医学统计学:假设检验
8.医学统计学-假设检验(2学时)

假设检验的基本思想 α和P 假设检验的基本步骤 假设检验的两类错误 α和β 假设检验与可信区间的关系
/ 2,
t
t
/ 2,
t / 2,
x t / 2, Sx
x t / 2, S x x t / 2, S x
2
1
二、正态分布法(Z分布法)
当σ已知或n较大时(n>50),可采用正态分布法 总体率的区间估计:小样本用查表法;大样本,服
σ已知
2018/4/11
标准差与标准误的区别与联系
一、t分布法
标 准 差(S) 标 准 误( S X )
S n
t
1.表示个体变量值的变异度大小,即
( X X ) 2 n 1
1.表示样本均数抽样误差的大小,即样
当σ未知且n较小
X Sx
原 始 变 量 值 的 离 散 程 度 。 公 式 为 : 本均数的离散程度。公式为: S X
双侧置信区间
n较大时(n>50)
从正态分布的用正态近似法估计总体率的置信区间。 一、查表法
X Z / 2 x
X Z x
X Z x
X Z / 2 S x
X Z S x
X Z S x
小样本(n≤50),p较小时,查附表6,直接确定总 体率95%和99%的置信区间。 治疗N=30人,有效者X=5 ,估计有效率95%置信 区间
医学统计学第7版假设检验步骤

医学统计学第7版假设检验步骤
1. 提出原假设(0)和备择假设(1)
- 原假设通常是要被检验的陈述
- 备择假设是原假设被拒绝时要接受的陈述
2. 选择适当的检验统计量及其在原假设为真时的概率分布
3. 确定显著性水平α
- 通常取0.05或0.01,表示拒绝原假设的最大概率
4. 根据样本数据计算检验统计量的观测值
5. 确定拒绝域
- 拒绝域是原假设被拒绝的取值范围
- 通常利用显著性水平α从概率分布中确定拒绝域
6. 进行判断
- 若观测值落在拒绝域内,拒绝原假设
- 若观测值落在保留域内,无法拒绝原假设
7. 陈述结论
以上是我对医学统计学第7版假设检验步骤的总结,没有直接引用书中内容,希望对您有所帮助。
《医学统计学》第六章+参数估计与假设检验

2、该地所有人收缩压的均数可能在什么范围?
医学统计学(第7版)
三、总体均数的区间估计
(一)σ 已知
➢ 如果变量 X 服从均数为 μ、标准差为 的正态分布,则: z
服从标准正态分布。则:
P X 1.96
X 1.96
0.95
(二)σ 未知
1. t 分布
➢ 事实上,总体标准差 通常是未知的,这时我们可以用其估计量S代替 ,但
在这种情况下,( X ) / ( S /
n)
已不再服从标准正态分布,而是服从著名的 t 分布。
William Gosset
不同自由度的t分布图
医学统计学(第7版)
2. 可信区间的计算
S12 S22
n1 n2
2 ,v
医学统计学(第7版)
例题
➢ 例6-4 评价复方缬沙坦胶囊与缬沙坦胶囊对照治疗轻中度高血压的有效性,将102名患
者随机分为两组,其中试验组和对照组分别为54例和48例。经六周治疗后测量收缩压,
试验组平均下降15.77mmHg,标准差为13.17mmHg;对照组平均下降9.53mmHg,标准
样本率的标准差称为率的标准误(standard error of rate),可用来描述样
本率抽样误差的大小。率的标准误越小,则率的抽样误差越小,率的标
准误越大,则率的抽样误差越大。公式为:
p
(1 )
n
2. 率的标准误的估计
在一般情况下,总体率 π 往往是未知的,此时可用样本率 P 来估计总体
标准差与标准误的比较
标 准 差
标 准 误
医学统计学课件:假设检验

