13二次根式全章复习与巩固知识讲解基础含答案

合集下载

二次根式知识点及典型例题(含答案)

二次根式知识点及典型例题(含答案)

4、不会比较根式的大小5、不会利用二次根式的非负性6、对最简二次根式的条件掌握不牢八、经典例题例1、求下列各数的平方根与算术平方根( )A.36B.81121 C.2-(5) D.41【答案】A.2=36±(6)∴36的平方根为6±,即6± ∴36的算术平方根为6,即B.2981=11121±()∴81121的平方根为911±,即911±∴81121的算术平方根为911,即911 C.25=25±()∴2-(5)的平方根为5±,即5± ∴2-(5)的算术平方根为5,即D.()241=41±∴41的平方根为 ∴41【解析】一个正数的平方根有两个,它们互为相反数,解答本题注意解题步骤的规范书写,不是完全平方数的正数,它的平方根只能用含有根号的形式表示.练习1、计算:(1 (2)【答案】(1)211=121(2)20.9=0.810.9±表示121的算术平方根,表示0.81的平方根,、的意义是解答本题的关键例2、如果一个正数的平方根为3a-5和2a-10,求这个正数【答案】由题意得,3a-5+2a-10=0得a=3∴3a-5=4∴这个数为24=16【解析】一个正数的平方根有两个,它们互为相反数,而互为相反数的两个数相加为0,故(3a-5)+(2a-10)=0.求出a后,可知3a-5与2a-10的值,在考虑哪个正数的平方根是3a-5,2a-10的值即可。

练习1、x为何值时,下列各式有意义。

【答案】解:A.10x-≥,即1x≥有意义B.10x-≥且0x≥,即01x≤≤有意义C.10x+>,即1x>-D.230x+≥,即x都有意义【解析】a≥例3、【答案】解252736<<<<即56<<的整数部分是5【解析】处在哪两个完全平方数之间.例4、:x y【答案】解:33y-1和互为相反数3y-1∴和1-2x互为相反数3y-1+1-2x=0∴:=3:2x y∴互为相反数,则a和b互为相反数,所以本题中3y-1与1-2x 互为相反数例5、实数0.5的算术平方根等于().D.1 2【答案】C【解析】理解算术平方根的意义,把二次根式化成最简形式是解答本题的关键.例6、的算术平方根是()A. 4±B. 4C. 2±D. 2【答案】D【解析】4的算术平方根,4的算术平方根为2.例7、根据下列运算正确的是()3=2 C. (x+2y)2=x2+2xy+4y2 D. A.x6+x2=x3 B.√−8√18−√8=√2【答案】解:A、本选项不能合并,错误;3=-2,本选项错误;B、√-8C、((x+2y)2=x2+2xy+4y2,本选项错误;D、√18-√8=3√2-2√2=√2,本选项正确.故选D【解析】此题考查了完全平方公式,合并同类项,以及负指数幂,幂的乘方,熟练掌握公式及法则是解本题的关键.例8、)【答案】B综合练习简单1. 式子在实数范围内有意义,则x的取值范围是()A.<1 B.≥1 C.≤-1 D.<-1【答案】B【解析】由二次根式的意义,知:x-1≥0,所以x≥1.2.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠1【答案】D解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故选D.【解析】代数式√x有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围.x-13.要使式子2-x有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤2【答案】D解:根据题意得,2﹣x≥0,解得x≤2.【解析】根据被开方数大于等于0列式计算即可得解.4. 下列计算正确的是()=√2 D.3+2√2=5√2 A.4√3-3√3=1 B.√2+√3=√5 C.2√12【答案】C【解析】 A、4√3-3√3=√3,原式计算错误,故本选项错误;B、√2与√3不是同类二次根式,不能直接合并,故本选项错误;=√2,计算正确,故本选项正确;C、2√12D、3+2√2≠5√2,原式计算错误,故本选项错误;根据二次根式的化简及同类二次根式的合并,分别进行各选项的判断即可.5. 若,则=【答案】6【解析】原方程变为:,所以,,由得:=3,两边平方,得:=7,所以,原式=7-1=6中等题1.结果是。

二次根式及经典习题与答案

二次根式及经典习题与答案

二次根式及经典习题与答案二次根式的知识点汇总二次根式的概念是指形如√a的式子,其中被开方数可以是数、单项式、多项式、分式等代数式。

需要注意的是,因为负数没有平方根,所以当a<0时,二次根式无意义。

为了使二次根式有意义,只需要满足被开方数大于或等于零,即a≥0.此外,二次根式的非负性也是一个重要的知识点,即√a表示a的算术平方根,且当a≥0时,√a是一个非负数。

二次根式的性质包括:一个非负数的算术平方根的平方等于这个非负数;一个数的平方的算术平方根等于这个数的绝对值。

需要注意的是,当被开方数是负数时,需要先将其化为绝对值形式,再根据绝对值的意义进行化简。

综上所述,二次根式的知识点包括概念、取值范围、非负性、性质等。

在解题时,需要注意化简时的符号变化和取值范围的限制。

4.当x满足什么条件时,(1-x)²是一个二次根式。

5.在实数范围内分解因式:x⁴-9=(x²+3)(x²-3),x²-22x+2=(x-11-√119)(x-11+√119)。

6.若4x²=2x,则x的取值范围是x=0或1/2.7.已知(x-2)²=2-x,则x的取值范围是x=1-√2或1+√2.8.化简:x²-2x+1÷(x-1),结果是x-1.9.当1≤x≤5时。

10.把a-√a的根号外的因式移到根号内,等于√a(a-1)。

11.使等式(x-1)²+x-5=。

成立的根号外的因式是x-1.12.若a-b+1和a+2b+4互为相反数,则(a-b)²=4.13.在式子x²,2,y+1(y=-2),-2x(x²+1),x+y中,二次根式有3个。

14.下列各式一定是二次根式的是a²+1.15.若2/a-7/a³=2/a²-a,则(2-a)²-(a-3)等于1-2a。

16.若A=√(a²+4)/2,则A=(a+2)/2.17.若a≤1,则(1-a)³化简后为1-a³。

二次根式知识点总复习含答案

二次根式知识点总复习含答案

二次根式知识点总复习含答案一、选择题1.a 的取值范围为() A .0a >B .0a <C .0a =D .不存在 【答案】C【解析】试题解析:根据二次根式的性质,被开方数大于等于0,可知:a≥0,且-a≥0. 所以a=0.故选C .2.已知n n 的最小值是( )A .3B .5C .15D .45【答案】B【解析】【分析】由题意可知45n 是一个完全平方数,从而可求得答案.【详解】=∵n∴n 的最小值为5.故选:B .【点睛】此题考查二次根式的定义,掌握二次根式的定义是解题的关键.3. )A .±3B .-3C .3D .9【答案】C【解析】【分析】进行计算即可.【详解】,故选:C.【点睛】此题考查了二次根式的性质,熟练掌握这一性质是解题的关键.4.若x 、y 4y =,则xy 的值为( )A .0B .12C .2D .不能确定 【答案】C 【解析】 由题意得,2x −1⩾0且1−2x ⩾0,解得x ⩾12且x ⩽12, ∴x =12, y =4,∴xy =12×4=2. 故答案为C.5.若m 与18是同类二次根式,则m 的值不可以是( )A .18m =B .4m =C .32m =D .627m = 【答案】B【解析】【分析】 将m 与18化简,根据同类二次根式的定义进行判断. 【详解】解:18=32A. 18m =时,12==84m ,是同类二次根式,故此选项不符合题意; B. 4m =时,=2m ,此选项符合题意C. 32m =时,=32=42m ,是同类二次根式,故此选项不符合题意;D. 627m =时,62==273m ,是同类二次根式,故此选项不符合题意 故选:B【点睛】本题考查二次根式的化简和同类二次根式的定义,掌握二次根式的化简法则是本题的解题关键.6.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】.7.的结果是 A .-2B .2C .-4D .4【答案】B【解析】22=-=故选:B8.有意义,那么直角坐标系中 P(m,n)的位置在( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】【分析】先根据二次根式与分式的性质求出m,n 的取值,即可判断P 点所在的象限.【详解】依题意的-m≥0,mn >0,解得m <0,n <0,故P(m,n)的位置在第三象限,故选C.【点睛】此题主要考查坐标所在象限,解题的关键是熟知二次根式与分式的性质.9.已知n 是一个正整数,135n 是整数,则n 的最小值是( ). A .3 B .5 C .15 D .25 【答案】C 【解析】【分析】 【详解】解:135315n n =,若135n 是整数,则15n 也是整数,∴n 的最小正整数值是15,故选C .10.50·a 的值是一个整数,则正整数a 的最小值是( )A .1B .2C .3D .5【答案】B【解析】【分析】根据二次根式的乘法法则计算得到52a ,再根据条件确定正整数a 的最小值即可.【详解】∵50·a =50a =52a 是一个整数,∴正整数a 是最小值是2.故选B.【点睛】本题考查了二次根式的乘除法,二次根式的化简等知识,解题的关键是理解题意,灵活应用二次根式的乘法法则化简.11.若x 2+在实数范围内有意义,则x 的取值范围在数轴上表示正确的是( ) A .B .C .D .【答案】D【解析】【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【详解】2x +∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件. 12.有意义时,a的取值范围是()A.a≥2B.a>2 C.a≠2D.a≠-2【答案】B【解析】解:根据二次根式的意义,被开方数a﹣2≥0,解得:a≥2,根据分式有意义的条件:a﹣2≠0,解得:a≠2,∴a>2.故选B.13.a的取值范围是()A.a>1 B.a≥1C.a=1 D.a≤1【答案】B【解析】【分析】根据二次根式有意义的条件可得a﹣1≥0,再解不等式即可.【详解】由题意得:a﹣1≥0,解得:a≥1,故选:B.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.14.下列二次根式中,属于最简二次根式的是()A B C D【答案】C【解析】【分析】根据二次根式的定义即可求解.【详解】=2,故不是最简二次根式;故选C.此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.15.在实数范围内有意义,则x 的取值范围是( )A .3x >B .3x ≠C .3x ≥D .0x ≥【答案】C【解析】【分析】先根据二次根式有意义的条件是被开方式大于等于0,列出关于x 的不等式,求出x 的取值范围即可.【详解】在实数范围内有意义,∴x-3≥0,解得x≥3.故选:C .【点睛】本题考查的是二次根式有意义的条件,即被开方数大于等于0.16.下列二次根式是最简二次根式的是( )A B C D【答案】D【解析】【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A 、被开方数含分母,故A 不符合题意;B 、被开方数含开的尽的因数,故B 不符合题意;C 、被开方数是小数,故C 不符合题意;D 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D 符合题意. 故选:D .【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.17.实数,a b ||a b + )A .2a -B .2b -C .2a b +D .2a b - 【答案】A【解析】【分析】 2,a a = 再根据去绝对值的法则去掉绝对值,合并同类项即可.【详解】 解:0,,a b a b <<>0,a b ∴+<22||a a b b a a b b ∴++=+++()a a b b =--++a ab b =---+2.a =-故选A .【点睛】本题考查的是二次根式与绝对值的化简运算,掌握化简的法则是解题关键.18.下列运算正确的是( )A 532=B 822=C 114293=D ()22525-=-【答案】B【解析】【分析】根据二次根式的性质,结合算术平方根的概念对每个选项进行分析,然后做出选择.【详解】 A .532≠A 错误; B .8222-2=2=,故B 正确;C .137374=993=,故C 错误; D .()225255-2-=,故D 错误.故选:B .【点睛】本题主要考查了二次根式的性质和二次根式的化简,熟练掌握运算和性质是解题的关键.19.有意义的条件是( )A .x>3B .x>-3C .x≥3D .x≥-3 【答案】D【解析】【分析】根据二次根式被开方数大于等于0即可得出答案.【详解】根据被开方数大于等于0有意义的条件是+30≥x解得:-3≥x故选:D【点睛】本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.20.下列计算正确的是( )A 6=B =C .2=D 5=- 【答案】B【解析】【分析】根据二次根式的混合运算顺序和运算法则逐一计算可得.【详解】A ====C.=,此选项计算错误;5=,此选项计算错误;故选:B .【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.。

