(完整版)指数函数与对数函数知识点总结

合集下载

对数函数和指数函数的区别和知识点

对数函数和指数函数的区别和知识点

对数函数和指数函数的区别和知识点对数函数和指数函数是两种重要的数学函数,它们在形式和性质上有很大的不同。

下面我们将从定义、图像、性质和应用四个方面来对比这两种函数。

一、定义1. 对数函数:对于正实数a(a>0)和自然数b(b>0),对数函数定义为log(a^b)=b。

也就是说,如果a的b次方等于c,那么log(a) c = b。

2. 指数函数:对于实数a(a≠0),指数函数定义为a^x。

也就是说,无论x 是什么实数,a的x次方都等于y。

二、图像1. 对数函数的图像:对数函数的图像在坐标系中是单调递增的。

当底数大于1时,图像位于第一象限和第二象限;当底数在0到1之间时,图像位于第二象限和第三象限。

2. 指数函数的图像:指数函数的图像也是单调递增的。

对于所有的实数a(a>0),图像都位于第一象限。

当a大于1时,图像在x轴上方递增;当0<a<1时,图像在x轴下方递增。

三、性质1. 对数函数的性质:对数函数是反函数,即如果log(a^b)=c,那么a^c=b。

此外,对数函数还有对数的换底公式,即log(a) b = c 可以转化为log(m) b = c/log(m) a。

2. 指数函数的性质:指数函数是幂运算的推广,具有连续性、周期性、奇偶性等性质。

指数函数也可以表示为exp(x),其中exp表示自然指数函数的底数,约等于2.71828。

四、应用1. 对数函数的应用:对数函数在科学、工程和经济学等领域有广泛的应用。

例如,在物理学中,声学和光学中的分贝和折射率可以通过对数函数计算;在金融学中,复利和折旧可以通过对数函数计算;在信息论中,对数函数用于描述信号强度和噪声的关系。

2. 指数函数的应用:指数函数在自然科学、社会科学和工程学等领域也有广泛的应用。

例如,在生物学中,细胞增长和繁殖可以用指数函数描述;在经济学中,复利和折现也可以用指数函数计算;在物理学中,放射性衰变和电路中的电压可以用指数函数描述。

指数对数函数基本知识点

指数对数函数基本知识点

指数对数函数基本知识点指数函数和对数函数是高中数学紧密相关的数学概念,对于理解和运用多种数学问题都是至关重要的。

下面将从定义、性质、图像和应用等几个方面进行详细介绍。

一、指数函数指数函数的定义是f(x)=a^x,其中a是一个正实数且a≠1,x是实数。

指数函数的特点包括:1.a^0=1,a^1=a。

2.指数函数的定义域是整个实数集。

3.当a>1时,指数函数是严格递增的;当0<a<1时,指数函数是严格递减的。

4.指数函数的图像可以分成两种情况:当a>1时,图像在x轴的右侧逐渐向上增长;当0<a<1时,图像在x轴的右侧逐渐向下降低;当a=1时,图像是一条水平直线。

二、对数函数对数函数的定义是f(x)=log_a(x),其中a是一个正实数且a≠1,x是正实数。

对数函数的特点包括:1. log_a(1)=0,log_a(a)=12.对数函数的定义域是正实数集。

3.当a>1时,对数函数是严格递增的;当0<a<1时,对数函数是严格递减的。

4.对数函数的图像可以分成两种情况:当a>1时,图像在y轴的右侧逐渐向上增长;当0<a<1时,图像在y轴的右侧逐渐向下降低;当a=1时,图像是一条水平直线。

三、指数函数和对数函数的性质1. 反函数性质:指数函数和对数函数互为反函数,即a^log_a(x)=x,log_a(a^x)=x。

2. 对数与指数的互化性质:log_a(x)=y等价于 a^y=x。

3.对于任意的正实数a,b和任意实数x,有如下几个基本性质:-a^x*a^y=a^(x+y)- (a^x)^y = a^(xy)- (ab)^x = a^x * b^x-a^(-x)=1/(a^x)-(a/b)^x=a^x/b^x- log_a(xy) = log_a(x) + log_a(y)- log_a(x^y) = y * log_a(x)- log_a(1/x) = -log_a(x)- log_a(x/y) = log_a(x) - log_a(y)四、指数和对数函数的图像指数函数和对数函数的图像可以通过制作表格来得到,然后连接各个点形成曲线图。

指数与对数知识点总结

指数与对数知识点总结

指数与对数知识点总结指数和对数是数学中重要的概念和工具。

它们广泛应用于科学、工程和金融领域,具有重要的理论和实用价值。

本文将对指数和对数的基本概念、性质和应用进行总结。

一、指数的基本概念和性质1.1 指数的定义指数是表示一个数乘积的幂运算。

设 a 是一个非零实数,n 是一个正整数,那么 a 的 n 次幂可以表示为 a^n。

其中,a 称为底数,n 称为指数,a^n 读作“a 的 n 次方”。

1.2 指数的性质(1)指数为正数时,指数运算具有如下性质:a^m * a^n = a^(m + n) (指数相加,底数不变)(a^m)^n = a^(m * n) (指数相乘,底数不变)(ab)^n = a^n * b^n (乘法公式,底数相乘,指数不变)(a/b)^n = a^n / b^n (除法公式,底数相除,指数不变)(2)指数为负数时,指数运算的性质如下:a^(-n) = 1 / a^n (负指数时,求倒数)1.3 底数为 e 的指数函数以自然对数的底数 e 为底的指数函数称为自然指数函数,记为 f(x)= e^x。

1.4 对数的定义和性质对数是指数运算的逆运算。

设 a 是一个正实数,b 是一个正实数且不等于 1,如果 b^x = a,那么称 x 为以 b 为底 a 的对数。

记作 x =log_b(a),读作“以 b 为底 a 的对数”。

(1)对数的基本性质:log_b(1) = 0 (对数的底数为 1 时,值为 0)log_b(b) = 1 (对数的底数为自身时,值为 1)log_b(a * c) = log_b(a) + log_b(c) (对数相乘,变为求和)log_b(a / c) = log_b(a) - log_b(c) (对数相除,变为求差)log_b(a^n) = n * log_b(a) (对数的幂运算,变为乘法)二、指数与对数的应用2.1 指数函数的应用指数函数常用于描述增长或衰减的趋势,如人口增长、金融利率等。