统计推断基础
参数估计
用样本数据估计总体参数的方法。
显著性检验
理解显著性检验的基本原理和方法。
假设检验
根据样本数据对总体参数进行检验的方法。
置信区间
掌握置信区间的概念和计算方法。
03
参数假设检验
单参数假设检验
定义
单参数假设检验是当我们只有一个总 体参数需要检验时的假设检验。例如 ,我们可能需要确定一个药物是否对 一组患者的平均血压有降低作用。
应用场景:例如,检验某种新药的疗效是否显著优于安 慰剂。
案例二:两样本t检验
总结词:两样本t检验是一种常用的假设检验方 法,适用于比较两个独立样本的平均数是否存在 显著差异。
详细描述
1. 定义假设:通常包括零假设(H0,即两个样本的 平均数无差异)和对立假设(H1,即两个样本的平 均数存在差异)。
02
假设检验的数学基础
概率基础
概率定义
表示随机事件发生的可能性程度。
概率运算
掌握加法、乘法和条件概率等运算方法。
独立性和互斥性
理解事件之间的独立性和互斥性。
分布基础
分布定义
描述随机变量取值的概率规律。
连续型和离散型分布
理解连续型和离散型分布的概念和特点。
常用分布
掌握常用的分布及其性质,如正态分布、二项分布等。
假设检验步骤
根据符号分布,计算临界值和p值,判断假设是 否成立。
05
假设检验的注意事项与误用
假设检验的注意事项
明确研究目的和背 景
在假设检验前,需要明确研究目 的和背景,以便确定合适的假设 和检验方法。
合理选择样本量和 样本类型
样本量和样本类型的选择对假设 检验的结果具有重要影响。在确 定样本量时,需要考虑研究目的 、研究设计、误差概率等因素。
医学统计学假设检验

❖ 例如,根据大量调查,已知正常成年男性 平均脉搏数为72次/分,现随机抽查了20名 肝阳上亢成年男性病人,其平均脉搏为84 次/分,标准差为6.4次/分。问肝阳上亢男 病人的平均脉搏数是否较正常人快?
❖ 以上两个均数不等有两种可能:
第一,由于抽样误差所致;
第二,由于肝阳上亢的影响。
例如
已知正常成年男子脉搏平均为72 次/分,现随机检查20名慢性胃炎所致 脾虚男病人,其脉搏均数为75次/分, 标准差为6.4次/分,问此类脾虚男病人 的脉搏快于健康成年男子的脉搏?
2、假设检验的目的
判断是由于何种原因造成的不同,以做出决策。
3、假设检验的原理
反证法:当一件事情的发生只有两种可能A和B,为了肯
定其中的一种情况A,但又不能直接证实A,这时否定另一 种可能B,则间接的肯定了A。
概率论(小概率) :如果一件事情发生的概率很小,那
么在进行一次试验时,我们说这个事件是“不会发生的”。 从一般的常识可知,这句话在大多数情况下是正确的,但是 它一定有犯错误的时候,因为概率再小也是有可能发生的。
α是在统计推断时,预先设定的一个小概率值,是当H0 为真时,允许错误地拒绝H0的概率。
双侧与单侧检验界值比较
(2) 选定适当的检验方法,计算检验
统计量值 t 检验 Z 检验
❖ 设计类型 ❖ 资料的类型和分布 ❖ 统计推断的目的 ❖ n的大小 ❖ 如完全随机设计实验中,已知样本均数
与总体均数比较,n又不大,可用t检验, 计算统计量t值。
(1)建立假设,选定检验水准:
假设两种:一种是检验假设,假设差异完全由抽样误差造 成,常称无效假设,用H0表示。另一种是和H0相对立的备 择假设,用H1表示。假设检验是针对H0进行的。
医学统计学第七、八章 假设检验的基本概念和t检验

S x 1 − x 2 为两样本均数差值的标准误
Sx −x
1
2
⎛1 1⎞ ⎟ = S ⎜ + ⎜n n ⎟ 2 ⎠ ⎝ 1
2 c
在两总体方差相等的条件下,可将两方差合并, 求合并方差(pooled variance) S c2
2 ⎡ ( Σ x1 ) ⎤ 2 ⎢ Σ x1 − ⎥ + n1 ⎦ ⎣ = n1 − 1 + 2 ⎡ ( Σx2 ) ⎤ 2 ⎢Σ x2 − ⎥ n2 ⎦ ⎣ n2 − 1
t 检验的应用条件:
① 单样本t检验中,σ 未知且n 较小,样本取自 正态总体; ② 两小样本均数比较时,两样本均来自正态分 布总体,两样本的总体方差相等;若两总体 方差不齐可用t’检验; ③ 两大样本均数比较时,可用Z检验。
1、样本均数与总体均数比较的 t 检验
• 使用范围:用于样本均数与已知总体均数(一 般为理论值、标准值或经过大量观察所得的稳 定值等)的比较。 • 分析目的:推断样本所代表的未知总体均数 μ 与已知总体均数 μ0有无差别。 • 若 n 较大,则 tα .ν ≈ tα .∞ , 可按算得的 t 值用 v = ∞ 查 t 界值表( t 即为 Z )得P值。
回到例子:
2.计算统计量
已知μ0= 3min,n=50, X=4min
4−3 t= = 4 .7140 1 .5 / 50
υ = 50 − 1 = 49
3、确定 P 值,作出统计推断 根据算出的检验统计量如 t、z 值,查 相应的界值表,即可得到概率 P。 P值是在H0成立前提下,抽得比现有样 本统计量更极端的统计量值的概率。 P值越小只能说明:作出拒绝H0 ,接受 H1的统计学证据越充分。
X −μ X −μ 用公式:t = 或z = σX SX
医学统计学总体均数的估计与假设检验