二次根式 基础知识详解+基本典型例题解析

二次根式 基础知识详解+基本典型例题解析
【总结升华】 a2 a 成立的条件是 a >0;若 a <0,则 a2 a .
【基本典型例题】(2) 类型一、二次根式的乘除
1. 计算:(1)(2014 秋•闵行区校级期中) ×(﹣2 )÷

(2)(2014 春·高安市期中) a 8a 2 a 2 1 2a 2a a
【答案与解析】 解:(1) ×(﹣2 )÷
举一反三: 【变式】下列式子中二次根式的个数有( ).
(1)
1 ;(2) 3
3 ;(3)
x2 1 ;(4)3 8 ;(5)
( 1)2 ;(6) 1 x( x 1 ) 3
A.2 B.3 C.4 D.5 【答案】B.
2. (2016•贵港)式子
在实数范围内有意义,则 x 的取值范围是( )
= ×(﹣2 )×
=﹣
=﹣
=﹣ .
(2)原式= a 8a2 a2 1 2a 2a a
2 2a2 a2 2 2a 2a 2a a
2
2a2
2a a2
2a a
4 2.
【总结升华】根据二次根式的乘除法则灵活运算,注意最终结果要化简.
举一反三:
【变式】 2
a2 b2 6x2
即原式= a b c a c b b c a = a b c
【总结升华】重点考查二次根式的性质:
的同时,复习了
三角形三边的性质.
二、二次根式的乘除基础知识讲解+基本典型例题解析
【学习目标】 1、 掌握二次根式的乘除法法则和化简二次根式的常用方法,熟练进行二次根式的 乘除运算. 2、 了解最简二次根式的概念,能运用二次根式的有关性质进行化简.

(带答案)人教版初中数学二次根式基础知识点归纳总结

(带答案)人教版初中数学二次根式基础知识点归纳总结

(带答案)人教版初中数学二次根式基础知识点归纳总结(文末附答案)单选题1、下列二次根式中能与2√3合并的是( )A .√8B .√13C .√18D .√92、在根式√2,√75,√150,√127,√15中,与√3是同类二次根式的有( )A .1个B .2个C .3个D .4个3、使得式子√4−x 有意义的x 的取值范围是( )A .x≥4B .x >4C .x≤4D .x <4 4、计算:(3√48−2√27)÷√3=( )A .4B .5C .6D .85、√2的相反数是【 】A .√2B .√22C .−√2D .−√22 6、若|x 2﹣4x+4|与√2x −y −3互为相反数,则x+y 的值为( )A .3B .4C .6D .97、如图,在长方形ABCD 中无重叠放入面积分别为16cm 2和12cm 2的两张正方形纸片,则图中空白部分的面积为( )cm 2A .16−8√3B .−12+8√3C .8−4√3D .4−2√38、如图,在长方形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()cm2A.16−8√3B.−12+8√3C.8−4√3D.4−2√3填空题9、观察下列各式:√1+13=2√13,√2+14=3√14,√3+15=4√15,……请你将发现的规律用含自然数n(n≥1)的等式表示出来__________________.10、计算√23×(√8+√2)的结果是________.11、当_____时,式子√x−3√5−x12、计算√27−6√13的结果是_____.13、若x满足|2017-x|+ √x-2018 =x,则x-20172=________ 解答题14、阅读下列解题过程:√2+1=√2−1(√2+1)(√2−1)=√2−1;√3+√2=√3−√2(√3+√2)(√3−√2)=√3−√2;√4+√3=√4−√3(√4+√3)(√4−√3)=√4−√3;…则:(1)化简:√10+√9(2)观察上面的解题过程,请你猜想一规律:直接写出式子√n+√n−1=;(3)利用这一规律计算:(√2+1√3+√2√4+√3+⋯√2020+√2019)(√2020+1)的值.15、已知a,b,c满足|a−√8|+√b−5+(c−√18)2=0.(1)求a、b、c的值(2)试问以a、b、c为边能否构成三角形?若能构成三角形,请求出三角形的周长,若不能,请说明理由.(带答案)人教版初中数学二次根式_018参考答案1、答案:B解析:先化简选项中各二次根式,然后找出被开方数为3的二次根式即可.A 、√8=2√2,不能与2√3合并,故该选项错误;B 、√13=√33能与2√3合并,故该选项正确;C 、√18=3√2不能与2√3合并,故该选项错误;D 、√9=3不能与2√3合并,错误;故选B .小提示:本题主要考查的是同类二次根式的定义,掌握同类二次根式的定义是解题的关键.2、答案:B解析:二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式,继而可得出答案.∵√75=5√3,√150=√210,√127=√39,故与√3是同类二次根式的有:√75,√127,共2个,故选B.小提示:本题考查了同类二次根式的知识,解题的关键是掌握同类二次根式是化为最简二次根式后被开方数相同的二次根式.3、答案:D解析:直接利用二次根式有意义的条件分析得出答案.有意义,则:4﹣x>0,解:使得式子√4−x解得:x<4即x的取值范围是:x<4故选D.小提示:此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.4、答案:C解析:先根据二次根式的性质化简括号内的式子,再进行减法运算,最后进行除法运算即可.原式=(12√3−6√3)÷√3=6√3÷√3=6.故选C.小提示:本题考查了二次根式的混合运算,利用二次根式的性质化简是解题的关键.5、答案:C解析:相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.因此√2的相反数是−√2.故选C.6、答案:A解析:根据题意得:|x2–4x+4|+√2x−y−3=0,所以|x2–4x+4|=0,√2x−y−3=0,即(x–2)2=0,2x–y–3=0,所以x=2,y=1,所以x+y=3.故选A.7、答案:B解析:先根据正方形的面积公式求出两张正方形纸片的边长,从而可得长方形ABCD的长与宽,再利用长方形ABCD 的面积减去两个正方形的面积即可得.面积为16cm2的正方形纸片的边长为√16=4(cm),则CD=4cm,面积为12cm2的正方形纸片的边长为√12=2√3(cm),则BC=(4+2√3)cm,因此,图中空白部分面积为BC⋅CD−16−12=16+8√3−16−12=8√3−12(cm2),故选:B.小提示:本题考查了二次根式的几何应用,正确求出两个正方形的边长是解题关键.8、答案:B解析:先根据正方形的面积公式求出两张正方形纸片的边长,从而可得长方形ABCD的长与宽,再利用长方形ABCD的面积减去两个正方形的面积即可得.面积为16cm2的正方形纸片的边长为√16=4(cm),则CD=4cm,面积为12cm2的正方形纸片的边长为√12=2√3(cm),则BC=(4+2√3)cm,因此,图中空白部分面积为BC⋅CD−16−12=16+8√3−16−12=8√3−12(cm2),故选:B.小提示:本题考查了二次根式的几何应用,正确求出两个正方形的边长是解题关键.9、答案:√n+1n+2=(n+1)√1n+2(n≥1)解析:观察分析可得√1+13=(1+1)√11+2,√2+14=(2+1)√12+2,√3+15=(3+1)√13+2,则将此规律用含自然数n(n≥1)的等式表示出来是√n+1n+2=(n+1)√1n+2(n≥1)解:根据题意得:√1+13=(1+1)√11+2,√2+14=(2+1)√12+2,√3+15=(3+1)√13+2,……,发现的规律用含自然数n(n≥1)的等式表示出来是√n+1n+2=(n+1)√1n+2(n≥1).所以答案是:√n+1n+2=(n+1)√1n+2(n≥1)小提示:本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n表示的等式即可.10、答案:2解析:利用二次根式的乘除法则运算.解:原式=√23×√8+√23×√2=√2×83+√2×23=43+23=2.故答案是:2.小提示:此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.11、答案:3≤x <5.解析:根据二次根式和分式的意义的条件:被开方数大于等于0,分母不等于0,列不等式组求解.根据题意,得:{x −3≥05−x >0,解得:3≤x <5. 小提示:本题考查了的知识点为:分式有意义,分母不为0;二次根式有意义,被开方数是非负数.12、答案:√3.解析:解:原式=3√3﹣6×√3=3√3﹣2√3=√3.3故答案为√3.13、答案:2018解析:根据二次根式有意义的条件列出不等式,求解得出x的取值范围,再根据绝对值的意义化简即可得出方程√x-2018 =2017,将方程的两边同时平方即可解决问题.解:由条件知,x-2018≥0,所以x≥2018,|2017-x|=x-2017.所以x-2017+ √x-2018 =x,即√x-2018 =2017,所以x-2018=20172,所以x-20172=2018,所以答案是:2018.小提示:本题主要考查了二次根式的内容,根据二次根式有意义的条件找到x的取值范围是解题的关键.14、答案:(1)√10−3;(2)√n−√n−1;(3)2019.解析:(1)可分母有理化也可利用上面的规律;(2)可分母有理化也可利用上面的规律;(3)先根据已知得到(√2−1+√3−√2+√4−√3+⋯+√2020−√2019)(√2020+1),合并后根据平方差公式即可求解.解:(1)√10+√9=√10−√9(√10+√9)(√10−√9)=√10−√9=√10−3,(2)原式=√n−√n−1(√n+√n−1)(√n−√n−1)=√n−√n−1n−(n−1)=√n−√n−1所以答案是:√n−√n−1(3)(√2−1+√3−√2+√4−√3+⋯+√2020−√2019)(√2020+1)=((√2020−1)(√2020+1)=2020﹣1=2019.小提示:本题主要考查了分母有理化的应用、平方差公式、二次根式的混合运算、规律型:数字的变化类,理解题意找到规律是解题关键.15、答案:(1)a=2√2,b=5,c=3√2;(2)能,5+5√2解析:(1)根据非负数的性质可求出a、b、c的值;(2)根据三角形三边关系,再把三角形三边相加即可求解.解:(1)由题意得:a−√8=0,b−5=0,c−√18=0,解得:a=√8=2√2,b=5,c=√18=3√2.(2)根据三角形的三边关系可知,a、b、c能构成三角形此时三角形的周长为a+b+c=2√2+5+3√2=5+5√2.小提示:本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.11。

二次函数全章复习与巩固—知识讲解基础-精品

二次函数全章复习与巩固—知识讲解基础-精品

【学习目标】1 .通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义;2 .会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;3 .会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题;4 .会利用二次函数的图象求一元二次方程的近似解. 【知识网络】y —or 2(aK0),y-ar 2+c (a #C )y=。

(工-A*+上(。

户o ).y=ar 2+&r+r (a 声0)-F年二次方程与二次函数的关系 _利用三次函数的图豪求二元三次」方程的解刹车距离 最大面积是多少【要点梳理】要点一、二次函数的定义一般地,如果y =2■3是常数,4H0),那么V 叫做五的二次函数. 要点诠释:如果y=ax'+bx+c (a,b,c 是常数,aWO ),那么y 叫做x 的二次函数.这里,当a=O 时就不是二次函 数了,但b 、c 可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.要点二、二次函数的图象与性质L 二次函数由特殊到一般,可分为以下几种形式:①y 二"/;®y=ax 2,③y=工一人『;@y=a (x-hY_ p i~ .其中我二一二,k=————;⑤)7=&/+£次+二.(以上式子aWO )《二次函数》全章复习与巩固知识讲解(基础)用函数观点看 一元二次方程实际问题与二次函数何时获得最大利润二次函数的概念二次函数的对称轴,顶点坐标二次函数实际问题2a4a几种特殊的二次函数的图象特征如下:2.抛物线的三要素:开口方向、对称轴、顶点.⑴[的符号决定抛物线的开口方向:当以>0时,开口向上;当以<0时,开口向下;4相等,抛物线的开口大小、形状相同.(2)平行于v轴(或重合)的直线记作x=h.特别地,丁轴记作直线x=o.3.抛物线y=ar2+bx+c(aWO)中,。

数学二次根式知识点总结含答案

数学二次根式知识点总结含答案

,设
S S1 S2 ...
正整数). 14.观察下列等式:
Sn ,则 S=________________ (用含有 n 的代数式表示,其中 n 为
第 1 个等式:a1= 1 2 1, 1 2
第 2 个等式:a2=
1 2
3
3
2,
1
第 3 个等式:a3=
=2- 3 ,
32
1 第 4 个等式:a4= 2
(3) 1+ 2 2+ 3 3+ 4
98+ 99 99+ 100 ,
=
2-1 +
3- 2 +
4- 3 + +
99- 98
+
100- 99
1+ 2 2-1 2+ 3 3- 2 3+ 4 4- 3
98+ 99 99- 98 99+ 100 100- 99

= 2-1 + 3- 2 + 4- 3 + + 99- 98 + 100- 99 ,
4036
,则 y __________.
x 2017 x 2019
19.将一组数 2 ,2, 6 ,2 2 , 10 ,…,2 51 按图中的方法排列:
若 3 2 的位置记为(2,3),2 7 的位置记为(3,2),则这组数中最大数的位置记为
______.
20.要使 x 4 有意义,则 x 的取值范围是_____ 三、解答题
= 100-1,
=10-1, =9. 【点睛】
本题考查二次根式化简求值问题,关键找到各分母的有理化因式,用平方差公式化去分
母.