指数函数与对数函数知识点

指数函数与对数函数知识点

指数函数与对数函数1、n 次方根与分数指数幂、指数幂运算性质(1)若nx a =,则))n x n =⎪⎩为奇数为偶数;()()a n a n ⎧⎪⎨⎪⎩为奇数为偶数;(3)n a =;(4)*0,,,1)m na a m n N n =>∈>且;(5)*0,,1)mn a a m n N n -=>∈>,且;(6)0的正分数指数幂为0,0的负分数指数幂没有意义.(7)()0,,r s r s a a a a r s R +⋅=>∈;(8)()()0,,r s rs a a a r s R =>∈;(9)()()0,0,,r r r ab a b a b r s R =⋅>>∈.2、对数、对数运算性质(1)()log 0,1x a a N x N a a =⇔=>≠;(2)()log 100,1a a a =>≠;(3)()log 10,1a a a a =>≠;(4);()log0,1a N a N a a =>≠;(5)()log 0,1m a a m a a =>≠;(6)()log ()log log 0,1,0,0a a a MN M N a a =+>≠M >N >; (7)()log log log 0,1,0,0a a a M M N a a N=->≠M >N >; (8)()log log 0,1,0n a a M n M a a =⋅>≠M >; (9)换底公式()log log 0,1,0,0,1log c a c b b a a b c c a =>≠>>≠; (10)()log log 0,1,,*m n a a n b b a a n m N m=>≠∈;(11)()1log log 0,1,0,a a M a a M n R n=>≠>∈; (12)()log log log 10,1,0,1,0,1a b c b c a a a b b c c ⋅⋅=>≠>≠>≠.3、指数函数)1,0(≠>=a a a y x 且及其性质:①定义域为(),-∞+∞; ②值域为()0,+∞;③过定点()0,1;④单调性:当1a >时,函数()f x 在R 上是增函数;当01a <<时,函数()f x 在R 上是减函数; ⑤在y 轴右侧,指数函数的图象“底大图高”.4、对数函数)1,0(log ≠>=a a x y a 且及其性质:①定义域为()0,+∞;②值域为(),-∞+∞;③过定点()1,0;④单调性:当1a >时,函数()f x 在()0,+∞上是增函数;当01a <<时,函数()f x 在()0,+∞上是减函数;⑤在直线1=x 的右侧,对数函数的图象“底大图低”.5指数函数x a y =与对数函数)1,0(log ≠>=a a x y a 且互为反函数,它们的图象关于直线x y =对称.6不同函数增长的差异:线性函数模型)0(>+=k b kx y 的增长特点是直线上升,其增长速度不变;指数函数模型)1(>=a a y x 的增长特点是随着自变量的增大,函数值增大的速度越来越快,呈“指数爆炸”状态;对数函数模型)1(log >=a x y a 的增长特点是随着自变量的增大,函数值增大速度越来越慢,即增长速度平缓;幂函数模型)0(>=n x y n 的增长速度介于指数函数和对数函数之间.7函数的零点:在函数)(x f y =的定义域内,使得0)(=x f 的实数x 叫做函数的零点.8零点存在性定理:如果函数()f x 在区间[],a b 上的图象是连续不断的一条曲线,且有()()0f a f b ⋅<,那么函数()y f x =在区间(),a b 内至少有一个零点,即存在(),c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的根.9二分法:对于区间],[b a 上图象连续不断且()()0f a f b ⋅<的函数)(x f y =,通过不断把它的零点所在区间一分为二,使得区间的两个端点逐步逼近零点,进而得到零点近似值的方法.10给定精确度ε,用二分法求函数)(x f y =零点0x 近似值的步骤:⑴确定零点0x 的初始区间[],a b ,验证()()0f a f b ⋅<;⑵求区间[],a b 的中点c ;⑶计算)(c f ,并进一步确定零点所在的区间;①若0)(=c f ,则c 就是函数的零点;②若0)()(<c f a f (此时),(0c a x ∈),则令c b =;③若0)()(<b f c f (此时),(0b c x ∈),则令c a =;⑷判断是否达到精确度ε:若a b ε-<,则得到零点的近似值a (或b );否则重复上面的⑵至⑷.。

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结一、指数函数1、指数函数的定义一般地,函数\(y = a^x\)(\(a > 0\)且\(a ≠ 1\))叫做指数函数,其中\(x\)是自变量,函数的定义域是\(R\)。

需要注意的是,底数\(a\)的取值范围,当\(a = 1\)时,函数就变成了\(y = 1^x = 1\),是一个常函数,不符合指数函数的定义;当\(a < 0\)时,对于某些\(x\)的值,\(a^x\)无意义,比如\((-2)^{\frac{1}{2}}\)就没有实数解。

2、指数函数的图象当\(a > 1\)时,指数函数\(y = a^x\)的图象是上升的,经过点\((0, 1)\),在\(R\)上单调递增;当\(0 < a < 1\)时,指数函数\(y = a^x\)的图象是下降的,经过点\((0, 1)\),在\(R\)上单调递减。

我们可以通过几个特殊的点,比如\((0, 1)\)、\((1, a)\)、\((-1, \frac{1}{a})\)等来大致描绘指数函数的图象。

3、指数函数的性质(1)定义域:\(R\)(2)值域:\((0, +∞)\)(3)恒过定点\((0, 1)\)(4)单调性:当\(a > 1\)时,在\(R\)上单调递增;当\(0 <a < 1\)时,在\(R\)上单调递减(5)函数值的变化情况当\(a > 1\)时,若\(x > 0\),则\(a^x > 1\);若\(x = 0\),则\(a^x = 1\);若\(x < 0\),则\(0 < a^x < 1\)。

当\(0 < a < 1\)时,若\(x > 0\),则\(0 < a^x < 1\);若\(x = 0\),则\(a^x = 1\);若\(x < 0\),则\(a^x > 1\)。

4、指数运算的性质(1)\(a^m × a^n = a^{m + n}\)(2)\(\frac{a^m}{a^n} = a^{m n}\)(\(a ≠ 0\))(3)\((a^m)^n = a^{mn}\)(4)\((ab)^n = a^n b^n\)这些运算性质在化简指数表达式和进行指数运算时经常用到。

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结一、指数函数:1.基本概念:指数函数是形如y=a^x(a>0,且a≠1)的函数,其中a称为底数,x 称为指数,a^x称为底数a的x次幂。

2.基本性质:(1)a^0=1,任何数的0次幂等于1;(2)a^x*a^y=a^(x+y),相同底数的指数幂相乘,底数不变,指数相加;(3)a^x÷a^y=a^(x-y),相同底数的指数幂相除,底数不变,指数相减;(4)(a^x)^y=a^(x*y),指数幂的乘积再乘方,指数相乘;(5)a^(-x)=1/(a^x),任何数的负指数满足倒数规律。

3.常见指数函数:(1)指数函数y=2^x:以2为底的指数函数,可以用来描述2的x 次幂关系,是一种常见的指数型增长函数,图像逐渐向上凸起。

二、对数函数:1.基本概念:对数函数是指y=loga(x),其中a>0,且a≠1,a称为底数,x称为真数,y称为以a为底x的对数。

2.基本性质:(1)loga(1)=0,底数为任何正数时,1的对数都是0;(2)loga(a)=1,底数为任何正数时,底数的对数都是1;(3)loga (x*y) = loga(x) + loga(y),对数相乘,真数取乘积,对数相加;(4)loga (x/y) = loga(x) - loga(y),对数相除,真数取商,对数相减;(5)loga(x^k) = k * loga(x),对数乘方,真数取底数的k次方,对数乘以指数。

3.常见对数函数:(1)常用对数函数:y=log10(x),其中底数为10,对数函数可以简写为y=log(x)。

常用对数函数是以10为底的对数函数,输入一个正实数x,输出满足10^y=x的y值。

(2)自然对数函数:y=ln(x),其中底数为e。

自然对数函数是以e 为底的对数函数,输入一个正实数x,输出满足e^y=x的y值。

三、指数函数与对数函数的关系:四、指数函数与对数函数的应用:1.科学中的指数增长:指数函数常常用于描述原子衰变、细胞分裂和放射性物质的衰变等过程。

指数对数函数基本知识点

指数对数函数基本知识点

指数对数函数基本知识点指数和对数函数是数学中常见的函数类型,应用广泛于科学、工程和金融等领域。

本文将介绍指数函数和对数函数的基本知识点,包括定义、性质和应用等方面。

一、指数函数(Exponential Function)指数函数是以常数e为底数的函数,它的定义如下:f(x)=a^x其中a是常数,称为底数;x是变量,称为指数;f(x)是函数的值。