一、 均数的抽样误差与标准误( )
例4.1某市随机抽查12岁男孩100人,得身高均数139.6cm,标准差6.85cm,资料,求标准误?
第三章 总体均数的估计与假设检验
添加副标题
汇报人姓名
均数的抽样误差与标准误
t分布
总体均数的估计
假设检验的一般步骤
t检验
u 检验
两均数的等效检验
正态性检验
两样本方差齐性检验
假设检验时应注意的问题
利用总体均数的可信区间进行假设检验
课堂讨论
第三章 总体均数的估计与假设检验
一、 均数的抽样误差与标准误( )
等效检验的假设
七、两均数的等效检验
H0: | 1- 2| H1: | 1- 2|< 为等效界值,若两总体均数差值在范围内为等效,超过则为不等效。 是推断两种处理效果是否相近或相等的统计方法。 为什么推断两种处理效果是否相近或相等不能用前面所述的假设检验方法?
检验水准、自由度及结果判断同t检验。
=n- 1=25 -1=24 查t界值表(P804),得单侧 t0.05,24 = 1.711 因: t =1.833> t0.05,24 所以:P < 0.05
结论:按照 = 0.05水准,拒绝H0 ,故可认为该山区健康成年男子脉搏高于一般人群。
1
上例如用双侧检验,查表得双侧 t0.05,24 = 2.064
样本含量一定时,增大,则减少,减少则增大,所以, 的确定并不是越小越好,一般取0.05较合理。
结论时,尽可能明确相结合。
02
医学统计学第5章 假设检验思考与练习参考答案

第5章 假设检验思考与练习参考答案一、最佳选择题1. 样本均数比较作t 检验时,分别取以下检验水准,以( E )所取Ⅱ类错误最小。
A.0.01α=B. 0.05α=C. 0.10α=D. 0.20α=E. 0.30α=2. 在单组样本均数与一个已知的总体均数比较的假设检验中,结果t =3.24,t 0.05,v =2.086, t 0.01,v =2.845。
正确的结论是( E )。
A. 此样本均数与该已知总体均数不同B. 此样本均数与该已知总体均数差异很大C. 此样本均数所对应的总体均数与该已知总体均数差异很大D. 此样本均数所对应的总体均数与该已知总体均数相同E. 此样本均数所对应的总体均数与该已知总体均数不同3. 假设检验的步骤是( A )。
A. 建立假设,选择和计算统计量,确定P 值和判断结果B. 建立无效假设,建立备择假设,确定检验水准C. 确定单侧检验或双侧检验,选择t 检验或Z 检验,估计Ⅰ类错误和Ⅱ类错误D. 计算统计量,确定P 值,作出推断结论E. 以上都不对4. 作单组样本均数与一个已知的总体均数比较的t 检验时,正确的理解是( C )。
A. 统计量t 越大,说明两总体均数差别越大B. 统计量t 越大,说明两总体均数差别越小C. 统计量t 越大,越有理由认为两总体均数不相等D. P 值就是αE. P 值不是α,且总是比α小5. 下列( E )不是检验功效的影响因素的是:A. 总体标准差σB. 容许误差δC. 样本含量nD. Ⅰ类错误αE. Ⅱ类错误β二、思考题1.试述假设检验中α与P 的联系与区别。
答:α值是决策者事先确定的一个小的概率值。
P 值是在0H 成立的条件下,出现当前检验统计量以及更极端状况的概率。
P ≤α时,拒绝0H 假设。
2. 试述假设检验与置信区间的联系与区别。
答:区间估计与假设检验是由样本数据对总体参数作出统计学推断的两种主要方法。
置信区间用于说明量的大小,即推断总体参数的置信范围;而假设检验用于推断质的不同,即判断两总体参数是否不等。
医学统计学-假设检验概述