二次根式(讲义及答案)及答案

二次根式(讲义及答案)及答案

一、选择题1.下列计算正确的是( ) A .()222a b a b -=- B .()322x x 8x ÷=+ C .1a a a a÷⋅= D .()244-=-2.下列各式计算正确的是( ) A .235+=B .2222+=C .236⨯=D .1222= 3.二次根式1x -中字母x 的取值可以是( ) A .2B .0C .12-D .-14.下列各式中,正确的是( ) A .42=±B .822-=C .()233-=- D .342=5.二次根式23的值是( ) A .-3 B .3或-3 C .9 D .3 6.若31m -有意义,则m 能取的最小整数值是( ) A .m = 0 B .m = 1 C .m = 2 D .m = 3 7.式子2x -在实数范围内有意义,则x 的取值范围是( )A .0x <B .0xC .2xD .2x8.已知2225152x x ---=,则222515x x -+-的值为( ) A .3B .4C .5D .69.化简(﹣3)2的结果是( ) A .±3B .﹣3C .3D .910.已知实数x 、y 满足222y x x =-+--,则yx 值是( )A .﹣2B .4C .﹣4D .无法确定二、填空题11.将2(3)(0)3a a a a-<-化简的结果是___________________.12.(1)已知实数a 、b 在数轴上的位置如图所示,化简()222144a a ab b +--+=_____________;(2)已知正整数p ,q 32016p q =()p q ,的个数是_______________;(3)△ABC 中,∠A=50°,高BE 、CF 所在的直线交于点O,∠BOC 的度数__________. 13.设a ﹣b=2+3,b ﹣c=2﹣3,则a 2+b 2+c 2﹣ab ﹣ac ﹣bc=_____. 14.设12211112S =++,22211123S =++,32211134S =++,设12...n S S S S =+++,则S=________________ (用含有n 的代数式表示,其中n 为正整数). 15.把1m m-根号外的因式移到根号内,得_____________. 16.若x +y =5+3,xy =15-3,则x+y=_______. 17.已知20n 是整数,则正整数n 的最小值为___18.若a 、b 都是有理数,且2222480a ab b a -+++=,则ab =__________. 19.若实数123a =-,则代数式244a a -+的值为___. 20.如果0xy >,化简2xy -__________.三、解答题21.阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如53,231+这样的式子,其实我们还可以将其进一步化简: (一)5353333⨯==⨯; (二)231)=3131(31)(31)-=-++-(; (三) 22(3)1(31)(31)=3131313131-+-===-++++.以上这种化简的方法叫分母有理化. (1)请用不同的方法化简5+3: ①参照(二)式化简5+3=__________. ②参照(三)式化简5+3=_____________ (2)+315+37+599+97+【答案】见解析.【分析】(1)原式各项仿照题目中的分母有理化的方法计算即可得到结果; (2)原式各项分母有理化,计算即可. 【详解】 解:(1)①;②; (2)原式故答案为:(1)①;②【点睛】此题主要考查了二次根式的有理化,解答此题要认真阅读前面的分析,根据题目的要求选择合适的方法解题.22.像552)=1a a =a (a ≥0)、b b ﹣1)=b ﹣1(b ≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因552 +12﹣1,353﹣5因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题: (1)33;(2)2332+--; (3)2018201720172016的大小,并说明理由. 【答案】(123(2)32(3)< 【解析】分析:(13×3=1,确定互为有理化因式,由此计算即可; (2)确定分母的有理化因式为23与23+3232然后分母有理化后计算即可;(3201820172017201620182017与20172016,20182017+20172016+,然后比较即可.详解:(1) 原式;(2)原式=2+=2+ (3)根据题意,-==,><,>点睛:此题是一个阅读题,认证读题,了解互为有理化因式的实际意义,以及特点,然后根据特点变形解题是关键.23.阅读下面的解答过程,然后作答:m 和n ,使m 2+n 2=a 且,则a 可变为m 2+n 2+2mn ,即变成(m +n )2例如:∵=)2+)2=)2∴请你仿照上例将下列各式化简(12【答案】(1)2-【分析】参照范例中的方法进行解答即可. 【详解】解:(1)∵22241(1+=+=,1=(2)∵2227-=-=,∴==24.)÷)(a ≠b ).【答案】【解析】试题分析:先计算括号内的,然后把除法转化为乘法,约分即可得出结论.试题解析:解:原式=()()a b a b --+-222225.计算 (1)(4﹣3)+2(2)(3)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如表:请计算两组数据的方差. 【答案】(1)6﹣3;(2)-6(3)甲的方差1.65;乙的方差0.76【解析】试题分析:(1)先去括号,再合并;(2)先进行二次根式的乘法运算,然后去绝对值合并;(3)先分别计算出甲乙的平均数,然后根据方差公式分别进行甲乙的方差. 试题解析:(1)原式=4﹣3+2=6﹣3; (2)原式=﹣3﹣2+﹣3 =-6;(3)甲的平均数=(0+1+0+2+2+0+3+1+2+4)=1.5,乙的平均数=(2+3+1+1+0+2+1+1+0+1)=1.2,甲的方差=×[3×(0﹣1.5)2+2×(1﹣1.5)2+3×(2﹣1.5)2+(3﹣1.5)2+(4﹣1.5)2]=1.65; 乙的方差=×[2×(0﹣1.2)2+5×(1﹣1.2)2+2×(2﹣1.2)2+(3﹣1.2)2]=0.76.考点: 二次根式的混合运算;方差.26.先化简再求值:4y x ⎛- ⎝,其中30x -=.【答案】(2x - 【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案. 【详解】解:4y x ⎛- ⎝ ((=-(2x =-∵ 30x - ∴ 3,4x y == 当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.27.已知a ,b (1)求a 2﹣b 2的值; (2)求b a +ab的值.【答案】(1);(2)10 【分析】(1)先计算出a+b 、a-b 的值,然后将所求的式子因式分解后利用整体代入思想代入数值进行计算即可;(2)先计算ab 的值,然后将所求的式子通分,分子进行变形后利用整体代入思想代入相关数值进行计算即可. 【详解】(1)∵a b ,∴a +ba ﹣b =,∴a 2﹣b 2=(a +b )(a ﹣b )==;(2)∵ab, ∴ab =)×)=3﹣2=1,则原式=22b a ab +=()22a b ab ab +-=(2211-⨯=10. 【点睛】本题考查了二次根式的化简求值,熟练掌握整体代入思想是解题的关键.28.计算:(1(2|a ﹣1|,其中1<a【答案】(1)1;(2)1 【分析】(1)根据二次根式的乘法法则计算;(2)由二次根式的非负性,a 的取值范围进行化简. 【详解】解:(1-1=2-1=1 (2)∵1<a,a ﹣1=2﹣a +a ﹣1=1. 【点睛】本题考查二次根式的性质、二次根式的乘法法则,主要检验学生的计算能力.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据完全平方公式,整式的除法,分式的乘除法,二次根式的性质和化简运算法则逐一计算作出判断. 【详解】解: A .()222a b a 2ab b -=-+,选项错误; B .()3322x x 8x x 8x ÷=÷=,选项正确;C.111a a1a a a÷⋅=⋅=,选项错误;D44=-=,选项错误.故选:B.2.C解析:C【分析】计算出各个选项中的正确结果,即可得到哪个选项是正确【详解】A错误;∵2+B错误;=,故选项C正确;=2,故选项D错误.故选C.【点睛】本题考查二次根式的混合运算,解题的关键是明确二次根式的混合运算的计算方法.3.A解析:A【分析】根据二次根式有意义,被开方数非负列出不等式,求解,再依此选择合适的选项.【详解】解:由题意得:x-1≥0解之:x≥1.1>.故选:A.【点睛】本题考查二次根式有意义的条件.理解二次根式有意义,被开方数非负是解题关键.4.B解析:B【分析】本题可利用二次根式的化简以及运算法则判断A、B、C选项;利用立方根性质判断D选项.【详解】A,故该选项错误;B==C3=,故该选项错误;D 11223334=(2)2==,故该选项错误; 故选:B . 【点睛】本题考查二次根式以及立方根,二次根式计算时通常需要化为最简二次根式,然后按照运算法则求解即可,解题关键是细心.5.D解析:D 【分析】根据二次根式的性质进行计算即可.【详解】|3|3=. 故选:D .【点睛】(0)0(0)(0)a a a a a a ><⎧⎪===⎨⎪-⎩.6.B解析:B 【分析】根据被开方数大于等于0列式计算即可得解.【详解】310m-≥, 解得13m ≥, 所以,m 能取的最小整数值是1. 故选:B . 【点睛】本题考查了二次根式的意义和性质,性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.7.D解析:D 【分析】根据二次根式有意义的条件(被开方数≥0),列出不等式求解即可得到答案;【详解】x-≥,即:20x,解得:2故选:D;【点睛】本题主要考查了二次根式有意义的条件,掌握二次根式有意义即被开方数≥0是解题的关键. 8.C解析:C【解析】=,22222=-=--+=251510x x,=.5故选C.9.C解析:C【分析】根据二次根式的性质即可求出答案.【详解】原式=3,故选C.【点睛】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.10.C解析:C【分析】依据二次根式中的被开方数是非负数求得x的值,然后可得到y的值,最后代入计算即可.【详解】y=,∵实数x、y满足2∴x=2,y=﹣2,-⨯=-4.∴yx=22故选:C.【点睛】本题主要考查的是二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.二、填空题11..【分析】根据二次根式的性质化简即可.【详解】∵a<0.∴a-3<0,∴==.故答案为:.【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.解析:【分析】根据二次根式的性质化简即可.【详解】∵a<0.∴a-3<0,∴(a-=-=故答案为:【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.12.(1)2a-2b+1;(2)3;(3)130°或50°.【解析】(1)∵-1<a<0,b>1,∴=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)∵,∴,p=20解析:(1)2a-2b+1;(2)3;(3)130°或50°.【解析】(1)∵-1<a<0,b>1,=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)==∴p=14x 3(其中x 为正整数),同理可得:q=14y 2(其中y 为正整数),则x+3y=12(x 、y 为正整数) ∴963,,123x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩, ∴整数对有(p,q )=(14⨯81,141⨯),或(1436,144)⨯⨯ ,或(149,149⨯⨯)。