1.常数e:e=1+1/1!+1/2!+1/3!+…2.指数函数的性质:(1)当x为整数时,指数函数的取值和底数a的幂运算相同;(2)当x为分数时,指数函数的取值是底数a的分数次幂;(3)当x为0时,指数函数的值为1;(4)当x趋近于负无穷时,指数函数的值趋近于0;(5)当x趋近于正无穷时,指数函数的值趋近于正无穷。

3.应用:指数函数在自然科学和金融领域有广泛的应用。

在自然科学中,指数函数可以描述各种自然过程的增长或衰减。

在金融领域中,指数函数可以用来进行复利计算。

二、对数函数(Logarithmic Function)对数函数是指数函数的逆运算,它的定义如下:f(x) = log_a(x)其中a是底数;x是函数的值;f(x)是变量。

1.对数的定义:对数函数中的底数a必须大于0且不等于1,对数函数的定义可以有以下两种形式:(1) 若a>1,则f(x) = log_a(x) 表示x=a^f(x);(2)若0a&0。

3.对数函数的性质:(1) f(x) = log_a(1) = 0;(2) f(x) = log_a(a) = 1;(3)若x1>x2,则f(x1)>f(x2);(4) log_a(x * y) = log_a(x) + log_a(y);(5) log_a(x / y) = log_a(x) - log_a(y);(6) log_a(x^k) = k * log_a(x);(7) 若x > 1,则log_a(x) > 0;若0 < x < 1,则log_a(x) < 0;(8)当x趋近于正无穷时,对数函数的值趋近于无穷。

初中数学知识归纳指数函数与对数函数的性质与计算

初中数学知识归纳指数函数与对数函数的性质与计算

初中数学知识归纳指数函数与对数函数的性质与计算指数函数与对数函数是初中数学中的重要概念,它们在数学和实际问题中的应用非常广泛。

本文将对指数函数与对数函数的性质和计算方法进行归纳总结,帮助读者更好地理解和运用这两个函数。

一、指数函数的性质与计算1. 指数函数的定义指数函数是以固定底数为底的幂运算形式的函数,一般表示为f(x) = a^x,其中a>0且a≠1。

2. 指数函数的性质(1)指数函数的定义域是全体实数,值域是正实数的开区间(0,+∞)。

(2)当底数a>1时,指数函数是递增函数;当0<a<1时,指数函数是递减函数;当a=1时,指数函数是常值函数。

(3)指数函数的图像在x轴正半轴向上延伸,与x轴交于点(0,1)。

(4)指数函数的反函数是对数函数,两者互为反函数关系。

3. 指数函数的计算(1)指数函数的运算规则:① a^m * a^n = a^(m+n)② (a^m)^n = a^(mxn)③ (a*b)^n = a^n * b^n④ (a/b)^n = a^n / b^n(2)指数函数的计算方法:①计算指数函数的数值:将指数函数的底数和指数代入运算即可。

②计算指数函数的乘除:利用指数函数的运算规则进行化简,然后计算。

二、对数函数的性质与计算1. 对数函数的定义对数函数是指数函数的反函数,表示为f(x) = loga(x),其中a>0且a≠1。

2. 对数函数的性质(1)对数函数的定义域是正实数的开区间(0,+∞),值域是全体实数。

(2)当底数a>1时,对数函数是递增函数;当0<a<1时,对数函数是递减函数;当a=1时,对数函数无定义。

(3)对数函数的图像在y轴正半轴向右延伸,与y轴交于点(1,0)。

(4)对数函数的底数a决定了函数的增长速度,底数越大函数增长越快,底数越小函数增长越慢。

3. 对数函数的计算(1)对数函数的运算规则:① loga(m*n) = loga(m) + loga(n)② loga(m^n) = n * loga(m)③ loga(m/n) = loga(m) - loga(n)(2)对数函数的计算方法:①计算对数函数的数值:将对数函数的底数和函数值代入运算即可。

指数函数与对数函数例题和知识点总结

指数函数与对数函数例题和知识点总结

指数函数与对数函数例题和知识点总结一、指数函数指数函数的一般形式为$y = a^x$($a > 0$且$a ≠ 1$)。

(一)指数函数的图像和性质当$a > 1$时,指数函数是单调递增的;当$0 < a < 1$时,指数函数是单调递减的。

指数函数的图像恒过点$(0, 1)$。

当$x > 0$时,若$a > 1$,则$a^x > 1$;若$0 < a < 1$,则$0 <a^x < 1$。

当$x < 0$时,若$a > 1$,则$0 < a^x < 1$;若$0 < a < 1$,则$a^x > 1$。

(二)指数运算的基本法则1、$a^m × a^n = a^{m + n}$2、$\frac{a^m}{a^n} = a^{m n}$3、$(a^m)^n = a^{mn}$4、$a^0 = 1$($a ≠ 0$)5、$a^{n} =\frac{1}{a^n}$例题 1若$2^x = 8$,求$x$的值。

解:因为$8 = 2^3$,所以$2^x = 2^3$,则$x = 3$。

例题 2计算:$3^2 × 3^4$解:根据指数运算法则,$3^2 × 3^4 = 3^{2 + 4} = 3^6 = 729$例题 3化简:$\frac{5^8}{5^5}$解:$\frac{5^8}{5^5} = 5^{8 5} = 5^3 = 125$二、对数函数对数函数的一般形式为$y =\log_a x$($a > 0$且$a ≠ 1$)。

(一)对数函数的图像和性质当$a > 1$时,对数函数在$(0, +∞)$上单调递增;当$0 < a <1$时,对数函数在$(0, +∞)$上单调递减。

对数函数的图像恒过点$(1, 0)$。

当$x > 1$时,若$a > 1$,则$\log_a x > 0$;若$0 < a < 1$,则$\log_a x < 0$。

当$0 < x < 1$时,若$a > 1$,则$\log_a x < 0$;若$0 < a <1$,则$\log_a x > 0$。

初中数学指数函数与对数函数的性质知识点总结

初中数学指数函数与对数函数的性质知识点总结

初中数学指数函数与对数函数的性质知识点总结一、指数函数的性质:1. 定义:指数函数是以指数为自变量,底数固定的函数。

形如f(x) = a^x,其中a是正实数,且a≠1。

2. 指数函数的图像特点:a) 当0<a<1时,函数图像在y轴上方逐渐逼近x轴正半轴;b) 当a>1时,函数图像在y轴下方逐渐逼近x轴正半轴;c) a=1时,指数函数为常数函数,图像为y = 1。

3. 指数函数的性质:a) 当x∈R时,指数函数f(x) > 0,即指数函数的值始终大于0;b) 指数函数的增减性:当x1 < x2时,若a > 1,则a^x1 < a^x2;若0 < a < 1,则a^x1 > a^x2。

4. 指数函数的特殊性质:a) a^0 = 1,任何数的0次方等于1;b) a^m * a^n = a^(m+n),指数的乘法法则;c) (a^m)^n = a^(m*n),幂的乘方法则;d) a^(-n) = 1/(a^n),负指数的倒数性质。

二、对数函数的性质:1. 定义:对数函数是以对数为自变量的函数。

形如f(x) = loga(x),其中a是正实数且不等于1,x为大于0的实数。

2. 对数函数的图像特点:a) 在a>1时,函数的图像在y轴右侧逐渐逼近x轴正半轴;b) 在0<a<1时,函数的图像在y轴左侧逐渐逼近x轴正半轴;c) a=1时,对数函数为常数函数,图像为y = 0。