二、假设检验应注意的问题
假设检验利用小概率反证法思想,从问题对立面 (H0)出发间接判断要解决的问题(H1)是否成立。在H0 成立的条件下计算检验统计量,获得P值来判断。当P ≤,就是小概率事件。
小概率事件原理:小概率事件在一次抽样中发生 的可能性很小,如果它发生了,则有理由怀疑H0,认 为H1成立,该结论可能犯的错误。
当不拒绝H0时,没有拒绝实际上不成立的H0,这 类错误称为Ⅱ类错误(“存伪”),其概率大小用β 表示。
假设检验中的两类错误
客观实际
拒绝H0
不拒绝H0
H0成立 第Ⅰ类错误(α) 推断正确(1- α)
H0不成立 推断正确(1- β) 第Ⅱ类错误(β)
α与β的关系: 当样本量一定时, α愈小, 则β愈大,反之α愈大,
距法
理论上:
• 总体偏度系数1=0为对称,1>0为正偏态,1<0为负偏态; • 总体峰度系数2=0为正态峰,2>0为尖峭峰,2<0为平阔峰。 • 只有同时满足对称和正态峰两个条件时,才能认为资料服从
假设检验概述
第五章 假设检验概述
第一节 假设检验的分类、论证方法与步骤 一、假设检验的分类 二、假设检验的论证方法 三、假设检验的步骤
第二节 假设检验的两类错误和注意事项 一、Ⅰ型错误和Ⅱ型错误 二、应用假设检验的注意事项
第三节 正态性检验与数据转换 一、正态性检验 二、数据转换
第四节 例题和SPSS电脑实验
P>:不拒绝H0 ,还不能认为差异有统计学意义… P:拒绝H0,接受H1 ,差异有统计学意义…
第二节 假设检验的两类错 误和注意事项
一、Ⅰ型错误和Ⅱ型错误
1. Ⅰ型错误: 当拒绝H0时,可能拒绝了实际上成立的H0,这
医学统计学-假设检验

3.4 两组资料比较的u检验
➢当随机抽样的样本例数足够大时,t检验统计 量的自由度逐渐增大,t分布逐渐逼近于标准 正态分布,可以利用近似正态分布的原理进 行u检验。
u XA XB sX A X B
XA XB sA2 nA sB2 nB
1 假设检验的基本思想
➢提出一个假设 ➢如果假设成立,得到现有样本的可能性
➢可能性很小(小概率事件),在一次试验中本不 该得到,居然得到了,说明我们的假设有问题, 拒绝之。
➢有可能得到手头的结果,故根据现有的样本无法 拒绝事先的假设(没理由)
例1
样本:随机抽查25名男炊事员的血清总胆固 醇 , 求 得 其 均 数 为 5.1mmol/L , 标 准 差为0.88mmol/L。
假设检验的基本思想:女士和奶
➢ 女士说她可以辨认出加奶和水的顺序 ➢ 事先假设:她在耍我们,每次她都在瞎猜 ➢ 现在给她对十杯牛奶做出判断 ➢ 如果她是瞎猜的,却全部正确,几率为0.510≈0.001 ➢ 0.001是小概率,认为不会发生(即10次全猜对是
不可能的) ➢ 现在试验的结果是十杯全部说对了 ➢ 故断定假设不成立
布
F
s12 (大) s22 (小)
~ F( ,1 , 2 )
方差齐性检验
男性组
12=?
➢除抽样误差外,该单位食堂炊事员与健康男性存 在本质上的差异:偷东西吃?。(必然的、大于 随机误差)
➢两种情况只有一个是正确的,且二者必居其 一,需要我们作出推断。
假设检验的一般步骤
➢步骤1:建立假设 ➢在假设的前提下有规律可寻
➢零假设(null hypothesis),记为H0,表示目前的 差异是由于抽样误差引起的。
统计学第8章假设检验