人教版初中数学二次根式知识点总复习附答案

人教版初中数学二次根式知识点总复习附答案

8a6
1 4
a2
= 32a4
,故此选项错误;
C. 3a1 3 ,故此选项错误; a
2
D. 2 3a2 3a 3a2 4a2 4a 1 ,正确.
故选 D.
18.下列根式中属最简二次根式的是(
A. a2 1
【答案】A 【解析】
B. 1 2

C. 8
1
D.
2
试题分析:最简二次根式是指无法进行化简的二次根式.A、无法化简;B、原式= ;C、
7 11 11 = 11 ,此选项正确; 11 7
C、 75 15 3 =(5 3 - 15 )÷ 3 =5- 5 ,此选项错误;
D、 1 18 3 8 = 2 2 2 2 ,此选项错误;
3
9
故选 B
【点睛】
本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则.
人教版初中数学二次根式知识点总复习附答案
一、选择题 1.一次函数 y mx n 的图象经过第二、三、四象限,则化简 (m n)2 n2 所得的
结果是( )
A. m
B. m
C. 2m n
【答案】D
【解析】
【分析】
根据题意可得﹣m<0,n<0,再进行化简即可.
【详解】
∵一次函数 y=﹣mx+n 的图象经过第二、三、四象限,
的性质,选择恰当的解题途径,往往能事半功倍.
4.实数 a,b 在数轴上对应点的位置如图所示,化简|a|+ ( a b )2 的结果是( )
A.2a+b
B.-2a+b
C.b
D.2a-b
【答案】B
【解析】
【分析】
根据数轴得出 a 0 , a b 0 ,然后利用绝对值的性质和二次根式的性质化简.

数学二次根式知识归纳总结含答案

数学二次根式知识归纳总结含答案

数学二次根式知识归纳总结含答案一、选择题1.下列运算结果正确的是( ) A .()299-=- B .623÷= C .()222-= D .255=-2.下列各式成立的是( ) A .2(3)3-=B .633-=C .222()33-=- D .2332-=3.下列计算正确的是( ) A .42=±B .()233-=- C .()255-= D .()233-=-4.下列计算正确的是( ) A .532-=B .223212⨯=C .933÷=D .423214+=5.下列计算正确的是( ) A .325+=B .2222+=C .2651-=D .822-=6.下列各式计算正确的是( )A .6232126()b a b a b a---⋅=B .(3xy )2÷(xy )=3xyC .23a a a +=D .2x •3x 5=6x 67.设a 为3535+--的小数部分,b 为633633+--的小数部分,则21b a-的值为( ) A .621+- B .621-+C .621--D .621++8.当119942x +=时,多项式()20193419971994x x --的值为( ). A .1B .1-C .20022D .20012-9.下列各式中,不正确的是( ) A .233(3)(3)->- B .33648<C .2221a a +>+D .2(5)5-=10.实数a ,b 在数轴上的位置如图所示,则化简﹣+b 的结果是( )A .1B .b+1C .2aD .1﹣2a11.下列运算正确的是( )A .235+=B .()2228-=C .112222÷=D .()21313-=-12.下列二次根式中,与3是同类二次根式的是( ) A .18B .13C .24D .0.3二、填空题13.已知实数,x y 满足()()22200820082008x x y y ----=,则2232332007x y x y -+--的值为______.14.化简并计算:()()()()()()()...112231920xx x x x x x x ++++=+++++++________.(结果中分母不含根式)15.已知实数a 、b 、c 在数轴上的位置如图所示,化简2a ﹣|a ﹣c |+2()c b -﹣|﹣b |=_______.16.下面是一个按某种规律排列的数阵:11第行325 62第行7223 10 11 233第行 13154 1732 19254第行根据数阵排列的规律,第 5 行从左向右数第 3 个数是 ,第 n (n 3≥ 且 n 是整数)行从左向右数第 n 2- 个数是 (用含 n 的代数式表示). 17.若2x ﹣3x 2﹣x=_____.18.若a 、b 、c 均为实数,且a 、b 、c 均不为043252a c b=___________ 19.2121=-+3232=+=++……=___________.20.x 的取值范围是_____三、解答题21.计算:10099+【答案】910【解析】 【分析】先对代数式的每一部分分母有理化,然后再进行运算 【详解】10099++=21009926129900-++++=9912233499100-+-+-++-=1100- =1110- =910【点睛】本题看似计算繁杂,但只要找到分母有理化这个突破口,就会化难为易。

二次根式全章总复习

二次根式全章总复习

二次根式全章总复习三个概念概念1 二次根式1.下列各式一定是二次根式的是( ) 2.下列式子中为二次根式的是( ) a B .x +1 C .1-x D .x +1 A .8 B .-1 C . 2 D .x(x <0)3.在代数式:①;②;③;④;⑤;⑥中,一定是二次根式的有( )A.5个 B.4个 C.3个 D.2个 4.二次根式13)3(2++m m 的值是( )A .23B .32C .22D .0 5.已知a 为实数,下列式子一定有意义的是( )A. B. C. D.6.已知x ,y 为实数,且满足1+x -(y -1)1-y =0,那么x 2 016-y 2 017的值是多少?概念2 代数式1.下列式子中属于代数式的有( )①0;②a ;③x +y =2;④x -5;⑤2a ;⑥a 2+1;⑦a ≠1;⑧x ≤3. A .7个 B .6个 C .5个 D .4个2.农民张大伯因病住院,手术费为a 元,其他费用为b 元,由于参加农村合作医疗,手术费报销85%,其他费用报销60%,则张大伯此次住院共报销_________________元(用代数式表示). 概念3 最简二次根式1.二次根式45a ,2a 3,8a ,b ,13(其中a ,b 均大于或等于0)中,是最简二次根式的有_________个。

2.把下列各式化成最简二次根式.(1) 1.25; (2)4a 3b +8a 2b(a ≥0,b ≥0); (3)-n m 2(mn >0); (4)x -y x +y(x ≠y).3.下列二次根式中,哪些是最简二次根式?哪些不是?不是最简二次根式的请说明理由.412-402,8-x 2,22,x 2-4x +4(x>2),-x 12x ,0.75ab ,ab 2(b>0,a>0),9x 2+16y 2,(a +b )2(a -b )(a>b>0),x 3,x 3.二次根式的性质性质1 (a)2=a(a ≥0)1,下列计算正确的是( )A .-(7)2=-7 B .(5)2=25 C .(9)2=±9 D .-⎝⎛⎭⎪⎫-9162=916 2.在实数范围内分解因式:x 4-9=________.3.要使等式(8-x)2=x -8成立,则x =________. 性质2 a 2=a(a ≥0)1.实数a 在数轴上对应点的位置如图所示,则(a -4)2+(a -11)2化简后为( ) A .7 B .-7C .2a -15 D .无法确定 2.若成立,则m 的取值范围是__________3.已知三角形的两边长分别为3和5,第三边长为c ,化简:c 2-4c +4-14c 2-4c +16.4.先化简再求值:当a =5时,求a +1-2a +a 2的值,甲、乙两人的解答如下:甲的解答为:原式=a +(1-a )2=a +(1-a)=1;乙的解答为:原式=a +(1-a )2=a +(a -1)=2a -1=9. 请问谁的解答正确?请说明理由.性质3 积的算术平方根1.化简24的结果是( )A .4 6 B .2 6 C .6 2 D .8 32.能使得(3-a )(a +1)=3-a ·a +1成立的所有整数a 的和是________. 3.若3)3(-⋅=-m m m m ,则m 的取值范围是4.将根号外的移到根号内; .性质4 商的算术平方根1.化简下列二次根式:(1)449; (2)121b516a2(a <0,b >0).性质5。

(完整版)二次根式的复习(附答案)

(完整版)二次根式的复习(附答案)

页眉内容二次根式的复习知识精要1、二次根式的概念)0a≥叫做二次根式。

其中a是被开方数(可为整式或分式a≥.2、二次根式的性质性质1 ()0a a=≥;※⎪⎩⎪⎨⎧<-=>==)0()0(0)0(2aaaaaaa性质2 ()20a a=≥;性质3 =()0,0a b≥≥※)0,0(≤≤-⋅-=babaab性质4 =(ba,0≥>0)一般地,==3、最简二次根式化简二次根式把二次根式里被开方数所含的完全平方因式移到根号外,或者化去被开方数的分母的过程,称为化简二次根式,通常把形如)0a≥的式子叫做最简二次根式。

4、同类二次根式几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个根式叫做同类二次根式。

5.二次根式的混合运算6.分母有理化把分母中的根号化去就是分母有理化.即是指分母不含二次根式的运算的技术。

分母有理化的方法是把分子和分母都乘以同一个适当的代数式,使分母不含根号. 上述的适当代数式即是指有理化因式。

精解名题二次根式有意义的条件:例1:求下列各式有意义的所有x 的取值范围。

();();();();();()13221312411521645332-++-++-----x x x x x xx x x x解:(1)要使32-x 有意义,必须320-≥x ,由320-≥x 得x ≤32, ∴当x ≤32时,式子32-x 在实数范围内有意义。

(2)要使x +13有意义,x +1为任意实数均可, ∴当x 取任意实数时x +13均有意义。

(3)∴当x x ≥-≠12且时,式子x x +-12在实数范围内有意义。

(4)当x x ≥-≠11,且时,x x++-113有意义。

(5)当x ≥12时,式子x x --21在实数范围内有意义。

(6)当x x x x ≤-≠-≥≠2525且或且时式子x x 245--有意义 最简二次根式例2.根式x x ma a 12,62,3,17,4,522+中最简二次根式为 ___________________________________________________.解:42+a ,17,2x 6同类二次根式根式: 例 3. 已知二次根式5,23+a 是同类二次根式,写出三个a 的可能值_________________________. 解:3a+2是5的倍数a 为6,11,16(答案不唯一)分母有理化:例4.将下列二次根式分母有理化 (1)242++a a (2)22+-a a解:(1)22+a(2)2222--+a aa(3)x125 (4)qp q p --222(p>q )解:(3)xx615 (4)2)(qp q p -+化简:例5:化简:()()()1424422242242222a ba ba ab ba a a a a a--÷++++++++-解: ()()()()原式122222=+--÷+a ba b a ba b()()()=+÷+=+=--=+++++-+=++++->≥<<≥=++++-=++++-a b a b a ba b a ba a a a a a a a a a a a a a a a a a a a a a a a a a a a a a aa a a a 2212242121224424421212222222202022121222222222222222()原式原题只保证,因此要分类讨论时,及时当时,原式||||Θ23222021212222222222222622a a aaa a a a a a a aa aa a a a a a aa=+<<=++++-=++++-=+当时,原式化简求值:例6:已知:223223-=+=b a ,,求:a b ab 33+的值。

二次根式专题(含答案详解)

二次根式专题(含答案详解)