3. 对数函数的性质:a) 当x∈(0,+∞)时,对数函数f(x) > 0,即对数函数的值始终大于0;b) 对数函数的增减性:当x1 < x2时,若a > 1,则loga(x1) <loga(x2);若0 < a < 1,则loga(x1) > loga(x2)。

4. 对数函数的特殊性质:a) loga(a) = 1,任何数以自身为底的对数等于1;b) loga(1) = 0,任何底数为正数的对数以1为真数的对数等于0;c) loga(M*N) = loga(M) + loga(N),对数的乘法法则;d) loga(M/N) = loga(M) - loga(N),对数的除法法则;e) loga(M^n) = n * loga(M),对数的乘方法则;f) loga(c) = 1/logc(a),对数的换底公式。

(完整版)指数函数与对数函数知识点总结

(完整版)指数函数与对数函数知识点总结
指数函数与对数函数知识点总结
(一)指数与指数幂的运算
1.根式的概念:一般地,如果 ,那么 叫做 的 次方根,其中 >1,且 ∈ *.
当 是奇数时, ,当 是偶数时,
2.分数指数幂
正数的分数指数幂的意义,规定:
3.实数指数幂的运算性质
(1) · ;
(2) ;
(3) .
(二)指数函数及其性质
1、指数函数的概念:一般地,函数 叫做指数函数,其中x是自变量,函数的定义域为R.
(2) =__________
4、设 ,求 的值__________。
5、若 ,则 等于。
6、已知函数 在 上为增函数,则 的取值范围是。
7、设函数 ,若 ,则
8、函数 且 恒过定点。
9、已知函数 在 上的最大值比最小值多 ,求实数 的值。
幂函数(第15份)
1、下列函数中,是幂函数的是( )
A、 B、 C、 D、
(3) =__________
(4) =__________
(5) =__________
(6) =__________
(7) =__________
(8) =__________
2、已知 ,试用 表示下列各对数。
(1) =__________(2) =__________
3、(1)求 的值__________;
f(1.5625)=0.003
f(1.5562)=-0.029
f(1.5500)=-0.060
据此数据,可得方程 的一个近似解(精确到0.01)为
(1) (2) (3)
5、函数 在区间[ ,2]上的最大值为,最小值为。
函数 在区间[ ,2]上的最大值为,最小值为。

初中数学知识归纳指数函数与对数函数的性质

初中数学知识归纳指数函数与对数函数的性质

初中数学知识归纳指数函数与对数函数的性质指数函数与对数函数是数学中重要的函数类型。

它们在数学和其他学科中都有广泛的应用,具有一些特定的性质。

本文将对指数函数与对数函数的性质进行归纳总结。

一、指数函数的性质指数函数的一般形式为f(x) = a^x,其中a为底数,x为指数,a>0且a ≠ 1。

1. 函数图像特点当底数a>1时,指数函数呈现上升趋势,当x增大时,对应的函数值也增大。

当0<a<1时,指数函数呈现下降趋势,当x增大时,对应的函数值减小。

2. 定义域与值域指数函数的定义域为实数集R,值域为(0, +∞)。

3. 幂运算特点指数函数具有幂运算的特点。

即 a^x1 * a^x2 = a^(x1+x2)。

4. 对数与指数的互逆性质a^loga(x) = x,loga(a^x) = x。

这表明指数函数与对数函数是互为逆函数的。

二、对数函数的性质对数函数的一般形式为f(x) = loga(x),其中a为底数,x为对数。

1. 函数图像特点当底数a>1时,对数函数呈现上升趋势,当x增大时,对应的函数值也增大。

当0<a<1时,对数函数呈现下降趋势,当x增大时,对应的函数值减小。

2. 定义域与值域对数函数的定义域为正实数集R+,值域为实数集R。

3. 对数运算特点对数函数具有对数运算的特点。

即 loga(x1 * x2) = loga(x1) +loga(x2)。

4. 对数函数的换底公式loga(x) = logb(x) / logb(a),换底公式可以用于不同底数间的对数运算。

5. 对数函数的常用性质若a > 1,b > 1,则有以下性质:a. loga(a) = 1;b. loga(1) = 0;c. loga(a^x) = x;d. loga(xy) = loga(x) + loga(y);e. loga(x/y) = loga(x) - loga(y);f. loga(x^n) = n * loga(x)。

高中数学必修一第四章指数函数与对数函数知识点总结归纳完整版(带答案)

高中数学必修一第四章指数函数与对数函数知识点总结归纳完整版(带答案)