市场调查中常用的假设检验方法包括T检验、Z检验和卡方 检验等。选择合适的检验方法需要考虑数据的类型、分布 和调查目的。例如,对于连续变量,T检验更为适用;对于 分类变量,卡方检验更为合适。
医学研究中假设检验的应用
临床试验
在医学研究中,假设检验被广泛应用于临床试验。研究 人员通过设立对照组和实验组,对不同组别的患者进行 不同的治疗,然后收集数据并使用假设检验来分析不同 治疗方法的疗效。
03 假设检验的统计方法
z检验
总结词
z检验是一种常用的参数检验方法,用于检验总体均值的假设。
详细描述
z检验基于正态分布理论,通过计算z分数对总体均值进行检验。它适用于大样本 数据,要求数据服从正态分布。z检验的优点是简单易懂,计算方便,但前提假 设较为严格。
t检验
总结词
t检验是一种常用的参数检验方法,用于检验两组数据之间的差异。
卡方检验
总结词
卡方检验是一种非参数检验方法,用于 比较实际观测频数与期望频数之间的差 异。
VS
详细描述
卡方检验通过计算卡方统计量来比较实际 观测频数与期望频数之间的差异程度。它 适用于分类数据的比较,可以检验不同分 类之间的关联性。卡方检验的优点是不需 要严格的假设前提,但结果解释需谨慎。
04 假设检验的解读与报告
详细描述
t检验分为独立样本t检验和配对样本t检验,分别用于比较两组独立数据和同一组数据在不同条件下的 差异。t检验的前提假设是小样本数据近似服从正态分布。t检验的优点是简单易行,但前提假设需满 足。
方差分析
总结词
方差分析是一种统计方法,用于比较两个或多个总体的差异。
详细描述
方差分析通过分析不同组数据的方差来比较各组之间的差异。它适用于多组数据的比较,可以检验不同因素对总 体均值的影响。方差分析的前提假设是各组数据服从正态分布,且方差齐性。
医学统计学 第六讲 第三章 计量资料的统计推断假设检验

样本与总体的关系
N(μ0,σ02)
x n1
1
x n2
2
x n3
3
x n4
4
...
...
n
xn
N(μ,σ2) x
2
假设检验的一般步骤 ▲ 建立假设(反证法): ▲ 确定显著性水平( ): ▲ 计算统计量:u, t,2 ▲ 确定概率值: ▲ 做出推论
3
第三节 t 检验和u检验 4
8
假设检验: ▲ 建立假设:
检验假设 H0:两组药物镇痛时间相同, 1=2 备择假设 H1:两组药物镇痛时间不同; 1≠2 ▲ 确定显著性水平( ):0.05
▲ 计算统计量t 值 9
计算公式: 合并标准误
t X1 X2 S
X1 X2
S X1X2
SC2n11
1
n2
合并方差
SC2s12(n1n 11 ) n2S 22(2n21)
合并自由度 10
t X1 X2 SX1X2
X1 X2
S12
(n1 1) S22(n2 n1 n2 2
1)
1 n1
1 n2
6.23.5
7.859
1.423011.22(281) 1 1
30282 30 28
11
▲ 确定概率值:自由度:30+ 28 –2 = 56 t 0.05(56) = 2.005 7.859 > t 0.05(56) , p < 0.05; ▲ 做出推论: 按=0.05水准, 拒绝H0,接受H1, 可以认为 两组药物镇痛疗效不同。
F=s12(较大)/s22( 较小) = 0.832/0.642 = 1.682
23
医学统计学课后案例分析答案:第5章 假设检验

第5章 假设检验案例辨析及参考答案案例5-1 为了比较一种新药与常规药治疗高血压的疗效,以血压下降值为疗效指标,有人作了单组设计定量资料均数比较的t 检验,随机抽取25名患者服用了新药,以常规药的疗效均值为0μ,进行t 检验,无效假设是0μμ=,对立假设是0μμ≠,检验水平α=1%。
结果t 值很大,拒绝了无效假设。
“拒绝了无效假设”意味着什么?下面的说法你认为对吗?(1)你绝对否定了总体均数相等的无效假设。
(2)你得到了无效假设为真的概率是1%。
(3)你绝对证明了总体均数不等的备择假设。
(4)你能够推论备择假设为真的概率是99%。
(5)如果你决定拒绝无效假设,你知道你将犯错误的概率是1%。
(6)你得到了一个可靠的发现,假定重复这个实验许多次,你将有99%的机会得到具有统计学意义的结果。
提示:就类似的问题,Haller 和Kruss (2002)在德国的6个心理系问了30位统计学老师、44位统计学学生和39位心理学家。
结果所有的统计学学生、35位心理学家和24位统计学老师认为其中至少有一条是正确的;10位统计学老师、13位心理学家和26位统计学学生认为第4题是正确的。
(见Statistical Science, 2005, 20(3):223-230.) 案例辨析 6个选择均不正确。
(1)可能犯Ⅰ类错误。
(2)α=1%是表示在无效假设成立的条件下,犯Ⅰ类错误的概率。
(3)可能犯Ⅰ类错误。
(4)α=1%是表示在无效假设成立的条件下,犯Ⅰ类错误的概率,而不是推论备择假设为真的概率是99%。
(5)在无效假设成立的条件下,就该例拒绝无效假设犯错误的概率是P 。
(6)在无效假设成立的条件下,还可能犯错误,并不是完全“可靠”的发现;1-α=99%是指无效假设成立的条件下不犯错误的概率是99%。
正确做法“拒绝了无效假设”意味着在无效假设成立的条件下,推断犯错误的概率为P。
案例5-2 某工厂生产的某医疗器械的合格率多年来一直是80.0%。
医学统计学总体均数的估计和假设检验