数学专题 第六讲:二次根式【基础知识回顾】一、 二次根式式子a ( )叫做二次根式提醒:①次根式a 必须注意a___o 这一条件,其结果也是一个非数即:a ___o ②二次根式a (a ≥o )中,a 可以表示数,也可以是一切符合条件的代数式 二、 二次根式的性质:①(a )2= (a ≥0)③= (a ≥0 ,b ≥0)④= (a ≥0, b ≥0)提醒:二次根式的性质注意其逆用:如比较23和可逆用(a )2=a(a ≥0)将根号外的整数移到根号内再比较被开方数的大小 三、最简二次根式:最简二次根式必须同时满足条件:1、被开方数的因数是 ,因式是整式2、被开方数不含 的因数或因式 四、二次根式的运算:1、二次根式的加减:先将二次根式化简,再将 的二次根式进行合并,合并的方法同合并同类项法则相同2、二次根式的乘除:= (a ≥0 ,b ≥0)(a ≥0,b >0) 3、二次根式的混合运算顺序:先算 再算 最后算提醒:1、二次根式除法运算过程一般情况下是用将分母中的根号化去这一方法进行:如:= = 2、二次根式混合运算过程要特别注意两个乘法公式的运用 3、二次根式运算的结果一定要化成 重点考点例析考点一:二次根式有意义的条件A .x ≠3B .x <3 C .x >3 D .x ≥3(a ≥o )(a <o )思路分析:根据二次根式的意义得出x-3≥0,根据分式得出x-3≠0,即可得出x-3>0,求出即可. 解:要使代数式43x -有意义, 必须x-3>0, 解得:x >3. 故选C .点评:本题考查了二次根式有意义的条件,分式有意义的条件的应用,注意:分式B A中A ≠0,二次根式a 中a ≥0. 对应训练 1.使代数式21xx -有意义的x 的取值范围是( ) A .x≥0 B .x≠12C .x≥0且x≠12 D .一切实数 解:由题意得:2x-1≠0,x≥0,解得:x≥0,且x≠12,故选:C .考点二:二次根式的性质例2 实数a 、b 在轴上的位置如图所示,且|a|>|b|,则化简2||a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b思路分析:现根据数轴可知a <0,b >0,而|a|>|b|,那么可知a+b <0,再结合二次根式的性质、绝对值的计算进行化简计算即可. 解:根据数轴可知,a <0,b >0,原式=-a-[-(a+b )]=-a+a+b=b .故选C .点评:二次根式的化简和性质、实数与数轴,解题的关键是注意开方结果是非负数、以及绝对值结果的非负性. 对应训练2.实数a ,b 在数轴上的位置如图所示,则2()a b a ++的化简结果为 .解:∵由数轴可知:b <0<a ,|b|>|a|, ∴2()a b a ++=|a+b|+a =-a-b+a=-b , 故答案为:-b .考点三:二次根式的混合运算思路分析:利用二次根式的分母有理化以及分数指数幂的性质和负整数指数幂的性质,分别化简,进而利用有理数的混合运算法则计算即可.=3.二次根式的混合运算以及负整数指数幂的性质,将各式进行化简是解题关键. 对应训练=4=+考点四:与二次根式有关的求值问题222)(1)(x x x ++-思路分析:先根据分式混合运算的法则把原式进行化简,再把x 的值代入进行计算即可.2(1)1)4x x x+0, 1+, (1)11)44x x x+=考查的是二次根式及分式的化简求值,解答此题的关键是当1,此题难度不大.对应训练A .0B .25C .50D .80分析:根据平方差公式求出1142-642=(114+64)×(114-64)=178×50,再提出50得出50×(178-50)=50×128,分解后开出即可. 解:2221146450-- =2(11464)(11464)50+-- =1785050⨯- =50(17850)⨯- =50128⨯=222582⨯⨯⨯=2×5×8,=80, 故选D .考查了平方差公式,因式分解,二次根式的运算等知识点的应用,解此题的关键是能选择适当的方法进行计算 【聚焦中考】1.下列运算正确的是( )B .A 2(5)5-=- B .21()164--= C .x 6÷x 3=x 2 D .(x 3)2=x 52.计算:182= .0 3.计算:0(3)123-+⨯= .7【备考真题过关】 一、选择题1.要使式子2x -有意义,则x 的取值范围是( D )A .x >0B .x≥-2C .x≥2 D.x≤2 2.计算102÷=( A )A 5B .5C .52D .1023.计算:322-=( )4.已知3()(221)3m =-⨯-,则有( ) A .5<m <6 B .4<m <5 C .-5<m <-4 D .-6<m <-5 解:3()(221)3m =-⨯- 23213=⨯ 2373=⨯ 2728==,∵252836<<,∴5286<<,即5<m <6, 故选A .5.下列计算正确的是( D ) A .x 3+x 3=x 6B .m 2•m 3=m 6C .3223-=D .14772⨯=6.下列等式一定成立的是( B )A .945-=B .5315⨯=C .93=±D .2(9)9--=7.使式子有意义的x 的取值范围是( ) A . x≥﹣1 B . ﹣1≤x≤2C . x≤2D . ﹣1<x <2解:根据题意,得,解得,﹣1≤x≤2; 故选B .8.在下列各式中,二次根式的有理化因式是( )A .B .C .D .解:∵×=a ﹣b ,∴二次根式的有理化因式是:.故选:C .主要考查了二次根式的有理化因式的概念,熟练利用定义得出是解题关键. 9.下列计算错误的是( )A.B.C.D.分析:根据二次根式的乘法对A、B进行判断;根据二次根式的除法对C进行判断;根据二次根式的性质对D进行判断.解:A、=,所以A选项的计算正确;B、与不是同类二次根式,不能合并,所以B选项的计算错误;C、÷===2,所以C选项的计算正确;D、==×=2,所以D选项的计算正确.故选B.10.下列计算正确的是()A.B.C.D.分析:根据同类二次根式才能合并可对A进行判断;根据二次根式的乘法对B进行判断;先把化为最简二次根式,然后进行合并,即可对C进行判断;根据二次根式的除法对D 进行判断.解:A、与不能合并,所以A选项不正确;B、×=,所以B选项不正确;C、﹣=2=,所以C选项正确;D、÷=2÷=2,所以D选项不正确.故选C.11.下列计算或化简正确的是()A.a2+a3=a5B.C.D.分析:A、根据合并同类项的法则计算;B、化简成最简二次根式即可;C、计算的是算术平方根,不是平方根;D、利用分式的性质计算.解:A、a2+a3=a2+a3,此选项错误;B、+3=+,此选项错误;C、=3,此选项错误;D、=,此选项正确.故选D.考查了合并同类项、二次根式的加减法、算术平方根、分式的性质,解题的关键是灵活掌握有关运算法则,并注意区分算术平方根、平方根.12.下列计算正确的是()A.B.C.D.分析:根据二次根式的乘除法则,及二次根式的化简结合选项即可得出答案.解:A、•=1,故本选项正确;B、﹣≠1,故本选项错误;C、=,故本选项错误;D、=2,故本选项错误;故选A.二、填空题解:∵20n=22×5n. ∴整数n 的最小值为5. 故答案是:5.∴222a <-<,即22b <<.故答案为:22b <<.1205的结果是22的结果是2)222+⨯⨯1。