高中数学必修一第四章指数函数与对数函数知识点总结归纳完整版单选题1、已知函数y=a x、y=b x、y=c x、y=d x的大致图象如下图所示,则下列不等式一定成立的是()A.b+d>a+c B.b+d<a+c C.a+d>b+c D.a+d<b+c答案:B分析:如图,作出直线x=1,得到c>d>1>a>b,即得解.如图,作出直线x=1,得到c>d>1>a>b,所以b+d<a+c.故选:B2、如图所示,函数y=|2x−2|的图像是()A .B .C .D .答案:B分析:将原函数变形为分段函数,根据x =1及x ≠1时的函数值即可得解. ∵y =|2x−2|={2x −2,x ≥12−2x ,x <1,∴x =1时,y =0,x ≠1时,y >0. 故选:B.3、在同一平面直角坐标系中,一次函数y =x +a 与对数函数y =log a x (a >0且a ≠1)的图象关系可能是( )A .B .C .D .答案:C分析:根据对数函数的图象以及直线方程与图象关系分别进行讨论即可. A .由对数图象知0<a <1,此时直线的纵截距a >1,矛盾, B .由对数图象知a >1,此时直线的纵截距0<a <1,矛盾, C .由对数图象知0<a <1,此时直线的纵截距0<a <1,保持一致, D .由对数图象知a >1,此时直线的纵截距a <0,矛盾, 故选:C .4、函数f(x)=2x −1x 的零点所在的区间可能是( )A .(1,+∞)B .(12,1)C .(13,12)D .(14,13)答案:B分析:结合函数的单调性,利用零点存在定理求解.因为f(1)=2−11=1>0,f(12)=√2−2<0,f(13)=√23−3<0f(14)=√24−4<0,所以f(12)⋅f(1)<0,又函数f(x)图象连续且在(0,+∞)单调递增,所以函数f(x)的零点所在的区间是(12,1),故选:B .小提示:本题主要考查函数的零点即零点存在定理的应用,属于基础题. 5、已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A .a <b <c B .b <a <c C .b <c <a D .c <a <b 答案:A分析:由题意可得a 、b 、c ∈(0,1),利用作商法以及基本不等式可得出a 、b 的大小关系,由b =log 85,得8b =5,结合55<84可得出b <45,由c =log 138,得13c =8,结合134<85,可得出c >45,综合可得出a 、b 、c 的大小关系.由题意可知a 、b 、c ∈(0,1),a b =log 53log 85=lg3lg5⋅lg8lg5<1(lg5)2⋅(lg3+lg82)2=(lg3+lg82lg5)2=(lg24lg25)2<1,∴a <b ;由b =log 85,得8b =5,由55<84,得85b <84,∴5b <4,可得b <45; 由c =log 138,得13c =8,由134<85,得134<135c ,∴5c >4,可得c >45.综上所述,a <b <c . 故选:A.小提示:本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.6、若y =log 3a 2−1x 在(0,+∞)内为增函数,且y =a −x 也为增函数,则a 的取值范围是( ) A .(√33,1)B .(0,12)C .(√33,√63)D .(√63,1) 答案:D分析:根据函数单调性,列出不等式组{3a 2−1>10<a <1求解,即可得出结果.若y =log 3a 2−1x 在(0,+∞)内为增函数,则3a 2−1>1,由y =a −x 为增函数得0<a <1.解不等式组{3a 2−1>10<a <1,得a 的取值范围是(√63,1).故选:D.小提示:本题主要考查由对数函数与指数函数的单调性求参数,涉及不等式的解法,属于基础题型. 7、已知a =lg2,10b =3,则log 56=( ) A .a+b 1+a B .a+b 1−a C .a−b 1+a D .a−b1−a 答案:B分析:指数式化为对数式求b ,再利用换底公式及对数运算性质变形. ∵a =lg2, 10b =3, ∴b =lg3, ∴log 56=lg6lg5=lg2×3lg 102=lg2+lg31−lg2=a+b1−a .故选:B .8、定义在R 上的奇函数f(x)在(−∞,0]上单调递增,且f(−2)=−2,则不等式f(lgx)−f (lg 1x )>4的解集为( )A .(0,1100)B .(1100,+∞)C .(0,100)D .(100,+∞) 答案:D分析:利用函数为奇函数,将不等式转化为f(lgx)>f (2),再利用函数的单调性求解. 因为函数f(x)为奇函数,所以f(−x)=−f (x ),又f(−2)=−2,f(2)=2,所以不等式f(lgx)−f (lg 1x )>4,可化为2f(lgx)>4=2f (2),即f(lgx)>f (2),又因为f(x)在(−∞,0]上单调递增, 所以f(x)在R 上单调递增, 所以lgx >2, 解得x >100. 故选:D. 多选题9、下列化简结果中正确的有(m 、n 均为正数)( ) A .(1a m)n=a −mn B .√a n n=a C .a m n=a m a nD .(π−3.14)0=1答案:AD分析:A.由指数幂的运算判断; B.由根式的性质判断;C.由分数指数幂和根式的转化判断;D.由规定判断. A. (1a m )n=(a −m )n =a −mn ,故正确; B. √a n n={a,n 为奇数|a |,n 为偶数 ,故错误;C. a m n=√a m n,故错误; D. (π−3.14)0=1,故正确. 故选:AD10、设函数f (x )={|x 2+3x |,x ≤1log 2x,x >1,若函数f (x )+m =0有五个零点,则实数m 可取( )A .−3B .1C .−12D .−2答案:CD分析:函数f (x )+m =0有五个零点等价于y =f(x)与y =−m 有五个不同的交点,作出f(x)图像,利用图像求解即可函数f (x )+m =0有五个零点等价于y =f(x)与y =−m 有五个不同的交点,作出f(x)图像可知,当x =−32时,f (−32)=|(−32)2+3×(−32)|=94若y =f(x)与y =−m 有五个不同的交点, 则−m ∈(0,94), ∴m ∈(−94,0), 故选:CD .11、下列运算(化简)中正确的有( ). A .(a 16)−1⋅(a −2)−13=a 12B .(x a −1y)a⋅(4y −a )=4x C .[(1−√2)2]12−(1+√2)−1+(1+√2)0=3−2√2D .2a 3b 23⋅(−5a 23b 13)÷(4√a 4b 53)=−52a 73b −23答案:ABD分析:根据指数幂的运算法则逐一验证即可 对于A :(a 16)−1⋅(a−2)−13=a−16+23=a12,故A 正确;对于B :(xa −1y)a⋅(4y−a )=4x1a×a y a−a =4xy 0=4x ,故B 正确; 对于C :[(1−√2)2]12−(1+√2)−1+(1+√2)0=[(√2−1)2]12−1+√2+1=√2−1−(√2−1)+1=1,故C 错误;对于D :2a 3b 23⋅(−5a 23b 13)÷(4√a 4b 53)=[2×(−5)÷4]a3+23−43b23+13−53=−52a 73b −23,故D 正确;故选:ABD 填空题12、不等式2022x ≤1的解集为______. 答案:(−∞,0]分析:根据给定不等式利用指数函数单调性求解即可作答.依题意,不等式2022x ≤1化为:2022x ≤20220,而函数y =2022x 在R 上单调递增,解得x ≤0, 所以不等式2022x ≤1的解集为(−∞,0]. 所以答案是:(−∞,0]13、√a ⋅√a ⋅√a 3的分数指数幂表示为____________答案:a 34分析:本题可通过根式与分数指数幂的互化得出结果.√a ⋅√a ⋅√a 3=√a ⋅√a ⋅a 123=√a ⋅√a 323=√a ⋅a 12=√a 32=a 34, 所以答案是:a 34.14、函数f(x)=lg(kx)−2lg(x +1)仅有一个零点,则k 的取值范围为________. 答案:(−∞,0)∪{4}分析:由题意f(x)仅有一个零点,令y 1=kx 、y 2=(x +1)2,即y 1、y 2在f(x)定义域内只有一个交点,讨论k >0、k <0并结合函数图象,求k 的范围.由题意,f(x)=lg(kx)−2lg(x +1)=0,即lg(kx)=lg(x +1)2, ∴在f(x)定义域内,y 1=kx 、y 2=(x +1)2只有一个交点,当k>0时,即(0,+∞)上y1、y2只有一个交点;∴仅当y1、y2相切,即x2+(2−k)x+1=0中Δ=(2−k)2−4=0,得k=4或k=0(舍),∴当k=4时,(0,+∞)上y1、y2只有一个交点;当k<0时,即(−1,0)上y1、y2只有一个交点,显然恒成立.∴k∈(−∞,0)∪{4}.所以答案是:(−∞,0)∪{4}解答题(a>0,a≠1).15、已知函数f(x)=1−2a|x|+1(1)判断f(x)的奇偶性并证明;,求a的值.(2)若f(x)在[−1,1]上的最大值为13答案:(1)偶函数;证明见解析;(2)a=2.解析:(1)利用奇偶函数的定义证明;(2)讨论去绝对值,并分a>1和0<a<1两种情况讨论函数的单调性,求函数的最大值,建立方程,求a的值. 解:(1)f(x)的定义域为R,又f(−x)=1−2a|−x|+1=1−2a|x|+1=f(x)⇒f(−x)=f(x),所以f(x)为偶函数;(2)因为f(x)为偶函数,当0≤x≤1时,f(x)=1−2a|x|+1=1−2a x+1,若a∈(0,1),f(x)=1−2a x+1,函数单调递减,f(x)max=f(0)=0,若a∈(1,+∞),f(x)=1−2a x+1,函数单调递增,f(x)max=f(1)=1−2a+1=13⇒a=2,当−1≤x<0,f(x)=1−2a|x|+1=1−2a−x+1,若a∈(0,1),f(x)=1−2a−x+1,函数单调递增,f(x)max=f(0)=0,若a∈(1,+∞),f(x)=1−2a−x+1,函数单调递减,f(x)max=f(−1)=1−2a+1=13⇒a=2,综上,a=2.小提示:关键点点睛:本题考查指数型复合函数证明奇偶性以及根据函数的最值,求参数的取值范围,本题的关键是求函数的单调性,关键是利用函数是偶函数,先去绝对值,再利用复合函数的单调性求函数的单调性,从而确定函数的最值.。