3.106
3.055
3.012 2.977 2.947 2.921 2.898 2.878 2.861 2.845 2.750 2.704 2.678 2.626
2.58
3.497
3.428
3.372 3.326 3.286 3.252 3.222 3.197 3.174 3.153 3.030 2.971 2.937 2.871 2.8070
t x
sX
统计量是t的分布就是t分布。
t分布的特征: ① 以0为中心,左右对称呈单峰分布; ② t分布是一簇曲线,分布参数为自由度υ。 ③ t分布的形状与样本例数n有关,高峰比正态分
布略低,两侧尾部翘得比正态分布略高。越大, 曲线越近正态分布,当ν=∞时,t分布即为z分布。 由于t分布是一簇曲线,为了便于应用,统计学 家编制了表4-4-1 t界值表。
3)与例数的关系不同:当样本含量足够大时,标准 差趋向稳定。而标准误随例数的增大而减小,甚至趋 向于0。若样本含量趋向于总例数,则标准误接近于0。
联系;二者均为变异指标,如果把总体中各样本均 数看成一个变量,则标准误可称为样本均数的标准差。 当样本含量不变时,均数的标准误与标准差成正比。 两者均可与均数结合运用,但描述的内容各不相同。
活量的95%的可信区间。
本例n=5, =4,t0.05,4=2.776
x t0.05sx =2.44±2.776×0.33/ 5 =2.03~2.85(L)
该地17岁女中学生肺活量均数的95%可信区间为2.03L~2.85L。
例4-4-3 由例4-2-1 101名30~49岁健康男子血清总 胆固醇 X 4.735mmol·L-1,S=0.88 mmol·L-1,求该 地健康男子血清总胆固醇值均数的95%可信区间。
假设检验基础卫生统计学中山大学医学统计与流行病学教材

表 7-4 两种降血清胆固醇措施差值的结果
组别
例数 均数( mmol / L ) 标准差( mmol / L ) 方差
特殊饮食组 12
0.5592
0.6110
0.373321
药物治疗组 12
0.1467
0.2107
0.044394
经正态性检验(见后),两组血清胆固醇差值均服从正态分布条件;
暂将此资料视为总体方差不相等(关于方差齐性的检验见后)
试验组:10.2 ,8.9, 10.1, 9.2,-0.8, 10.6, 6.5, 11.2, ,9.3, 8.0, 10.7, 9.5, 12.7, 14.4, 11.9
对照组:5.0, 6.7, 1.4, 4.0, 7.1, 0.6, 2.8, 4.3, 3.7, 5.8, 4.6, 6.0, 4.1, 5.1, 4.7
决策规那么1 (Fisher): 假设当前值在临界值tα 或 tα/2 之外,
决策规那么2 (Pearson): 假设t 的当前值之外的尾 部面积 P小于α 或α/2
3. 确定 P 值,做出推断
P 值:t 的当前值之外的尾部面积。 P 值的意义: (1)在零假设成立的条件下,出现 “统计量当前值及 更不利于零假设的数值”的概率 (2)若拒绝零假设,犯假阳性错误的概率 如果 P 值较小,表明 “不大可能”犯假阳性错误 如果 P 值较大,表明 “颇有可能”犯假阳性错误
或
H0 : =14.1(月), H1 : >14.1(月)(单侧)
仅当有充分把握可以排除某一侧,方可采用单侧检验!
2. 计算统计量 统计量(statistic):随机样本的函数,不应包含任何未知参数。
对于
H0 : 0,
医学统计学假设检验