初中数学二次根式(讲义及答案)及解析

初中数学二次根式(讲义及答案)及解析

一、选择题1.下列等式正确的是( )A 7=-B 3=C .5D .=2.下列二次根式中,是最简二次根式的是( )A B C D3.已知5x =-,则2101x x -+的值为( )A .-B .C .2-D .04.x 的取值范围是( )A .x≥2020B .x≤2020C .x> 2020D .x< 2020 5.下列各式中,正确的是( )A .B .a 3 • a 2=a 6C .(b+2a) (2a -b) =b 2 -4a 2D .5m + 2m = 7m 26.有意义,则字母x 的取值范围是( ) A .x≥1B .x≠2C .x≥1且x =2D ..x≥-1且x ≠2 7.“分母有理化”是我们常用的一种化简的方法,如:7==+x =>,故0x >,由22332x ==-=,解得x=结果为( )A .5+B .5+C .5D .5-8.给出下列化简①()2=2=2=12=,其中正确的是( ) A .①②③④B .①②③C .①②D .③④ 9.下列运算一定正确的是( )A a =B =C .222()a b a b ⋅=⋅D ()0n a m=≥10.如果实数x ,y =-(),x y 在( )A .第一象限B .第二象限C .第一象限或坐标轴上D .第二象限或坐标轴上 二、填空题11.化简322+=___________. 12.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72 [72]=8 [8]=2 [2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是________.13.已知120654010144152118+++可写成235a b c ++的形式(,,a b c 为正整数),则abc =______.14.计算()623÷+=________________ .15.已知a ,b 是正整数,若有序数对(a ,b )使得112()a b +的值也是整数,则称(a ,b )是112()a b +的一个“理想数对”,如(1,4)使得112()a b+=3,所以(1,4)是112()a b +的一个“理想数对”.请写出112()a b +其他所有的“理想数对”: __________.16.已知实数m 、n 、p 满足等式33352m n m n m n p m n p -+⋅--=+--+--,则p =__________.17.计算:11882--=_____________. 18.已知x ,y 为实数,y =22991x x -+-+求5x +6y 的值________. 19.已知x =51-,y =51+,则x 2+xy +y 2的值为______. 20.观察分析下列数据:0,3-,6,-3,23,15-,32,…,根据数据排列的规律得到第10个数据应是__________.三、解答题21.阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如3,31+这样的式子,其实我们还可以将其进一步化简:(一3533333==⨯;(二)2231)=31 31(31)(31)-=-++-(;(三)22231(3)1(31)(31)=31 31313131--+-===-++++.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简25+3:①参照(二)式化简25+3=__________.②参照(三)式化简5+3=_____________(2)化简:++++315+37+599+97+.【答案】见解析.【分析】(1)原式各项仿照题目中的分母有理化的方法计算即可得到结果;(2)原式各项分母有理化,计算即可.【详解】解:(1)①;②;(2)原式故答案为:(1)①;②【点睛】此题主要考查了二次根式的有理化,解答此题要认真阅读前面的分析,根据题目的要求选择合适的方法解题.22.2722322312-310【分析】先根据二次根式的性质和平方差公式化简,然后再进行计算即可【详解】=(22⎡⎤--⎢⎥⎣⎦=()212--10+.10.【点睛】本题主要考查了二次根式的性质、平方差公式,灵活运用二次根式的性质化简是解答本题的关键.23.计算:【答案】【分析】先将括号内的二次根式进行化简并合并,再进行二次根式的乘法运算即可.【详解】解:===【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.24.计算下列各题(1)⎛÷ ⎝(2)2-【答案】(1)1;(2).【分析】(1)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算即可;(2)利用完全平方公式和平方差公式展开,然后再进行合并即可.【详解】(1)原式=1;(2)原式+2).【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.25.计算:0(3)|1|π-+.【答案】【分析】根据二次根式的意义和性质以及零次幂的定义可以得到解答.【详解】解:原式11=+=【点睛】本题考查实数的运算,熟练掌握二次根式的运算和零次幂的意义是解题关键.26.计算(1(2)21)-【答案】(1)4;(2)3+【分析】(1)先把各根式化为最简二次根式,再去括号,合并同类项即可;(2)利用平方差公式和完全平方公式计算即可.【详解】解:(1)解:原式=4=+4=-(2)解:原式()22161=---63=-+3=+【点睛】本题考查了二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.27.先化简,再求值:221()a b a b a b b a -÷-+-,其中a =2b =- 【答案】1a b -+,12-. 【分析】 先把分式进行化简,得到最简分式,然后把a 、b 的值代入计算,即可得到答案.【详解】 解:原式1()()a b a b a a b a b b a b b --=⨯-⨯+-+ ()()a b a b a b b a b -=--++ ()b b b a =-+ 1a b=-+,当a =2b = 原式12==-. 【点睛】本题考查了二次根式的混合运算,分式的化简求值,分式的混合运算,解题的关键是熟练掌握运算法则进行解题.28.计算下列各题:(1(2)2-.【答案】(1)2)2--【分析】(1)根据二次根式的运算顺序和运算法则计算即可;(2)利用平方差、完全平方公式进行计算.【详解】解:(1)原式==;(2)原式22(5=--+525=---2=--【点睛】本题考查二次根式的加减乘除混合运算,熟练掌握运算法则和乘法公式是关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据二次根式的性质求出每个式子的值,再得出选项即可.【详解】解:AB3=,故本选项符合题意;C、5=-,故本选项不符合题意;D、=-,故本选项不符合题意;故选:B.【点睛】本题考查了二次根式的性质和化简,能熟记二次根式的性质是解此题的关键.2.D解析:D【分析】最简二次根式的被开方数中不含能开得尽方的因数或因式,其中小数要转化为分数,分数中分母不可以是二次根式,注意这几点即可得出答案.【详解】ABC,不是最简二次根式,故本选项不符合题意;2D故选:D.【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式,最简二次根式必须满足两个条件:被开方数中不含能开得尽方的因数或因式;被开方数的因数是整数,因式是整式,本题属于基础题型.3.D解析:D【分析】把x 的值代入原式计算即可求出值.【详解】解:当时,原式=()2-10×()+1+1=0.故选:D .【点睛】本题考查了二次根式的化简求值,熟练掌握运算法则是解题的关键.4.A解析:A【分析】先根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【详解】∴x-2020≥0,解得:x ≥2020;故选:A .【点睛】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.5.A解析:A【分析】比较两个二次根式的大小可判别A ,根据同底数幂的乘法、平方差公式、合并同类项的运算法则分别计算可判断B 、C 、D 的正误.【详解】A 、=,=∵1812>,∴>,故该选项正确;B 、3a •25a a =,故该选项错误;C 、()()22224b a a b a b +-=-,故该选项错误; D 、527m m m +=,故该选项错误;故选:A .【点睛】本题考查了二次根式大小的比较,同底数幂的乘法、平方差公式、合并同类项的运算,熟练掌握相关运算法则是解题的关键.6.D解析:D【分析】直接利用二次根式的有意义的条件分析得出答案.【详解】有意义,则x+1≥0且x-2≠0,解得:x≥-1且x≠2.故选:D.【点睛】本题考查了二次根式有意义的条件,正确把握相关性质是解题关键.7.D解析:D【分析】进行化简,然后再进行合并即可.【详解】设x=<x<,∴0∴266x=-+,∴212236x=-⨯=,∴x=∵5=-,∴原式5=-5=-故选D.【点睛】本题考查了二次根式的混合运算,涉及了分母有理化等方法,弄清题意,理解和掌握题中介绍的方法是解题的关键.8.C解析:C【分析】根据二次根式的性质逐一进行计算即可求出答案.【详解】①原式=2,故①正确;②原式=2,故②正确;③原式==④原式==,故④错误,故选C.【点睛】本题考查二次根式的性质和化简,熟练掌握二次根式的性质是解题的关键.9.C解析:C【分析】直接利用二次根式的性质与化简以及积的乘方运算法则分别计算即可得出答案.【详解】A|a|,故此选项错误;B.,则a,b均为非负数,故此选项错误;C.a2•b2=(a•b)2,正确;D m n a(a≥0),故此选项错误.故选C.【点睛】本题主要考查了二次根式的性质与化简以及积的乘方运算,正确掌握相关运算法则是解题的关键.10.D解析:D【分析】先判断出点的横纵坐标的符号,进而判断点所在的象限或坐标轴.【详解】=-∴x、y异号,且y>0,∴x<0,或者x、y中有一个为0或均为0.∴那么点(),x y在第二象限或坐标轴上.故选:D.【点睛】根据二次根式的意义,确定被开方数的取值范围,进而确定a、b的取值范围,从而确定点的坐标位置.二、填空题11.+1【分析】先将用完全平方式表示,再根据进行化简即可.【详解】因为,所以,故答案为:.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二+1【分析】先将3+,()()()0000a a a a a a ⎧>⎪===⎨⎪-<⎩进行化简即可.【详解】因为(2231211+=+=+=+,11===故答案为:1.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二次根式利用完全平方公式分解. 12.255【解析】解:∵[]=1,[]=3,[]=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和 解析:255【解析】解:]=1,=3,=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和逆推思维能力.13.【解析】【分析】根据题意,可得到=,利用平方关系把根号去掉,根据、、的系数相等的关系得到关于a ,b ,c 的三元方程组,解方程组即可.【详解】∵=∴,即.解得.【点睛】本题考查了解析:【解析】【分析】a ,b ,c 的三元方程组,解方程组即可.【详解】∴(22118=,即2222118235a b c =+++++. 2222352118,2120,2540,2144,a b c ab ac bc ⎧++=⎪=⎪∴⎨=⎪⎪=⎩ 解得15,4,18.a b c =⎧⎪=⎨⎪=⎩154181080abc ∴=⨯⨯=.【点睛】本题考查了二次根式的加减,解本题的关键是将等式平方去根号,利用等量关系中等式左、.14.【解析】=,故答案为.解析:【解析】÷====-, 故答案为15.(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9)【解析】试题解析:当a=1,=1,要使为整数,=1或时,分别为4和3,得出(1,4)和(1,1)是的“理想数对”,解析:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9)【解析】试题解析:当a =1,要使或12时,分别为4和3,得出(1,4)和(1,1)是的“理想数对”, 当a =412,要使+或12时,分别为3和2, 得出(4,1)和(4,4)是的“理想数对”, 当a =913,要使16时,=1, 得出(9,36)是的“理想数对”, 当a =1614,要使14时,=1, 得出(16,16)是的“理想数对”, 当a =3616,要使13时,=1, 得出(36,9)是的“理想数对”, 即其他所有的“理想数对”:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9).故答案为:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9). 16.5【解析】试题解析:由题可知,∴,∴,∴,①②得,,解方程组得,∴.故答案为:5.解析:5【解析】试题解析:由题可知3030m n m n -+≥⎧⎨--≥⎩, ∴3m n +=,0=, ∴35200m n p m n p +--=⎧⎨--=⎩①②, ①-②得2620m n +-=,31m n +=,解方程组331m n m n +=⎧⎨+=⎩得41m n =⎧⎨=-⎩, ∴4(1)5p m n =-=--=.故答案为:5.17.【解析】【详解】根据二次根式的性质和二次根式的化简,可知==.故答案为.【点睛】此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.解析:2【解析】【详解】22.故答案为2. 【点睛】 此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.18.-16【解析】试题分析:根据分式的有意义和二次根式有意义的条件,可知x2-9=0,且x-3≠0,解得x=-3,然后可代入得y=-,因此可得5x+6y=5×(-3)+6×(-)=-15-1=-16 解析:-16【解析】试题分析:根据分式的有意义和二次根式有意义的条件,可知x 2-9=0,且x-3≠0,解得x=-3,然后可代入得y=-16,因此可得5x+6y=5×(-3)+6×(-16)=-15-1=-16. 故答案为:-16.点睛:此题主要考查了分式的有意义和二次根式有意义,解题关键是利用二次根式的被开方数为非负数和分式的分母不为0,可列式求解. 19.4【详解】根据完全平方公式可得:原式=-xy==5-1=4.解析:4【详解】根据完全平方公式可得:原式=2()x y +-xy=251515151)222=5-1=4. 20.6【分析】通过观察可知,根号外的符号以及根号下的被开方数依次是:,,…,可以得到第13个的答案.【详解】解:由题意知道:题目中的数据可以整理为:,,…,∴第13个答案为:.故答案为6.解析:6【分析】 通过观察可知,根号外的符号以及根号下的被开方数依次是:11(1)30,21(1)31,31(1)32…1(1)3(1)n n ,可以得到第13个的答案.【详解】 解:由题意知道:题目中的数据可以整理为:11(1)30,21(1)31,31(1)32…1(1)3(1)n n ,∴第13个答案为:131(1)3(131)6.故答案为6.【点睛】此题主要考查了二次根式的运算以及学生的分析、总结、归纳的能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律. 三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

人教版八年级数学下册二次根式全章复习与巩固(基础)典型例题讲解+练习及答案.doc

人教版八年级数学下册二次根式全章复习与巩固(基础)典型例题讲解+练习及答案.doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】《二次根式》全章复习与巩固--知识讲解(基础)责编:杜少波【学习目标】1、理解并掌握二次根式、最简二次根式、同类二次根式的定义和性质.2、熟练掌握二次根式的加、减、乘、除运算,会用它们进行有关实数的四则运算.3、了解代数式的概念,进一步体会代数式在表示数量关系方面的作用. 【知识网络】【要点梳理】要点一、二次根式的相关概念和性质 1. 二次根式形如(0)a a ≥的式子叫做二次根式,如13,,0.02,02等式子,都叫做二次根式. 要点诠释:二次根式a 有意义的条件是0a ≥,即只有被开方数0a ≥时,式子a 才是二次根式,a 才有意义. 2.二次根式的性质 (1); (2);(3).要点诠释:(1) 一个非负数a 可以写成它的算术平方根的平方的形式,即a 2a =(0a ≥),如2221122););)33x x ===(0x ≥). (2)2a a 的取值范围可以是任意实数,即不论a 2a . (32a a ,再根据绝对值的意义来进行化简.(42a 2()a 的异同2a a 可以取任何实数,而2a 中的a 必须取非负数;2a a ,2a =a (0a ≥).相同点:被开方数都是非负数,当a 2a 2)a .3. 最简二次根式(1)被开方数是整数或整式;(2)被开方数中不含能开方的因数或因式.满足上述两个条件的二次根式,叫做最简二次根式.222,,3,ab x a b +次根式.要点诠释:最简二次根式有两个要求:(1)被开方数不含分母;(2)被开方数中每个因式的指数都小于根指数2. 4.同类二次根式几个二次根式化成最简二次根式后,被开方数相同,这几个二次根式就叫同类二次根式. 要点诠释:判断是否是同类二次根式,一定要化简到最简二次根式后,看被开方数是否相同,再判断.2882228显然是同类二次根式. 要点二、二次根式的运算 1. 乘除法(1)乘除法法则: 类型 法则逆用法则二次根式的乘法0,0)a b ab a b =≥≥积的算术平方根化简公式:(0,0)ab a b a b =≥≥二次根式的除法=(0,0)a aa b b b≥>商的算术平方根化简公式:0,0)a aa b b b=≥>要点诠释:(1)当二次根式的前面有系数时,可类比单项式与单项式相乘(或相除)的法则,如a b c d ac bd = (2)被开方数a 、b 一定是非负数(在分母上时只能为正数).(4)(9)49-⨯-≠--.2.加减法将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数不变,即合并同类二次根式. 要点诠释:二次根式相加减时,要先将各个二次根式化成最简二次根式,再找出同类二次根式,最后合并同类二次根式.如23252(135)22+-=+-=-. 【典型例题】类型一、二次根式的概念与性质1. 当________时,二次根式3x -在实数范围内有意义. 【答案】x ≥3.【解析】根据二次根式的性质,必须3x -≥0才有意义.【总结升华】本例考查了二次根式成立的条件,要牢记,只有0a ≥时a 才是二次根式. 举一反三【:二次根式 高清ID 号:388065 关联的位置名称:填空题5】 【变式】①242x x =-成立的条件是 . ②2233x x x x--=--成立的条件是 . 【答案】① x ≤0;(2422x x x x ==-∴≤0.)② 2≤3x <.(20,30,x x -->∴≥2≤3x <)2.当0≤x <1时,化简21x x +-的结果是__________.【答案】 1.【解析】因为x ≥0,所以2x =x ;又因为x <1,即x -1<0,所以1(1)1x x x -=--=-,所以21x x +-=x +1-x =1.【总结升华】利用二次根式的性质化简二次根式,即2a =a ,同时联系绝对值的意义正确解答. 举一反三【变式】(2015春•大冶市期末)已知﹣=2,则+的值为_____________. 【答案】5.解:∵﹣=2,∴=+2,两边平方得,25﹣x 2=4+15﹣x 2+4,∴2=3,两边平方得4(15﹣x 2)=9, 化简,得x 2=,∴+=+=5.故答案为:5.3.下列二次根式中属于最简二次根式的是( ).A. 14B. 48C. abD. 44a + 【答案】A.【解析】选项B :48=43;选项C :有分母;选项D :44a +=21a +,所以选A. 【总结升华】本题考查了最简二次根式的定义.最简二次根式要满足:(1)被开方数是整数或是整式;(2)被开方数中不含能开方的因式或因数. 类型二、二次根式的运算4.(2016•来宾)下列计算正确的是( ) A .﹣= B .3×2=6C .(2)2=16D .=1【答案】B.【解析】解:A 、不能化简,所以此选项错误;B 、3×=6,所以此选项正确;C 、(2)2=4×2=8,所以此选项错误;D 、==,所以此选项错误;故选B .【总结升华】本题考查了二次根式的混合运算,熟练掌握二次根式的计算法则是关键,要注意:①二次根式的运算结果要化为最简二次根式;②与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的;③灵活运用二次根式的性质,选择恰当的解题途径.举一反三 【变式】计算:48(54453)833-+⨯ 【答案】243610-.5.化简20102011(32)(32)+⋅-. 【答案与解析】201020102010=(32)(32)(32)(32)(32)(32)1(32)3 2.+⋅-⋅-⎡⎤=+⋅-⋅-⎣⎦=⋅-=-原式【总结升华】本题的求解用到了积的乘方的性质,乘法运算律,平方差公式及根式的性质,是一道综合运算题型.6.已知2231,12x x x x=-+求.【答案与解析】2231,1=30,(1)133331=33x x x xx x x =+∴->∴=--+==原式当时,原式【总结升华】 化简求值时要注意x 的取值范围,如果未确定要注意分类讨论. 举一反三【:二次根式 高清ID 号:388065关联的位置名称:计算技巧6-7】 【变式】已知a b +=-3, ab =1,求ab b a +的值. 【答案】∵a b +=-3,ab =1,∴<0a ,<0b11++)=-=3ab ab a bb a ab∴原式.中考数学知识点代数式 一、 重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