指数对数函数知识点

指数对数函数知识点

指数对数函数知识点指数和对数函数是高中数学中重要的概念。

它们在解决各种复杂的问题中起着重要的作用。

本文将介绍指数和对数函数的基本性质和应用。

一、指数函数指数函数是以某个常数为底数,以自变量为指数的函数。

常见的指数函数形式为 y = a^x,其中 a 为底数,x 为指数。

指数函数具有以下几个重要的性质。

1. 当 a > 0 且a ≠ 1 时,指数函数的图像是递增的,呈现上升趋势。

当 0 < a < 1 时,指数函数的图像在 x 轴右侧逐渐靠近 x 轴,但没有交点。

当 a > 1 时,指数函数在 x 轴右侧逐渐远离 x 轴,但没有交点。

2. 指数函数 y = a^x 的图像经过点 (0, 1),这是因为任何数的 0 次方都等于 1。

3. 指数函数的性质还包括:当 x 为正无穷时,指数函数的值趋向于正无穷;当 x 为负无穷时,指数函数的值趋向于 0。

这表明指数函数在某个点附近很大或很小。

二、对数函数对数函数是指数函数的反函数,即 y = loga x,其中 a 为底数,x 为真数。

对数函数也具有一些重要的性质。

1. 对数函数的定义域是正实数集合 R+,值域是实数集合 R。

2. 对数函数的图像与指数函数的图像关于直线 y = x 对称,即 f(x) = loga x 在 y = x 时与 f(x) = a^x 相交。

3. 对数函数的图像基本特征是递增的,在 x 轴的左侧逐渐上升。

4. 对数函数的性质还包括:loga 1 = 0,loga a = 1。

这是因为对于任何数 a,a^0 = 1,a^1 = a。

三、指数和对数函数的应用指数和对数函数在各个领域中都有广泛的应用。

以下是其中的一些例子。

1. 金融领域:指数和对数函数用于计算复利问题,如投资收益率、债券价格等。

2. 成长模型:指数函数可以用于描述生物种群的增长模型,如细胞分裂、细菌繁殖等。

3. 天文学:指数函数可以用于描述恒星的亮度,对于测量星等有重要作用。

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结一、指数函数的定义与性质1. 定义指数函数是以底数a(a>0且a≠1)为底的函数,一般表示为y=a^x,其中a是底数,x是指数,y是函数值。

2. 性质⑴当a>1时,指数函数是递增函数,图像上开;当0<a<1时,指数函数是递减函数,图像下降。

⑵当x=0时,a^0=1。

⑶当a>1时,随着x的增大,函数值y=a^x也会增大;当0<a<1时,随着x的增大,函数值y=a^x会减小。

3. 图像当底数a>1时,指数函数的图像是递增的曲线,图像上翘;当0<a<1时,指数函数的图像是递减的曲线,图像下降。

4. 应用指数函数在科学计算、生物增长、财经复利、工程技术等领域都有着重要的应用。

例如在计算机科学中,指数函数常用于指数衰减算法、指数增长算法等;在生物学中,指数函数常用于描述生物的增长规律;在金融领域中,指数函数用以描述利息的复利增长等。

二、对数函数的定义与性质1. 定义对数函数是指数函数的逆运算,一般表示为y=log_a(x),其中a是底数,x是真数,y是对数。

2. 性质⑴对数函数的定义域为x>0,值域为实数集。

⑵对数函数的图像是单调递增的曲线,在0处没有定义。

⑶特殊情况下,当底数a=10时,我们称为常用对数函数,一般表示为y=log(x);当底数a=e时,我们称为自然对数函数,一般表示为y=ln(x)。

3. 图像对数函数的图像是单调递增的曲线,图像在x轴的右侧。

4. 应用对数函数在科学计算、信息论、统计学、工程技术等领域都有着广泛应用。

例如在信息论中,对数函数用于计算信息量、信息熵等;在统计学中,对数函数用于描述正态分布、伯努利分布等;在工程技术中,对数函数用于解决指数增长问题、指数衰减问题等。

三、指数函数与对数函数的关系1. 反函数关系指数函数与对数函数是一对反函数,它们的定义域和值域互为对方的值域和定义域。

具体而言,对数函数y=log_a(x)中,x=a^y。

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结一、指数函数1.定义:指数函数是以正数为底数、自变量为指数的函数。

一般形式为y=a^x,其中a>0且a≠12.特点:(1)当a>1时,指数函数呈递增趋势;(2)当0<a<1时,指数函数呈递减趋势;(3)a>1时,指数函数的图像在x轴的右侧逐渐上升,称为“增长指数函数”;(4)0<a<1时,指数函数的图像在x轴的右侧逐渐下降,称为“衰减指数函数”;(5)当x=0时,指数函数的值恒为1;(6)指数函数与直线y=0平行(若a>1)或经过点(0,1)(若0<a<1)。

3.基本性质:(1)a^m*a^n=a^(m+n);(2) (a^m)^n = a^(mn);(3) (ab)^m = a^m * b^m;(4)(a/b)^m=a^m/b^m。

二、对数函数1. 定义:对数函数是指以正数a(a>0且a≠1)为底数的对数。

一般形式为y=loga(x),其中x>0。

2.特点:(1)对数函数的定义域为正实数集(0,+∞),值域为实数集;(2) 指数函数y=a^x和对数函数y=loga(x)是互逆运算,即y=loga(a^x) = x,x=loga(a^x) = y;(3)当x>1时,对数函数的值大于0;(4)当0<x<1时,对数函数的值小于0;(5)a>1时,对数函数呈递增趋势;(6)0<a<1时,对数函数呈递减趋势;(7)当x=1时,对数函数的值恒为0;(8)对数函数的图像与直线y=x交于点(1,1)。

三、常用公式与性质1.e与自然对数:(1) e的定义:e=lim(1+1/n)^n,其中n为正整数;(2) 自然对数:ln(x)表示以e为底数的对数函数;(3) 自然对数的性质:ln(e^x)=x,e^(lnx)=x;2.指数方程与对数方程:(1)指数方程:a^x=b,其中a>0且a≠1;(2) 对数方程:loga(x)=b,其中a>0且a≠1;(3)指数方程求解的一般步骤:将方程两边取对数,利用对数的性质求解;(4)对数方程求解的一般步骤:将方程两边以a为底取指数,利用指数函数的性质求解。

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结一、指数函数的定义和性质1.定义:指数函数是以一些正数a为底数的函数,形式为f(x)=a^x,其中a>0且a≠1、指数函数的定义域为实数集R,值域为正数集(0,+∞)。

2.指数函数的性质:(1)当a>1时,指数函数是递增函数;当0<a<1时,指数函数是递减函数。

(2)指数函数的图像在直线y=0上方,且与y轴渐近。

(3) 指数函数的反函数是对数函数,即 f(x) = a^x 的反函数是 g(x) = logₐ(x)。

(4)指数函数的图像在(0,+∞)上是光滑的连续曲线。

3.常见的指数函数:(2)以10为底的指数函数:记作f(x)=10^x。

在计算科学领域中经常使用。

(3)以2为底的指数函数:记作f(x)=2^x。

在计算机科学和信息技术领域中广泛应用。

二、对数函数的定义和性质1. 定义:对数函数是指数函数的反函数,形式为 f(x) = logₐ(x),其中 a>0 且a ≠ 1、对数函数的定义域为正数集(0,+∞),值域为实数集 R。

