数学锐角三角函数的专项培优练习题附答案

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、锐角三角函数真题与模拟题分类汇编(难题易错题)

1.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.

(1)求证:直线CP是⊙O的切线.

(2)若BC=2,sin∠BCP=,求点B到AC的距离.

(3)在第(2)的条件下,求△ACP的周长.

【答案】(1)证明见解析(2)4(3)20

【解析】

试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;

(2)利用锐角三角函数,即勾股定理即可.

试题解析:(1)∵∠ABC=∠ACB,

∴AB=AC,

∵AC为⊙O的直径,

∴∠ANC=90°,

∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,

∵∠CAB=2∠BCP,

∴∠BCP=∠CAN,

∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,

∵点D在⊙O上,

∴直线CP是⊙O的切线;

(2)如图,作BF⊥AC

∵AB=AC,∠ANC=90°,

∴CN=CB=,

∵∠BCP=∠CAN,sin∠BCP=,

∴sin∠CAN=,

∴AC=5,

∴AB=AC=5,

设AF=x,则CF=5﹣x,

在Rt△ABF中,BF2=AB2﹣AF2=25﹣x2,

在Rt△CBF中,BF2=BC2﹣CF2=2O﹣(5﹣x)2,

∴25﹣x2=2O﹣(5﹣x)2,

∴x=3,

∴BF2=25﹣32=16,

∴BF=4,

即点B到AC的距离为4.

考点:切线的判定

2.如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC.

(1)求证:∠AEC=90°;

(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;

(3)若DC=2,求DH的长.

【答案】(1)证明见解析;

(2)四边形AOCD为菱形;

(3)DH=2.

【解析】

试题分析:(1)连接OC,根据EC与⊙O切点C,则∠OCE=90°,由题意得

,∠DAC=∠CAB,即可证明AE∥OC,则∠AEC+∠OCE=180°,从而得出

∠AEC=90°;

(2)四边形AOCD为菱形.由(1)得,则∠DCA=∠CAB可证明四边形AOCD是平行四边形,再由OA=OC,即可证明平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);

(3)连接OD.根据四边形AOCD为菱形,得△OAD是等边三角形,则∠AOD=60°,再由

DH⊥AB于点F,AB为直径,在Rt△OFD中,根据sin∠AOD=,求得DH的长.

试题解析:(1)连接OC,

∵EC与⊙O切点C,

∴OC⊥EC,

∴∠OCE=90°,

∵点CD是半圆O的三等分点,

∴,

∴∠DAC=∠CAB,

∵OA=OC,

∴∠CAB=∠OCA,

∴∠DAC=∠OCA,

∴AE∥OC(内错角相等,两直线平行)

∴∠AEC+∠OCE=180°,

∴∠AEC=90°;

(2)四边形AOCD为菱形.理由是:

∵,

∴∠DCA=∠CAB,

∴CD∥OA,

又∵AE∥OC,

∴四边形AOCD是平行四边形,

∵OA=OC,

∴平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);

(3)连接OD.

∵四边形AOCD为菱形,

∴OA=AD=DC=2,

∵OA=OD,

∴OA=OD=AD=2,

∴△OAD是等边三角形,

∴∠AOD=60°,

∵DH⊥AB于点F,AB为直径,

∴DH=2DF,

在Rt△OFD中,sin∠AOD=,

∴DF=ODsin∠AOD=2sin60°=,

∴DH=2DF=2.

考点:1.切线的性质2.等边三角形的判定与性质3.菱形的判定与性质4.解直角三角形.

3.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.

(1)判断DE与⊙O的位置关系,并说明理由;

(2)求证:BC2=2CD•OE;

(3)若

314

cos,

53

BAD BE

∠==,求OE的长.

【答案】(1)DE为⊙O的切线,理由见解析;(2)证明见解析;(3)OE =35

6

【解析】

试题分析:(1)连接OD,BD,由直径所对的圆周角是直角得到∠ADB为直角,可得出△BCD为直角三角形,E为斜边BC的中点,由直角三角形斜边上的中线等于斜边的一半,得到CE=DE,从而得∠C=∠CDE,再由OA=OD,得∠A=∠ADO,由Rt△ABC中两锐角互余,从而可得∠ADO与∠CDE互余,可得出∠ODE为直角,即DE垂直于半径OD,可得出DE为⊙O的切线;

(2)由已知可得OE是△ABC的中位线,从而有AC=2OE,再由∠C=∠C,∠ABC=∠BDC,可得△ABC∽△BDC,根据相似三角形的对应边的比相等,即可证得;

(3)在直角△ABC中,利用勾股定理求得AC的长,根据三角形中位线定理OE的长即可求得.

试题解析:(1)DE为⊙O的切线,理由如下:

连接OD,BD,

∵AB为⊙O的直径,

∴∠ADB=90°,

在Rt△BDC中,E为斜边BC的中点,

∴CE=DE=BE=BC,

∴∠C=∠CDE,

∵OA=OD,

∴∠A=∠ADO,

∵∠ABC=90°,

∴∠C+∠A=90°,

∴∠ADO+∠CDE=90°,

∴∠ODE=90°,

相关文档
最新文档