的塑料用填料,每年在塑料中的应用数量都在二十万吨以上,而且随着滑石粉的某些物理化学特性得到进一步深入的认识,它的应用范围和数量正在急剧增大。

1)作为农膜保温剂使用含硅元素的矿物,如云母、高岭土和滑石对红外线具有阻隔屏蔽作用。

在农用大棚膜中加入适量的这种矿物粉末可以提高塑料薄膜对红外线的阻隔性,从而减少棚内热量在夜间以红外线辐射形式向棚外散失,提高其大棚的保温性。

轻工业塑料加工应用研究所在上世纪九十年代初的研究成果表明:①云母粉、高岭土、滑石粉和轻质碳酸钙在填充量相同时(细度相近且均经过表面处理),对聚乙烯薄膜力学性能的影响接近,其中高岭土和云母粉填充的薄膜力学性能更好一些。

②含硅元素的填料填充的LDPE薄膜对7-25μm红外线的阻隔作用明显优于不含Si的无机填料——轻质碳酸钙,而云母粉、高岭土和滑石粉的红外线阻隔性相似。

③三种含Si的填料中,云母粉填充的LDPE薄膜的透光率最高,而且接近纯LDPE塑料薄膜的透光率,高岭土和滑石粉的次之,但都高于碳酸钙填充的薄膜。

由于滑石粉价格便宜和便于操作,其透光性和红外光阻隔性虽然不如云母粉和高岭土,但仍能在保持较好透光性的同时提高其保温性,故在农用塑料棚膜中已得到广泛应用。

目前农膜生产厂根据膜的品种(耐老化膜、双防膜、多功能膜等)不同,使用超细滑石粉的量为1%-6%。

2)作为成核剂使用结晶性聚合物如聚乙烯(PE)、聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚酰胺(PA)等,在加工熔融后的冷却定型过程中,一部分大分子将排列有序,称之为结晶。

结晶不仅需要一定的温度和冷却速率,还需要先生成晶核,接着才是晶体的生长。

成核剂有两个主要作用,一是总结晶速率增大,可确保熔融聚合物在冷却过程中更迅速地固化,从而缩短注塑成型循环周期,提高工效;二是平均球晶尺寸下降,拉伸强度、热变形温度和硬度在成核剂作用下都得以增强,透明度增加、浊度下降。

滑石粉作为PE或PP的成核剂使用,首先要求颗粒要小,粒径越小其颗粒数越多,意味着结晶中心越多。

同时生长的晶体数目越多,晶体本身的尺寸越小,整个材料的性能就越好。

同时也要求在熔融状态下滑石粉的分散越彻底越好,团聚现象越轻微越好。

3)以滑石粉为主要填料的透明型填充母料在塑料薄膜中使用碳酸钙虽然可以得到降低成本的效果,但用量大时,薄膜的透明性受到较大影响,引起一些用户的误解。

透明型填充母料针对这一情况,在填料的选择和加工工艺方面做了重大改进,使PE薄膜的透明性有了很大的改进。

表3和表4分别为添加20%和30%透明母料后的薄膜的光学性能和力学性能。

表3 透明母料对HDPE薄膜光学性能的影响表4 透明母料对HDPE薄膜力学性的影响煅烧高岭土由于煤系高岭土中含有可燃物碳及多种形态的水(吸附水、结晶水),在用做塑料薄膜的添加剂时必须先经过煅烧,实现脱水、脱碳,由黑色变成白色的煅烧过程。

在高温下煅烧,矿物不仅要经历脱水、脱碳的历程,而且还有可能在矿物的结晶形态上发生种种变化。

如果莫来石相含量过高,由于莫来石的硬度太高,将会对塑料加工机械设备关键部件——螺筒和螺杆造成严重磨损,带来生产效率下降、产品质量不稳定的不良后果。

此外煅烧高岭土的粒度及分布、白度和价格等因素,也必须加以认真对待。

地球上接收到的来自太阳的光其波长98%集中在0.3-3.0μm范围内,分为紫外光(0.3-0.4μm)、可见光(0.4-0.7μm)和红外光(0.7μm以上)三大部分,其中白天供农作物进行光合作用的可见光是太阳光转化为地球上的热能的主要形式。