2.对数函数的性质:(1)对数函数的图像与指数函数的图像关于直线y=x对称。

(2)当0<a<1时,对数函数是递增函数;当a>1时,对数函数是递减函数。

(3)对数函数的图像在x轴正半轴上方,且与x轴渐近。

(4) 对数函数的反函数是指数函数,即 f(x) = logₐ(x) 的反函数是g(x) = a^x。

(5) 对数函数的特殊性质:logₐ(1) = 0,logₐ(a) = 1,logₐ(a^x) = x。

3.常见的对数函数:(2) 以 10 为底的对数函数:记作 f(x) = log₁₀(x)。

在计算科学领域中经常使用。

(3) 以 2 为底的对数函数:记作 f(x) = log₂(x)。

在计算机科学和信息技术领域中广泛应用。

三、指数函数和对数函数的应用1.指数函数的应用:(1)复利计算:复利计算公式中的指数函数可以用来计算存款利息、投资收益等。

指数与对数知识点总结

指数与对数知识点总结

指数与对数知识点总结一、指数(一)指数的定义指数是数学中的一个重要概念,表示一个数自乘若干次的形式。

一般地,对于正整数 n,aⁿ表示 n 个 a 相乘,即aⁿ = a × a ×× a(n 个 a)。

(二)指数的运算性质1、 aᵐ×aⁿ = aᵐ⁺ⁿ(同底数幂相乘,底数不变,指数相加)例如:2³×2²= 2³⁺²= 2⁵= 322、(aᵐ)ⁿ = aᵐⁿ (幂的乘方,底数不变,指数相乘)比如:(2³)²= 2³×²= 2⁶= 643、(ab)ⁿ =aⁿbⁿ (积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘)例如:(2×3)²= 2²×3²= 4×9 = 364、 aᵐ÷aⁿ = aᵐ⁻ⁿ(a ≠ 0,m > n,同底数幂相除,底数不变,指数相减)比如:2⁵÷2³= 2⁵⁻³= 2²= 4(三)指数函数1、定义:一般地,函数 y =aˣ(a > 0 且a ≠ 1)叫做指数函数,其中 x 是自变量,函数的定义域是 R。

2、图像特征:当 a > 1 时,函数图像单调递增,过点(0,1)。

当 0 < a < 1 时,函数图像单调递减,过点(0,1)。

(四)指数方程形如aˣ = b 的方程,其解法通常是将其转化为对数形式求解。

二、对数(一)对数的定义如果aˣ = N(a > 0 且a ≠ 1),那么数 x 叫做以 a 为底 N 的对数,记作 x =logₐN,其中 a 叫做对数的底数,N 叫做真数。

(二)对数的运算性质1、logₐ(MN) =logₐM +logₐN (正数积的对数,等于同一底数的各个因数的对数的和)例如:log₂(4×8) = log₂4 + log₂8 = 2 + 3 = 52、logₐ(M/N) =logₐM logₐN (正数商的对数,等于被除数的对数减去除数的对数)比如:log₃(9/3) = log₃9 log₃3 = 2 1 = 13、logₐMⁿ =nlogₐM (幂的对数等于幂指数乘以底数的对数)例如:log₅2⁵= 5log₅2(三)换底公式logₐb =logₑb /logₑa (其中 e 为自然对数的底数,约等于 2718)(四)常用对数与自然对数1、常用对数:以 10 为底的对数叫做常用对数,简记为 lgN。

指数与对数函数知识点小结

指数与对数函数知识点小结

指数与对数函数知识点小结一、指数函数(Exponential Functions)1.指数函数的定义:指数函数是以指数为自变量,底数为常数的函数,一般形式为y=a^x,其中a为底数,x为指数,y为函数值。

2.指数函数的图像特点:-当底数a>1时,函数呈现增长趋势,图像从左下部分逐渐向右上部分凸起。

-当0<a<1时,函数呈现衰减趋势,图像从左上部分逐渐向右下部分凹陷。

-当a=1时,函数为常数函数y=13.指数函数的性质:-任何指数函数的定义域为实数集。

-当底数a>0且a≠1时,指数函数呈现单调性,且有界。

-指数函数的零点为x=0。

-对于a>1的指数函数,其图像在x轴上有一个水平渐进线y=0;对于0<a<1的指数函数,则在x轴上有一个水平渐进线y=+∞。

二、对数函数(Logarithmic Functions)1. 对数函数的定义:对数函数是指以对数为自变量,以底数为常数的函数,一般形式为 y = logₐx,其中 a 为底数,x 为真数(根据对应关系,也可以叫做自变量),y 为函数值。

2.对数函数的图像特点:-对数函数在(0,1)区间内呈现增长趋势,在(1,+∞)区间内呈现衰减趋势。

-对数函数的图像在x轴上有一个垂直渐进线x=0。

- 对数函数 y = logₐx 与指数函数 y = a^x 对应的图像关于直线 y = x 对称。

3.常见底数的对数函数性质:- 以底数 10 为底的对数函数为常用对数函数(y = log₁₀x),在数学和科学中应用广泛。

- 以底数 e(自然对数)为底的对数函数为自然对数函数(y = ln x),在微积分和概率统计中应用广泛。

- 特殊情况下的对数函数:y = logₐ(1) = 0;y = logₐ(a) = 1三、指数与对数函数的性质1.指数与对数函数是互为反函数,即指数函数和对数函数互为逆操作。

- 指数函数的反函数是对数函数:y = a^x ⇔ x = logₐy- 对数函数的反函数是指数函数:y = logₐx ⇔ x = a^y2.指数和对数的运算规律:-指数函数的运算规律:a^m⋅a^n=a^(m+n);(a^m)^n=a^(m⋅n);(a⋅b)^n=a^n⋅b^n- 对数函数的运算规律:logₐ(m ⋅ n) = logₐm + logₐn;logₐ(a^m) = m;logₐ(m^n) = n ⋅ logₐm3.指数和对数函数的应用:-指数函数在增长与衰减方面有广泛应用,如经济增长、人口增长、科学实验和工程原理等。

(完整版)指数函数、对数函数和幂函数知识点归纳

(完整版)指数函数、对数函数和幂函数知识点归纳

一、 幂函数1、幂的有关概念正整数指数幂:...()n na a a a n N =∈ 零指数幂:01(0)a a =≠负整数指数幂:1(0,)p p a a p N a -=≠∈分数指数幂:正分数指数幂的意义是:(0,,,1)mn mna a a m n N n =>∈>且 负分数指数幂的意义是:11(0,,,1)mnm nmnaa m n N n aa-==>∈>且2、幂函数的定义一般地,函数ay x =叫做幂函数,其中x 是自变量,a 是常数(我们只讨论a 是有理数的情况). 3、幂函数的图象幂函数a y x =当11,,1,2,332a =时的图象见左图;当12,1,2a =---时的图象见上图: 由图象可知,对于幂函数而言,它们都具有下列性质:a y x =有下列性质:(1)0a >时:①图象都通过点(0,0),(1,1);②在第一象限内,函数值随x 的增大而增大,即在(0,)+∞上是增函数. (2)0a <时:①图象都通过点(1,1);②在第一象限内,函数值随x 的增大而减小,即在(0,)+∞上是减函数; ③在第一象限内,图象向上与y 轴无限地接近,向右与x 轴无限地接近. (3)任何幂函数的图象与坐标轴至多只有一个交点; (4)任何幂函数图象都不经过第四象限; (5)任何两个幂函数的图象最多有三个交点.二、指数函数①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R ; 2)函数的值域为),0(+∞;3)当10<<a 时函数为减函数,当1>a 时函数为增函数。