I类错误 (α)
推断正确
推断正确
II类错误 (β)
10
五、双侧检验与单侧检验 1. 同一组数据,采用单侧与双侧检验,可能导致不同的结论。 如下图
2.对于一个实际问题,究竟应采用双侧还是单侧检验,需要 根据问题本身的专业意义来确定,并且应在设计阶段就事 先确定。
11
样本均数的假设检验
一、一个样本均数的假设检验 设有两个正态总体N(μ0,σ2) 、N(μ,σ2) ,其总
的心率相同。 H1:μ≠μ0 即假设常年参加锻炼的中ห้องสมุดไป่ตู้男生与一般中学男
生的心率不同。 确定检验水准α=0.05。
2).选择统计量并计算其值:
uX0 6574 16.67 n 5.4 100
3).根据检验统计量的性质,选择适当的统计表,查出相应的 界值 u0.05/2 1.96。现经计算所得的
u16.671.96
,
2 2
已知时,用u (z)检验,其统计量为
: u X1 X2
X1X2
其中:
X1X2
12 22
n1 n2
15
2.总体方差
2 1
,
2 2
未知时,分大、小样本两种情况。
1)对于大样本,用u (z)检验,其统计量为:
其中:
u X1 X2 S X1X2
S X1X2
S12 S22 n1 n2
26
t X0 n1
Sn
例1 例2
13
二、两个样本均数的假设检验
设有两个正态总体 ,已知两个样本均数和样 本标准差
N
(
1
,
2 1
)
μ1未知
从中抽取一个 含量为n1的样本
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
假设检验
一、假设检验的一般原理
【例1】某妇产科医师测量瑶族妇女50例,得到骨盆入口前后径的均数为12.0cm,标准差为0.9cm;测量侗族妇女50例,得到骨盆入口前后径的均数为11.4cm,标准差为1.2cm。
从中能有什么启示。
首先一个问题:能否认为瑶族妇女骨盆入口前后径大于侗族妇女?
其次一个问题:如果不能认为瑶族妇女骨盆入口前后径大于侗族妇女,那么怎么解释?
这在医学上是非常常见的问题。
在抽样研究中,遇到两个(这是最简单的形式,多个的问题将在后面介绍)样本指标不同,我们决不可冒然下结论,因为可能存在抽样误差的影响问题。
具体地说:瑶族妇女与侗族妇女的骨盆入口前后径不同,有两个可能性,一是种族差异的问题,即因为种族差异导致瑶族妇女骨盆入口前后径大于侗族妇女,这是真实差异;另一是瑶族妇女骨盆入口前后径与侗族妇女完全一致,这里所出现的差异,是抽样导致的,即恰好在瑶族妇女中抽到一些骨盆入口前后径较大的人,在侗族妇女中抽到一些骨盆入口前后径较小的人,于是出现了这一结果,这纯粹是抽样引起的误差。
到底哪一个可能性大呢,需要进行统计推断,即进行假设检验(经常也被称为“显著性检验”)。
如果检验结果表明抽样误差的可能性大,则认为瑶族妇女骨盆入口前后径与侗族妇女一致;如果检验结果表明抽样误差的可能性小,则认为瑶族妇女骨盆入口前后径与侗族妇女不一样。
归纳一下:
真实差异大差别有统计学意义总体不同样本信息的差异可能性
抽样误差大差别无统计学意义总体相同
二、假设检验的基本步骤
首先界定一下用词:假定说有两种人,就说是两个种群的人(就是两个总体)。
如果说有两组人,就说是分别从两种人(两个总体)中抽样得到的两个样本。
好,开始假设检验的具体步骤。
1、建立假设:
两组人的差别由抽样误差导致,于是认为两种人是一致的。
显然这个假设的反面是:两组人的差别不是抽样误差导致,两种人实际上不一样。
2、求统计量:
按照公式计算(详见后述)。
3、判断:
比较情况P值情况判断结果
统计量≤界值P≥0.05 差别无统计学意义
统计量>界值P<0.05 差别有统计学意义
4、结论:
如果两组人的差别无统计学意义,则认为差别是抽样误差导致的,不是真实的差别,于是认为两种人相同(既然相同,就是一种人了)。
如果两组人的差别有统计学意义,则认为差别不是抽样误差导致的,而是因为不同种的人本身就存在这样差别,于是认为两种人不同(既然不同,就肯定是两种人了)。
三、假设检验需要注意的问题
(一)假设检验的前提
假设检验的一个重要前提是抽样研究要严格遵循样本具有代表性的原则,即保证样本具有代表性的正确方法是:随机抽样、足够的样本含量。
千万不要以为抽样误差可以估计,则怎么抽样都可以,因为抽样误差可以估计是在抽样遵循样本具有代表性这一基础上得到的。
这就说明研究的设计非常重要,应当严格遵守科学、严谨的基本