二次根式知识点总结及习题带答案

二次根式知识点总结及习题带答案

二次根式知识点总结及习题带答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN【基础知识巩固】一、二次根式的概念形如()的式子叫做二次根式。

注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。

二、取值范围1.二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。

2.二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义。

三、二次根式()的非负性()表示a的算术平方根,也就是说,()是一个非负数,即0()。

注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。

这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。

四、二次根式()的性质:一个非负数的算术平方根的平方等于这个非负数。

()注:二次根式的性质公式()是逆用平方根的定义得出的结论。

上面的公式也可以反过来应用:若,则,如:,.五、二次根式的性质:一个数的平方的算术平方根等于这个数的绝对值。

1、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即;若a是负数,则等于a的相反数-a,即;2、中的a的取值范围可以是任意实数,即不论a取何值,一定有意义;3、化简时,先将它化成,再根据绝对值的意义来进行化简。

六、与的异同点1、不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;在中,而中a可以是正实数,0,负实数。

但与都是非负数,即,。

因而它的运算的结果是有差别的,,而2、相同点:当被开方数都是非负数,即时,=;时,无意义,而.七、二次根式的运算1、最简二次根式必须满足以下两个条件(1)被开方数不含分母,即被开方的因式必须是整式;(2)被开方数中不含能开得尽方的因数或因式,即被开方数中每一个因数或因式的指数都是1.2ab a·b(a≥0,b≥0);积的算术平方根的性质即乘法法则的逆用.3、除法法则:b ba a(b≥0,a>0);商的算术平方根的性质即除法法则的逆用.4、合并同类项的法则:系数相加减,字母的指数不变.5、二次根式的加减(1)二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并。