4)有两个特殊点:零点(0,1),不变点(1,)a .5)抽象性质: ()()(),()()/()f x y f x f y f x y f x f y +=⋅-=三、对数函数如果b a N =(0a >,1a ≠),那么b 叫做以a 为底N 的对数,记作log a N b =log b a a N N b =⇔=(0a >,1a ≠,0N >).1.对数的性质()log log log a a a MN M N =+. log log log aa a MM N N=-. log log n a a M n M =.(00M N >>,,0a >,1a ≠)b mnb a n am log log =( a, b 〉 0且均不为1) 2.换底公式:log log log m a m NN a = ( a 〉 0 , a ¹ 1 ;0,1m m >≠)常用的推论:(1)log log 1a b b a ⨯= ;1log log log =⋅⋅a c b c b a .(2)log log m na a nb b m=(a 、0b >且均不为1).1log log 1N N a a mn n m==. (3)01log =a ,1log =a a (4)对数恒等式N a N a =log .一、对数函数的图像及性质① 函数log a y x =(0a >,1a ≠)叫做对数函数② 对数函数的性质:定义域:(0,)+∞; 值域:R; 过点(1,0),即当1x =时,0y =.当0a >时,在(0,+∞)上是增函数;当01a <<时,在(0,+∞)上是减函数.二、对数函数与指数函数的关系对数函数log a y x =与指数函数x y a =图像关于直线y x =对称. 指数方程和对数方程主要有以下几种类型:()()log ,log ()()f x b a a a b f x b f x b f x a =⇔==⇔=(定义法)()()()(),log ()log ()()()0f x g x a a a a f x g x f x g x f x g x =⇔==⇔=>(转化法) ()()()log ()log f x g x m m a b f x a g x b =⇔= (取对数法)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指数函数与对数函数知识点总结
(一)指数与指数幂的运算
1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次
方根,其中n >1,且n ∈N *
. 当n 是奇数时,
a a n
n =,当n 是偶数时,
⎩⎨
⎧<≥-==)
0()
0(||a a a a a a n
n 2.分数指数幂
正数的分数指数幂的意义,规定:
)
1,,,0(*>∈>=n N n m a a a
n m n
m )1,,,0(1
1*
>∈>=
=
-
n N n m a a
a
a
n
m
n
m n
m
3.实数指数幂的运算性质
(1)r a ·s r r a a += ),,0(R s r a ∈>;
(2)rs
s r a a =)( ),,0(R s r a ∈>;
(3)s
r r a a ab =)(
),,0(R s r a ∈>.
(二)指数函数及其性质
1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x
且叫做指数函数,其中x 是自变量,函数的定义域为R .
二、对数函数 (一)对数
1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,
记作:N x a log =(a — 底数,N — 真数,N a log — 对数式)
两个重要对数:

1 常用对数:以10为底的对数N lg ; ○
2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化
幂值 真数
(二)对数的运算性质
如果0>a ,且1≠a ,0>M ,0>N ,那么: ○
1 M a (log ·=)N M a log +N a log ; ○
2 =N
M
a log M a log -N a log ; ○
3 n a M log n =M a log )(R n ∈. 注意:换底公式
a
b
b c c a log log log =
(0>a ,且1≠a ;0>c ,且1≠c ;
0>b )
. 利用换底公式推导下面的结论
(1)b m
n
b a n a m log log =;
(2)a b b a log 1log =. (二)对数函数
1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 注意:○
1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。

如:x y 2log 2=,5
log 5x y = 都不是对数函
数,而只能称其为对数型函数.

2 对数函数对底数的限制:0(>a ,且)1≠a .
1、用根式的形式表示下列各式)0(>a (1)5
1a = (2)3
2
a
-
=
2、用分数指数幂的形式表示下列各式: (1)3
4y x = (2))0(2>=m m
m
3、求下列各式的值
(1)2
325= (2)32
254- ⎛⎫
⎪⎝⎭
=
4、解下列方程
(1)13
1
8
x
-
= (2)151243
=-x 指数函数
1、函数)1,0(1
2≠>=-a a a
y x 的图象必过定点 。

2、如果指数函数x
a x f )1()(-=是R 上的单调减函数,那么a 取值范围是 ( )A 、2<a B 、2>a C 、21<<a D 、10<<a
3、下列关系中,正确的是 ( )
A 、51
31)21()21(> B 、2.01.022> C 、2
.01.022--> D 、115311()()22
- - >
4、比较下列各组数大小:
(1)0.5
3.1 2.3
3.1 (2)0.3
23-⎛⎫

⎝⎭
0.24
23-⎛⎫

⎝⎭
(3) 2.5
2.3
-
0.10.2-
5、函数x
x f 10)(=在区间[1-,2]上的最大值为 ,最小值为 。

函数x x f 1.0)(=在区间[1-,2]上的最大值为 ,最小值为 。

6、函数x y ⎪⎭⎫ ⎝⎛=31的图象与x
y -⎪⎭

⎝⎛=31的图象关于 对称。

7、已知函数)1,0(≠>=a a a y x
在[]2,1上的最大值比最小值多2,求a 的
值 。

8、已知函数)(x f =1
22+-x x a
是奇函数,求a 的值 。

对数(第11份)
1、将下列指数式改写成对数式
(1)1624
= (2)205=a
答案为:(1) (2) 2、将下列对数式改写成指数式
(1)3125log 5= (2)10log 2a =-
答案为:(1) (2) 3、求下列各式的值
(1)64log 2= (2)27log 9 = (3)0001.0lg = (4)1lg = (5)9log 3= (6)9log 3
1= (7)8log 32=
4、已知0>a ,且1≠a ,m a =2log ,n a =3log ,求n
m a +2的值。

5、若)1(log 3a -有意义,则a 的范围是
6、已知48log 2=x ,求x 的值
对数(第12份)
1、求下列各式的值
(1))42(log 5
3
2⨯=__________(2)125log 5=__________
(3)1
)01.0lg(10lg 2lg 25lg 2
1-+++=__________
(4)5log 38log 9
32
log 2log 25333-+- =__________
(5)25lg 50lg 2lg 20lg 5lg -⋅-⋅=__________
(6)1lg 872lg 49lg 2
1
67lg
214lg +-+-=__________ (7)50lg 2lg )5(lg 2
⋅+=__________ (8)5lg 2lg 3)5(lg )2(lg 3
3
⋅++=__________ 2、已知b a ==3lg ,2lg ,试用b a ,表示下列各对数。

(1)108lg =__________ (2)25
18
lg
=__________ 3、(1)求32log 9log 38⨯的值__________;
(2)8log 7log 6log 5log 4log 3log 765432⨯⨯⨯⨯⨯=__________ 4、设3643==y
x
,求
y
x 1
2+的值__________。

5、若n
m 1
10log ,2lg 3==,则6log 5等于 。

6、已知函数x y a )1(log -=在),0(+∞上为增函数,则a 的取值范围
是 。

7、设函数)1(log 2-=x y ,若[]2,1∈y ,则∈x 8、函数0(3)3(log >+-=a x y a 且)1≠a 恒过定点 。

9、已知函数)1,0(log ≠>=a a x y a 在]4,2[∈x 上的最大值比最小值多1,求实数a 的值 。

幂函数(第15份)
1、下列函数中,是幂函数的是( )。

相关文档
最新文档