要求。
(二)第一类错误和第二类错误
假设检验只是一种对可能性的判断,同学们在日常生活中也可能有所体会,即使是万分之一的可能性,有时也会发生,不然就没有“只怕万一”一说了。
所以,进行假设检验也存在担风险的问题,统计学上有第一类错误(Ⅰ型错误)和第二类错误(Ⅱ型错误)之说。
所谓“第一类错误”是指正确的假设被拒绝了,即虽然P<0.05,但事实上两组人的差别还是由于抽样误差导致的,即两种人没有差别。
所谓“第二类错误”是指错误的假设被接受了,即虽然P>0.05,但事实上两组人的差别不是由于抽样误差导致的,而是真实的差别,即两种人确实不同。
正因为如此,提示我们对任何事情的判定都不能武断,哲学中学到的辩证和一分为二,这种观点十分重要。
当结果在专业上实在无法解释时,要考虑有无第一类错误或第二类错误发生,结论切不可绝对。
(三)单侧检验与双侧检验
常规情况下,我们建议初学者都采用双侧检验,因为你们缺乏系统的专业知识。
但如果有了一定的专业知识后,比如,某种可能有降压作用的药物,在临床使用中最差也只是维持血压保持在原有水平上不变,不会使血压上升,这时就可以采用单侧检验了。
(四)显著性差别与“显著”
翻译的缘由,之前的统计学在介绍“假设检验”时,使用的是“显著性检验”(tests of significance);在判断结果时,也使用“差别具有显着性意义”(the data are statistically significant)。
于是引起了一些不必要的用词误解。
统计学中所使用的“差别具有显著性意义”或“显著性差别”等词语,都属于统计学的专业术语,和“显著”、“厉害”、“很”等日常用词不同。
因此在判断结果时可以使用“显著与否”作为“是否抽样误差引起的”标识,但在结论中绝对不可乱用显著二字。
道理很简单,我们只是在推断总体,这意味着总体是未知的,那么你怎么可以对一个未知的东西说差别大不大,大到什么程度呢?
有必要深刻理解假设检验的思想,从而进一步巩固对统计推断方法的认识。
在此,为帮助大家提高认识,先举一个选择题的例子。
已知均数差别的假设检验,得到P<0.05,可知:
A.两样本均数有差别;
B.两样本均数差别有统计学意义;
C.两总体均数有差别;
D.两总体均数差别有统计学意义。
在多选方式中,A、B、C三个答案是对的。
实际上,这3个答案就简要地说明了显著性检验的基本思想。
抽样研究得到两个样本,测量获得的资料经过统计描述,发现两个样本均数存在差别(比如之前例子中说的,抽样研究得到瑶族妇女和侗族妇女骨盆入口前后径的差别),于是就考虑这两个样本均数的差别可能是由两个方面的因素导致的:一是抽样误差所致,如果抽样误差的可能性很大,那么就可以认为两个样本所代表的两个总体是相同的,或者说两个样本来自同一个总体;二是真实的差异,即两个样本所代表的总体是不同的,本身就存在差异。
那么到底两个样本均数的差别主要是什么因素所致呢?要解决这个问题,就必须进行假设检验。
检验结果经过判断,得到P <0.05,说明两个样本均数的差别有统计学意义(亦即两个样本均数由于抽样误差导致的差别的可能性小于5%,属于小概率事件,几乎属于不可能)。
根据这个判断结果,可以下这样的结论:两个样本来自不同的总体,即两总体均数不同(说的是:假定我们研究了所有瑶族妇女和侗族妇女的骨盆入口前后径,那会发现瑶族妇女的骨盆入口前后径确实大于侗族妇女)。
四、假设检验与置信区间估计的联系
假设检验与总体均数置信区间估计都属于统计推断的方法。
同样是统计推断方法,假设检验方法与总体均数置信区间估计方法的结果会不会一致呢?
【例2】在平原地区,正常成年男性的血红蛋白平均值为140g/L。
有人抽样研究60名高原地区的正常成年男性的血红蛋白值,得到该60名男性的血红蛋白均数为155 g/L,标准差为24 g/L。
首先我们来看看是多少?
μ=X±t0.05,v S X= 155± 2.00×24/60= 148.8-161.2(g/L)
即,我们有95%的把握推断说,高原地区成年男性血红蛋白的总体均数在148.8-161.2g/L范围内。
其次我们再来看看这一总体均数所在的区间与平原地区正常成年男性的血红蛋白总体均数的关系。
已知平原地区正常成年男性的血红蛋白总体均数为140g/L,显然两个地区的血红蛋白平均水平是不一样的。
第三,我们很想看看,如果进行假设检验,会不会得到一样的结果?我们相信一定会的。
这个问题留待下一次课验证。