二次根式(讲义及答案)附解析

二次根式(讲义及答案)附解析

一、选择题1.若01x <<,则221144x x x x ⎛⎫⎛⎫-+-+-= ⎪ ⎪⎝⎭⎝⎭( ). A .2xB .2x-C .2x -D .2x2.已知x 1=3+2,x 2=3-2,则x₁²+x₂²等于( ) A .8B .9C .10D .113.下列运算正确的是( )A .52223-=y yB .428x x x ⋅=C .(-a-b )2=a 2-2ab+b 2D .27123-=4.下列各式计算正确的是( ) A .2+3=5 B .43-33=1 C .2333=63⨯ D .123=2÷5.将1、、、按图2所示的方式排列,若规定(m ,n )表示第m 排从左到右第n 个数,则(4,2)与(21,2)表示的两数的积是( )A .1B .2C .D .66.下列计算正确的是( )A 235=B 623=C 23(3)86-=-D 321=7.12的下列说法中错误的是( ) A 1212的算术平方根 B .3124<< C 12不能化简D 12是无理数8.若|x 2﹣4x+4|23x y --x+y 的值为( ) A .3B .4C .6D .99.已知实数x 、y 满足222y x x =--,则yx 值是( )A .﹣2B .4C .﹣4D .无法确定 10.3x -在实数范围内有意义,则x 的取值范围是( ) A .x >0B .x >3C .x ≥3D .x ≤3二、填空题11.将2(3)(0)3a a a a-<-化简的结果是___________________.12.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72[72]=8[8]=2[2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是________. 13.已知3x x+=,且01x <<,则2691x x x =+-______.14.设12211112S =++,22211123S =++,32211134S =++,设12...n S S S S =+++,则S=________________ (用含有n 的代数式表示,其中n 为正整数).15.甲容器中装有浓度为a 的果汁40kg ,乙容器中装有浓度为b 的果汁90kg ,两个容器都倒出m kg ,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m 的值为_________.16.对于任意实数a ,b ,定义一种运算“◇”如下:a ◇b =a(a -b)+b(a +b),如:3◇2=3×(3-2)+2×(3+2)=13,那么3◇2=_____. 17.若实数23a =-,则代数式244a a -+的值为___. 18.实数a 、b 在数轴上的位置如图所示,则化简()222a b a b -+-=_____.19.函数y =42xx --中,自变量x 的取值范围是____________. 20.观察分析下列数据:0,36,-3,231532的规律得到第10个数据应是__________.三、解答题21.先化简,再求值:24211326x x x x -+⎛⎫-÷⎪++⎝⎭,其中21x =. 2. 【分析】根据分式的运算法则进行化简,再代入求解. 【详解】原式=221(1)12(3)232(3)3(1)1x x x x x x x x x ---+⎛⎫⎛⎫÷=⋅= ⎪ ⎪+++--⎝⎭⎝⎭.将1x == 【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.22.在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.比如:2224312111-=-=-+=).善于动脑的小明继续探究:当a b m n 、、、为正整数时,若2a n +=+),则有22(2a m n =+,所以222a m n =+,2b mn =.请模仿小明的方法探索并解决下列问题:(1)当a b m n 、、、为正整数时,若2a n =+),请用含有mn 、的式子分别表示a b 、,得:a = ,b = ;(2)填空:13-( - 2;(3)若2a m +=(),且a m n 、、为正整数,求a 的值.【答案】(1)223a m n =+,2b mn =;(2)213--;(3)14a =或46. 【解析】 试题分析:(1)把等式)2a n +=+右边展开,参考范例中的方法即可求得本题答案;(2)由(1)中结论可得:2231324a m n b mn ⎧=+=⎨==⎩,结合a b m n 、、、都为正整数可得:m=2,n=1,这样就可得到:213(1-=-;(3)将()2a m +=+右边展开,整理可得:225a m n =+,62mn =结合a m n 、、为正整数,即可先求得m n 、的值,再求a 的值即可.试题解析:(1)∵2a n =+),∴223a m n +=++, ∴2232a m n b mn =+=,;(2)由(1)中结论可得:2231324a m n b mn ⎧=+=⎨==⎩,∵a b m n 、、、都为正整数,∴12m n =⎧⎨=⎩或21m n =⎧⎨=⎩ ,∵当m=1,n=2时,223713a m n =+=≠,而当m=2,n=1时,22313a m n =+=, ∴m=2,n=1, ∴()21343=123--;(3)∵22265(5)525a m n m n mn +=+=++, ∴225a m n =+,62mn = , 又∵a m n 、、为正整数, ∴=1=3m n ,, 或者=3=1m n ,,∴当=1=3m n ,时,46a =;当=3=1m n ,,14a =, 即a 的值为:46或14.23.阅读下列材料,然后回答问题: 在进行二次根式运算时,我们有时会碰上如3、3+1这样的式子,其实我们还可以将其进一步化简:535==33333⨯⨯;22(31)2(31)=313+1(3+1)(31)(3)1⨯-⨯-==--- . 以上这种化简过程叫做分母有理化.3+1还可以用以下方法化简:22(3)1(3+1)(31)=313+13+13+13+1--===-. (1)请用其中一种方法化简1511-;(2)化简:++++3+15+37+599+97.【答案】(1) 15+11;(2) 311-1. 【分析】(1)运用了第二种方法求解,即将4转化为1511-;(2)先把每一个加数进行分母有理化,再找出规律,即后面的第二项可以和前面的第一项抵消,然后即可得出答案. 【详解】 (1)原式==;(2)原式=+++…=﹣1+﹣+﹣+…﹣=﹣1=3﹣1【点睛】本题主要考查了分母有理化,找准有理化的因式是解题的关键.24.先观察下列等式,再回答下列问题:111111112=+-=+;111112216=+-=+1111133112=+-=+(1) (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数).【答案】(1)1120(2)()111n n ++(n 为正整数) 【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.试题解析:(1)=1+14−141+=1120,1120(2)1 n −1 n 1+=1+()1n n 1+ (n 为正整数).a =,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.25.计算(11)1)⨯; (2)【答案】(12+;(2). 【解析】分析:先将二次根式化为最简,然后再进行二次根式的乘法运算.详解:(1)11+;=()31-2 ;(2)原式=(22⨯,==3⨯==点睛:此题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.26.计算:0(3)|1|π-+.【答案】【分析】根据二次根式的意义和性质以及零次幂的定义可以得到解答. 【详解】解:原式11=+=【点睛】本题考查实数的运算,熟练掌握二次根式的运算和零次幂的意义是解题关键.27.计算:(1 (2)()()2221-【答案】2)1443 【分析】(1)先化成最简二次根式,然后再进行加减运算即可; (2)套用平方差公式和完全平方式进行运算即可. 【详解】解:(1)原式=23223323,(2)原式(34)(12431)1124311443,故答案为:1443. 【点睛】本题考查二次根式的四则运算,熟练掌握二次根式的四则运算是解决本题的关键.28.化简求值:212(1)211x x x x -÷-+++,其中1x =.【答案】3【解析】分析:先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可. 详解:原式2112,2111x x x x x x -+⎛⎫=÷- ⎪++++⎝⎭2112,211x x x x x -+-=÷+++()211,11x x x x -+=⋅-+1.1x =+当1x =时,11x ==+ 点睛:考查分式的混合运算,掌握运算顺序是解题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据二次根式的意义先化简各项,再进行分式的加减运算可得出解. 【详解】 解:∵0<x <1, ∴0<x <1<1x, ∴10x x +>,10x x-<.原式=11x x x x+-- =11x x x x ++- =2x . 故选D .点睛:本题考查了二次根式的性质和绝对值化简,也考查了分式的加减.2.C解析:C 【详解】12x x +==12321x x ==-=,所以()2221212122x x x x x x +=+-=(22112210-⨯=-=,故选:C . 【点睛】对于形如2212x x +的式子,改变其中两个字母的位置后,并不改变代数式的值,通常将具有这个特点的代数式称为轮换对称式,如1211+x x ,1221x x x x +,12x x -等,轮换对称式都可以用12x x +,12x x 来表示,所以求轮换对称式的值,一般是先将式子用12x x +,12x x 来表示,然后再整体代入计算.3.D解析:D 【分析】由合并同类项、同底数幂乘法、完全平方公式、以及二次根式的加减运算,分别进行判断,即可得到答案. 【详解】解:A 、222523y y y -=,故A 错误;B 、426x x x ⋅=,故B 错误;C 、222()2a b a ab b --=++,故C 错误; D==D 正确; 故选:D . 【点睛】本题考查了合并同类项、同底数幂乘法、完全平方公式、以及二次根式的加减运算,解题的关键是熟练掌握运算法则进行解题.4.D解析:D 【解析】试题分析:根据同类二次根式,可知2与3不是同类二次根式,因此不能计算,故不正确.-=3,故不正确;根据同类二次根式,可知4333⨯=18,故不正确;根据二次根式的性质,可知2333÷=÷=,故正确.根据二次根式除法的性质,可知2733333故选D.5.D解析:D【解析】(4,2)表示第4排从左向右第2个数是:,(21,2)表示第21排从左向右第2个数,可以看出奇数排最中间的一个数都是1,第21排是奇数排,最中间的也就是这排的第1个数是1,那么第2个就是:,•=6,故选D6.B解析:B【分析】根据二次根式加减运算和二次根式的性质逐项排除即可.【详解】2与3A选项错误;6===B选项正确;62632223-=-=,所以C选项错误;(3)83212与3D选项错误;故选答案为B.【点睛】本题考查了二次根式加减运算和二次根式的性质,掌握同类二次根式的定义和二次根式的性质是解答本题的关键.7.C解析:C【分析】根据算术平方根的定义,无理数的定义及估值,二次根式的化简依次判断.【详解】A1212的算术平方根,故该项正确;B、3124<<,故该项正确;C1223=D=是无理数,故该项正确;故选:C.【点睛】此题考查算术平方根的定义,无理数的定义及估值,二次根式的化简,熟练掌握各知识点并运用解题是关键.8.A解析:A【解析】根据题意得:|x2–4x,所以|x2–4x+4|=0,即(x–2)2=0,2x–y–3=0,所以x=2,y=1,所以x+y=3.故选A.9.C解析:C【分析】依据二次根式中的被开方数是非负数求得x的值,然后可得到y的值,最后代入计算即可.【详解】y=,∵实数x、y满足2∴x=2,y=﹣2,-⨯=-4.∴yx=22故选:C.【点睛】本题主要考查的是二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.10.C解析:C【详解】解:根据题意得:x-3≥0解得:x≥3故选C.二、填空题11..【分析】根据二次根式的性质化简即可.【详解】∵a<0.∴a-3<0,∴==.故答案为:.【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.解析:【分析】根据二次根式的性质化简即可.【详解】∵a<0.∴a-3<0,∴(a-=-=故答案为:【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.12.255【解析】解:∵[]=1,[]=3,[]=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和解析:255【解析】解:]=1,=3,=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和逆推思维能力.13..【分析】利用题目给的求出,再把它们相乘得到,再对原式进行变形凑出的形式进行计算.【详解】∵,∴,∴,∴,∵,∴,∴,∴原式.故答案是:.【点睛】本题考查二次根式的运.【分析】,再把它们相乘得到1xx-,再对原式进行变形凑出1xx-的形式进行计算.【详解】3=,∴221239xx=++==,∴17xx+=,∴212725xx=-+=-=,∵01x<<,=,∴1xx=-=-∴原式====..【点睛】本题考查二次根式的运算和乘法公式的应用,解题的关键是熟练运用乘法公式对式子进行巧妙运算.14.【分析】先根据题目中提供的三个式子,分别计算的值,用含n 的式子表示其规律,再计算S 的值即可.【详解】解:∵,∴;∵,∴;∵,∴;……∵,∴;∴.故答案为:【点睛】本题 解析:221n n n ++ 【分析】n 的式子表示其规律,再计算S 的值即可.【详解】 解:∵1221191=124S =++311122===+-; ∵222114912336S =++=7111116623===+=+-; ∵32211169134144S =++=1311111121234===+=+-; …… ∵()()()222222111111n n n S n n n n ++=++=++,()()2111111111n n n n n n n n ++===+=+-+++;∴...S =1111111112231n n =+-++-++-+…+ 111n n =+-+. 221n n n +=+ 故答案为:221n n n ++ 【点睛】本题为规律探究问题,难度较大,根据提供的式子发现规律,并表示规律是解题的关键,同时要注意对于式子()11111n n n n =-++的理解. 15.【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg 溶液中纯果汁的含量,最后利用混合后果汁的浓度相等列出关系式,求出m 即可.【详解】解:根据题意,甲容器中纯果汁含量为akg ,乙容器【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg 溶液中纯果汁的含量,最后利=,求出m 即可.【详解】, 甲容器倒出mkg 果汁中含有纯果汁makg ,乙容器倒出mkg 果汁中含有纯果汁mbkg ,,=,整理得,-6b =5ma -5mb ,∴(a -b )=5m (a -b ),∴m故答案为:5【点睛】 本题考查二次根式的应用,能够正确理解题意,化简二次根式是解题的关键. 16.5【解析】◇==5.故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a 对应,b 对应,即将a=,b=,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则解析:5【解析】32==5. 故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a ,b ,即将,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则进行计算,注意最终的结果一定要化为最简二次根式.17.3【解析】∵ =,∴=(a-2)2==3,故答案为3.解析:3【解析】∵a =∴244a a -+=(a-2)2=()222+=3, 故答案为3.18.﹣2a【分析】首先根据实数a 、b 在数轴上的位置确定a 、b 的正负,然后利用二次根式的性质化简,最后合并同类项即可求解.【详解】依题意得:a<0<b,|a|<|b|,∴=-a-b+b-a=-解析:﹣2a【分析】首先根据实数a、b在数轴上的位置确定a、b的正负,然后利用二次根式的性质化简,最后合并同类项即可求解.【详解】依题意得:a<0<b,|a|<|b|,.故答案为-2a.【点睛】此题主要考查了二次根式的性质与化简,其中正确利用数轴的已知条件化简是解题的关键,同时也注意处理符号问题.19.x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案.【详解】解:由y=,得4-x≥0且x-2≠0.解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方解析:x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案.【详解】解:由,得4-x≥0且x-2≠0.解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方数是非负数、分母不能为零得出4-x≥0且x-2≠0是解题关键.20.6【分析】通过观察可知,根号外的符号以及根号下的被开方数依次是:,,…,可以得到第13个的答案.【详解】解:由题意知道:题目中的数据可以整理为:,,…,∴第13个答案为:.故答案为6.解析:6【分析】 通过观察可知,根号外的符号以及根号下的被开方数依次是:11(1)30,21(1)31,31(1)32…1(1)3(1)n n ,可以得到第13个的答案.【详解】 解:由题意知道:题目中的数据可以整理为:11(1)30,21(1)31,31(1)32…1(1)3(1)n n ,∴第13个答案为:131(1)3(131)6.故答案为6.【点睛】此题主要考查了二次根式的运算以及学生的分析、总结、归纳的能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律. 三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《二次根式》全章复习与巩固--知识讲解(基础)
【学习目标】
1、理解并掌握二次根式、最简二次根式、同类二次根式的定义和性质.
2、熟练掌握二次根式的加、减、乘、除运算,会用它们进行有关实数的四则运算.
3、了解代数式的概念,进一步体会代数式在表示数量关系方面的作用.
【知识网络】
【要点梳理】
要点一、二次根式的相关概念和性质
1. 二次根式
0)a ≥.
要点诠释:0a ≥,即只有被开方数0a ≥时,
.
2.二次根式的性质
(1)
; (2);
(3).
要点诠释:(1) 一个非负数a 可以写成它的算术平方根的平方的形式,即a 2=(0a ≥),
如22212;;3x ===(0x ≥).
(2)
a 的取值范围可以是任意实数,即不论a
.
(3
a ,再根据绝对值的意义来进行化简.
(4
2的异同
a
可以取任何实数,而2中的a 必须取非负数;
a
,2=a (0a ≥).
相同点:被开方数都是非负数,当a
2.
3. 最简二次根式
(1)被开方数是整数或整式;
(2)被开方数中不含能开方的因数或因式.
满足上述两个条件的二次根式,叫做最简二次根式.
等都是最简二次根式.
要点诠释:最简二次根式有两个要求:(1)被开方数不含分母;(2)被开方数中每个因式的指数都小于根指数2.
4.同类二次根式
几个二次根式化成最简二次根式后,被开方数相同,这几个二次根式就叫同类二次根式. 要点诠释:判断是否是同类二次根式,一定要化简到最简二次根式后,看被开方数是否相同,再判断.
.
要点二、二次根式的运算
1. 乘除法
(1)乘除法法则:
类型
法则 逆用法则 二次根式的乘法
0,0)a b =≥≥ 积的算术平方根化简公式:
0,0)a b ≥≥
二次根式的除法
0,0)a b ≥> 商的算术平方根化简公式:
0,0)a b =≥> 要点诠释:
(1
)当二次根式的前面有系数时,可类比单项式与单项式相乘(或相除)的法则,如= (2)被开方数a 、b 一定是非负数(在分母上时只能为正数).
≠2.加减法
将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数不变,
即合并同类二次根式.
要点诠释:
二次根式相加减时,要先将各个二次根式化成最简二次根式,再找出同类二次根式,最后
合并同类二次根式.(13=+-=【典型例题】
类型一、二次根式的概念与性质
1. 当________.
【答案】x ≥3.
【解析】根据二次根式的性质,必须3x -≥0才有意义.
【总结升华】本例考查了二次根式成立的条件,要牢记,只有0a ≥. 举一反三
【高清课堂:二次根式 高清ID 号:388065 关联的位置名称:填空题5】
2x =-成立的条件是 .
成立的条件是 . 【答案】① x ≤0;(2422x x x x ==-∴≤0.) ② 2≤3x <.(
20,30,x x -->∴≥2≤3x <)
2.当0≤x <11x -的结果是__________. 【答案】 1.
【解析】因为x ≥0x ;又因为x <1,即x -1<0,所以1(1)1x x x -=--=-,
1x -=x +1-x =1.
【总结升华】a ,同时联系绝对值的意义正确解答.
举一反三
【变式】已知0a < ).
A.-- D.【答案】A.
3.下列二次根式中属于最简二次根式的是( ).
【答案】A.
【解析】选项B
=C:有分母;选项D
A. 【总结升华】本题考查了最简二次根式的定义.最简二次根式要满足:(1)被开方数是整数或是整式;
(2)被开方数中不含能开方的因式或因数.
类型二、二次根式的运算
4.下列计算错误的是().
A.
= B.
= C.
=
D.
3
=
【答案】D.
【解析】选项A:
==故正确;
选项B
===故正确;
选项
C==
选项D
:=故错误.
【总结升华】本题主要考查了二次根式的加减乘除运算,属于基础性考题.
举一反三
【变式】计算:
【答案】
5.
化简20102011
⋅.
【答案与解析】
20102010
2010
1
⋅⋅
⎡⎤
=⋅⋅
⎣⎦
=⋅
=
原式
【总结升华】本题的求解用到了积的乘方的性质,乘法运算律,平方差公式及根式的性质,
是一道综合运算题型.
6
已知1,
x=.
【答案与解析】
31,0,
1
1
x x
x
x
x
=+∴->
∴=
-
==
原式
当时,原式
【总结升华】化简求值时要注意x的取值范围,如果未确定要注意分类讨论.举一反三
【高清课堂:二次根式高清ID号:388065关联的位置名称:计算技巧6-7】【变式】已知a b
+
=-3, ab=1,

a
b
b
a
+的值.
【答案】∵a b
+=-3,ab=1,∴<0
a,<0
b
11+
==-(+)=-=3
--
a b
b a b a ab
∴+
原式.。

相关文档
最新文档