夜晚从地球表面向大气层散发热量的主要形式即能量的90%是以7-25μm的红外光辐射的,其峰值为11-13μm。

用农用塑料薄膜扣成的大棚,主要是使棚内温度远高于棚外,使农作物得以早发芽、早成熟,寒冷的季节里棚内作物也照样能够生长。

普通的不含红外光阻隔剂的聚乙烯薄膜对红外光的阻隔能力很差,不足25%,因此虽然在白天太阳光透过棚膜,将能量留在棚内转化成热能,使棚内温度升高,但在夜间由于棚膜对红外光阻隔性差,大部分热量会以辐射形式散失到棚外。

为此只能增加棚膜的厚度,而这种增加不仅提高阻隔性有限,而且受膜的成本限制也不可无限制地加厚。

唯一的办法是将对红外光有阻隔作用的物质加到塑料薄膜中使其红外光辐射到棚膜上时,不能穿透过去,又重新反射回棚内,达到塑料大棚保温的效果。

纯聚乙烯薄膜(厚度0.08-0.1mm)对7-25μm波长范围的红外光透过率为70%-80%,通过添加红外光阻隔剂,可使红外光透过率减少到50%以下。

德国CONSTAB聚合物-化学有限公司可将红外光透过率减少至25%以下;北京巿塑料研究所研制的0.05mm 厚的无机填料填充的聚乙烯薄膜,7-11μm波长范围的红外光透过率可减至36%;河南省焦作巿第一塑料厂生产的0.05mm厚的无机填料填充的聚乙烯薄膜,7-14μm波长范围的红外光透过率可减至39%。

德国CONSTAB聚合物-化学有限公司以中国出产的粘土为原料制成商品牌号为Constab IR 0404 Id的红外光阻隔功能母料,在聚乙烯薄膜中添加7%,使7-14μm范围内的红外光透过率减少至25%以下。

煅烧煤系高岭土添加到聚乙烯塑料中后,填充体系的力学性能优于同等条件下的滑石粉或碳酸钙填充体系,见表5。

表5 不同填料填充聚乙烯塑料薄膜的力学性能通过扣棚实验,表明相对滑石粉和碳酸钙填充的农膜,使用高岭土的农膜透光好,棚内保温效果好,有利于农作物增产。

应用中的共性问题无机粉体材料在塑料中应用已经获得广泛认可,发挥增量、改性和环保效应等三大重要作用,但同时也存在一些问题,制约着无机粉体材料在某些方面的应用。

这些问题在塑料薄膜上也同样存在,需要引起我们的高度重视,并通过技术创新加以解决。

增重问题非金属矿物的密度比合成树脂大很多,通常都要大两三倍,有的如重晶石粉比聚乙烯或聚丙烯的密度要大五倍左右。

尽管矿物填料在质量上一比一地代替了基体塑料,但它所占有的体积仅为同样质量的基体塑料的几分之一。

如果矿物填料的颗粒与基体树脂紧密接触,没有空隙的话,那么这种体积上的差别将直接影响到以面积或长度计量的塑料材料及制品的数量,例如管子和异型材的长度或人造革的面积;也直接影响到注塑成型制品的数量,因为注塑成型的模具型腔的容积是一定的,同样质量的熔体如果体积不同,所能成型的注塑制品的数量就会减少,结果在使用填料降低制品成本、增加经济效益的同时,出现了因长度、面积、制品个数减少的负面效应。

由于聚乙烯薄膜在纵向和径向都受到拉伸,无机粉体材料对PE薄膜密度的影响略显轻微。

例如加有30%重钙的PE薄膜密度不超过1.1 g/cm3,虽然比纯PE薄膜增大15%左右,但较之注塑成型制品,增大的幅度要小得多。

这是因为高分子材料在粘流状态转为定型状态的冷却过程中如被拉伸,必然使大分子之间的空隙加大。

碳酸钙粒子本身是不会形变的,但它们周围的PE大分子是可以形变的,100%的纯PE熔融物料和除碳酸钙外70%的PE熔融物料都要经受同样的纵向拉伸和径向吹胀,可形变的物料仍然都要达到预定的纵向伸长(取决于转速)和径向伸长(取决于膜泡直径),就必须出现更多、更大的空隙。

空隙增多、增大,意味着材料整体密度的下降。

PE薄膜在无机粉体材料添加得比较多时,密度将有所增大,需要从整体上看,按面积计算其成本是否因添加无机粉体材料而有所下降。

由于无机粉体材料的价格通常都远低于高分子树脂,因此考虑到上述因素,通常加入无机粉体材料,特别是碳酸钙,都能使PE薄膜的原材料成本有所下降。

相关文档
最新文档